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Abstract: Atrial fibrillation (AF) is the most common persistent arrhythmia, and it is
crucial to develop generalizable automatic AF detection methods. However, supervised
AF detection is often limited in performance due to the difficulty in obtaining labeled
data. To address the gap between limited labeled data and the requirements for model
robustness and generalization in single-lead ECG AF detection, we proposed a semi-
supervised contrastive learning method named MLMCL for AF detection. The MLMCL
method utilizes the multi-level feature representations of the encoder to perform multiple
contrastive learning to fully exploit temporal consistency, channel consistency, and label
consistency. Meanwhile, it combines labeled and unlabeled data for pre-training to obtain
robust features for downstream tasks. In addition, it uses the domain knowledge in the
field of AF diagnosis for domain knowledge augmentation to generate hard samples and
improve the distinguishability of ECG representations. In the cross-dataset testing mode,
MLMCL had better performance and good stability on different test sets, demonstrating its
effectiveness and robustness in the AF detection task. The comparison results with existing
studies show that MLMCL outperformed existing methods in external tests. The MLMCL
method can be extended and applied to multi-lead scenarios and has reference significance
for the development of contrastive learning methods for other arrhythmia.

Keywords: atrial fibrillation; deep learning; electrocardiogram (ECG); contrastive learning (CL)

1. Introduction
Atrial fibrillation (AF) is the most common type of sustained arrhythmia [1]. It is

defined and characterized by extremely rapid and uncoordinated atrial activities [2]. Atrial
fibrillation can significantly increase the risk of developing other high-risk cardiovascular
diseases, including stroke [3], systemic embolism [4], vascular dementia [4], heart failure [5],
myocardial infarction [6], and sudden cardiac death [7]. Atrial fibrillation usually affects the
elderly and initially presents as paroxysmal. Without intervention, paroxysmal AF tends
to progress to persistent and permanent AF [2]. Currently, the electrocardiogram (ECG) is
the most commonly used monitoring technique for detecting and quantifying the electrical
activities of the heart [8] . The occurrence of arrhythmia is usually manifested as the change
in ECG morphology and rhythm. For example, the common characteristics of AF on the
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ECG include irregular RR intervals, the disappearance of P waves, and the appearance of f
waves [9]. According to diagnostic conventions, a fibrillation episode lasting at least 30 s
can be diagnosed as clinical AF [10]. However, the recognized complexity of ECG is much
higher than that of ordinary images, which makes the diagnosis process time-consuming
and error-prone. In addition, the quality of ECG diagnosis depends on the professional
level of cardiologists, and it may even require multiple experts to resolve differences in
decision making. As a result, most of the ECG data collected in the medical field have
not been systematically organized and diagnosed. Therefore, it is of great significance
to develop efficient and reliable automated detection methods to analyze and interpret
ECG recordings.

So far, deep learning (DL) technology has made remarkable progress in the field
of automated AF detection. Among them, supervised learning methods dominate cur-
rent research. Representative deep learning network models include CNN [11–13],
LSTM [14–17], Transformer [18,19], the fusion of multiple networks [20,21], etc. These
methods have demonstrated excellent performance in multi-lead and single-lead AF de-
tection. Some studies [22] have shown that DL has the potential to reach or even exceed
the proficiency level of cardiologists in arrhythmia detection. However, for AF detection,
the good generalization performance of supervised learning models depends on a large
amount of high-quality annotated ECG data, which is always difficult to obtain. Therefore,
it poses a serious problem for AF detection: the AF detection methods based on super-
vised learning are prone to overfitting in the case of limited annotated data, thus limiting
their generalizability.

Considering that multiple instances sharing the same label should share some consis-
tent representations of data that can be learned by the network, AF detection methods based
on contrastive learning (CL) [23] attempt to learn this data consistency from unlabeled data
to alleviate overfitting, thereby mitigating the impact of limited labeled data and reducing
the dependence on labeled data. As a mainstream technique of self-supervised learning
(SSL), CL includes two processes: the pre-training task and the downstream task. Among
them, the pre-training task usually takes unlabeled data as input, while the labeled data are
used for the downstream task. The core idea of this method is to encourage the model to
distinguish similar and different data without labels so that the model maps similar samples
from the same class closer in the high-dimensional feature space while separating samples
from different classes, thus providing meaningful representations for fine-tuning with
labeled data in the downstream task and generating more accurate predictions. Specifically,
mainstream CL methods bring the representations of positive sample pairs composed of
target samples and similar (positive) samples closer in the embedding space while pushing
the representations of negative sample pairs composed of target samples and dissimilar
(negative) samples farther apart. Therefore, in CL, the selection of positive sample pairs
and the design of the corresponding contrastive loss function have received great attention
from researchers.

In the field of computer vision, numerous effective CL frameworks such as Sim-
CLR [24], MoCo [25], BYOL [26] widely apply data augmentation to generate positive
samples. Among them, SimCLR and its improved versions [27] are the most commonly
used frameworks. They take the target sample and the augmented sample as a positive
pair, and they regard the target sample and other samples as negative pairs. In the field
of time series, some studies attempt to implement augmentation techniques applicable to
time series data, such as DTW data augmentation proposed by TimeCLR [28] and random
cropping and timestamp masking proposed by TS2Vec [29].

Unlike image data and traditional time series data, there are inherent connections
in multiple attribute dimensions among different ECG samples. The data consistency
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resulting from these internal connections may be beneficial to downstream tasks and can
serve as a basis for the selection of positive samples other than data augmentation. For
example, TNC [30] conducts subject consistency by taking the time-neighboring samples
of the same subject as positive pairs. The CLOCS [31] method further takes into account
the samples of different leads and the samples of the same subject to achieve contrastive
learning at the channel consistency and subject consistency.

However, despite the certain degree of progress made in the CL methods for ECG,
the following problems still exist, which may lead to suboptimal performance in the
AF detection task. Firstly, existing CL-based studies usually randomly select negative
samples from training data, which means that negative samples may be selected from the
samples of the same category as the target sample, resulting in a decline in the quality of
representation. Secondly, the downstream task is not used to guide the entire process of
positive sample selection in the pre-training task, including data augmentation and the
inherent connections of ECG data. Some augmentation methods are unable to generate
hard samples with sufficient differences for the downstream task, which is not conducive to
learning distinguishable features. Some inherent connections of ECG data are unstable. For
example, the paroxysmal nature of AF may cause the ECG data of the same subject to come
from multiple distributions, making it impossible for CL to capture the subject consistency.
In addition, existing deep learning usually uses data with similar distributions during the
training and testing processes, which may exhibit instability in real-world scenarios. The
cross-dataset testing method, which evaluates the performance on external datasets that
are significantly different from the training data, is becoming an important solution to
effectively address this problem.

To address the above issues, we propose a multi-level and multiple contrast learn-
ing (MLMCL) solution for AF detection using single-lead ECGs. This method introduces
semi-supervised pre-training, which uses both labeled and unlabeled data during the
pre-training stage. It constructs robust representations by selecting negative samples based
on labels to prevent the decline in representation quality caused by randomly selecting
negative samples. To fully tap into the full potential of ECG data, MLMCL performs
multiple contrastive learning on the multi-level feature representations extracted by the
encoder, which systematically mine the temporal consistency, channel consistency, and
label consistency. Among them, the temporal contrastive learning focuses on the repre-
sentative morphology at a single timestamp, the channel contrastive learning focuses on
the invariant information across leads, and the label contrastive learning focuses on the
information retained across subjects. In addition, by leveraging the ECG knowledge in
the AF-related medical domain, we propose using vertical flipping and T-wave masking
to achieve diagnostic region augmentation and non-diagnostic region augmentation, re-
spectively, which together form the domain knowledge augmentation to generate hard
samples. We apply MLMCL on the basis of domain knowledge augmentation to learn the
generalizable feature representations in ECG, maximizing the potential of both labeled and
unlabeled data and reducing the dependence on labeled data. Finally, we conduct pre-
training under the cross-dataset testing setting. After obtaining the ECG representations,
the model is fine-tuned for AF detection on the labeled dataset. The cross-dataset testing
evaluation is carried through linear probing and full fine-tuning to ensure its robustness.
Our contributions are as follows:

• This paper proposes a semi-supervised contrastive learning framework that uses
both labeled and unlabeled data during the pre-training stage to construct robust
representations by selecting negative samples based on labels.

• For AF detection, an MLMCL contrastive learning method is proposed. It performs
multiple contrastive learning to extract the temporal consistency, channel consistency,
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and label consistency on multi-level feature representations, thereby learning general-
izable representations.

• By utilizing the knowledge in the AF diagnosis domain, a domain knowledge aug-
mentation combining diagnostic region augmentation and non-diagnostic region aug-
mentation is proposed for generating hard samples to learn distinguishable features.

• The proposed method outperforms existing methods under the cross-dataset testing
mode, and the external tests on multiple datasets demonstrate the generalizability of
the proposed method.

The remaining parts of this study are arranged as follows. Section 2 introduces the
related work. Section 3 outlines the methods used in this study. Section 4 presents the
datasets, experiments, and results. Section 5 summarizes this study.

2. Related Works
The essence of CL is to mine the common patterns of similar data. According to the

requirements of downstream tasks, CL-based methods usually select positive and negative
sample pairs in a customized manner. They learn data consistency by maximizing the
similarity of the representations of positive sample pairs while minimizing the similarity
of the representations of negative sample pairs. Selecting appropriate positive samples is
crucial for ensuring the performance of downstream tasks [32]. For example, the SimCLR
proposed by Chen et al. [24] defines positive samples as the augmented views of the target
sample and directly regards the views from other samples in the current batch as negative
samples. Tian et al. [33] use different modal views of the same sample as positive sample
pairs. The way of selecting positive samples determines the semantic information of the
learned representations. Therefore, it is important to develop a selection strategy of positive
sample applicable to ECG.

The CL methods in the ECG field have been studied for extracting effective ECG rep-
resentations. Some studies directly transfer CL methods from other fields to the ECG field.
For example, Mehari et al. [34] directly compared instance-based CL methods (SimCLR,
BYOL, and SwAV) and latent forecasting methods (CPC) to demonstrate the feasibility of
learning useful representations from 12-lead ECG data through self-supervised learning.
Soltanieh et al. [35] used multiple different augmentations and parameters to evaluate the
effectiveness of the ECG representations of three contrastive learning methods (SimCRL,
BYOL, and SwAV) on out-of-distribution datasets. Zhang et al. [36] adopted a contrastive
learning method that manipulates temporal–spatial reverse augmentation to learn ECG
representations and explored the impact of different combinations of horizontal flipping
(temporal reverse) and vertical flipping (space reverse) in the pre-training stage on the
downstream AF detection task. Although these methods have shown improvements over
the fully supervised baseline, their selection of positive samples largely depends on data
augmentation methods. More ECG contrastive learning methods construct positive samples
by combining the data consistencies of the ECG inherent attributes. Such consistencies take
various attribute dimensions, and each will be considered in turn, including the consistency
of the time, subject, channel, rhythm, morphology, and label.

Temporal Consistency: Temporal consistency, also known as contextual consistency,
encourages the feature representations at the same timestamp in different augmented views
to be similar. TS2vec [29] proposes contextual consistency in the time dimension of sample
representations. It regards the representations of the same timestamp in two augmented
views as positive pairs and the representations of different timestamps as negative pairs,
focusing on the representative morphology at a single timestamp in the sample.

Subject Consistency: The ECG data of the same subject usually maintains a highly
identical pattern within a short period of time, which is the prerequisite for subject con-
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sistency. Cheng et al. [37] incorporated a subject-aware condition into the SSL framework
to promote the extraction of subject invariance through contrastive loss and adversarial
training. Lan et al. [38] proposed an intra-inter subject self-supervised learning (ISL) model
for arrhythmia diagnosis. The inter-subject SSL maximizes the subject consistency between
different augmented views of the same subject and minimizes the similarity between differ-
ent subjects to learn the unique representations of differences between different subjects.
However, when the ECG data of the same patient comes from multiple distributions, the
assumed prerequisite of subject consistency is not satisfied.

Channel Consistency: Different leads data of ECG share the same rhythmic charac-
teristics and represent the same cardiac activity with different waveform morphologies.
Channel consistency encourages the learning of invariance across leads, especially rhythmic
invariance. Liu et al. [39] proposed a dense lead contrast (DLC) method, which explores the
intra-lead and inter-lead invariance through contrastive learning between different leads.
In the follow-up work, Liu et al. further [40] proposed a direct lead assignment (DLA)
contrastive learning method. In pre-training, DLA simultaneously focuses on the global
ECG representation and lead-specific features by performing contrastive learning between
multi-lead and single-lead representations, thus improving the quality of single-lead repre-
sentation. Some studies focused on both the subject consistency and channel consistency of
ECG data, such as the 3KG method proposed by Gopal et al. [41] and the CLOCS method
proposed by Kiyasseh et al. [31].

Rhythmic Consistency and Morphological Consistency: Liu et al. [42] proposed a
morphology–rhythm contrast (MRC) learning framework. MRC performs dual contrastive
learning through random beat selection (morphological view) and 0–1 pulse generation
(rhythm view), thereby unifying the morphological and rhythmic features. Zhu et al. [43]
designed pre-training tasks for intra-period and inter-period representation learning to
capture the stable morphological features of a single period and the rhythmic features of
multiple periods, respectively. The morphological consistency adopted by these meth-
ods [42,43] is a kind of subsequence consistency, which encourages the representation
of the time series to be closer to its sampled subsequence. However, the representation
of single-period subsequence features usually cannot reflect the overall morphological
features. Due to the loss of information, subsequence consistency may not be applicable to
ECG data.

Label Consistency: The label consistency representation is the goal of downstream
tasks. Incorporating label information into contrastive learning can provide good initializa-
tion parameters for downstream tasks. The supervised CL proposed by Khosla et al. [44]
extended CL from the self-supervised domain to the full-supervised domain. The proposed
supervised contrastive loss function (SupCon), by introducing label information, makes
samples belonging to the same class cluster more closely in the embedding space, while
samples of different classes are pushed away from each other. On this basis, Le et al. [45]
applied supervised contrastive learning to the classification of multi-lead ECG arrhythmias.

The above studies have demonstrated that using CL methods for ECG representation
learning can achieve performance comparable to or even surpassing that of fully supervised
methods. Summarizing the current research, existing methods mainly consider the consis-
tency of attributes such as the time, channel, subject, rhythm, morphology (subsequence),
and label of the ECG. However, existing studies usually only consider one or two attribute
consistencies of ECG data and overlook the degree of matching of these strategies with
the downstream task data, such as subsequence consistency. Few studies have proposed
customized data augmentation methods for downstream tasks. Additionally, existing
methods usually only use unlabeled data or only use labeled data for pre-training. These
limitations result in the inability of existing methods to fully tap into the full potential
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of ECG data. To overcome these limitations, we develop a CL method for AF detection
by leveraging the ECG data consistencies of multiple attribute dimensions such as time,
channel, and label, as well as AF domain knowledge augmentation methods. We do not
specifically implement rhythm consistency, since it has already been achieved in channel
consistency and diagnostic region augmentation. Due to the presence of a large number of
paroxysmal samples in AF records, which may cause the data of the same subject to have
different distributions, we abandon the subject consistency strategy in AF detection.

3. Method
The overall process of the proposed MLMCL algorithm is shown in Figure 1, which

includes two parts: the semi-supervised pre-training task and the downstream task. In the
pre-training part, multiple contrast learning is performed on multi-level representations of
labeled and unlabeled data, aiming to learn the general representations of single-lead ECGs.
The downstream task is the AF detection in single-lead ECG. The MLMCL method contains
three key components: domain knowledge augmentation, a multi-level encoder, and
multiple contrastive losses. The following provides a more detailed description from three
aspects: data augmentation, contrastive learning pre-training, and the downstream task.

Semi-supervised pre-training

Downstream task

Unlabeled 

ECGs

Labeled 

ECGs

Labeled 

ECGs
Classifier

x Augment

𝒙𝒊

𝒙𝒊

Encoder 𝒉𝒊𝒛𝒊

෩𝒉𝒊𝒛𝒊

Multiple 

Contrastive 

Loss

x y'

y

Cross-entropy 

Loss

Share

Encoder

Encoder

Similarity

 &

 Dissimilarity

TransferShare

Figure 1. The overall flow of the proposed MLMCL algorithm.

3.1. Domain Knowledge Augmentation

Data augmentation is a crucial part for the success of CL methods. It does not need to
utilize the inherent connections (such as label categories) of different sample data to obtain
similar positive samples. Instead, it only needs to directly transform a single sample to
generate similar views. When the data augmentation transformation operators are applied
to each ECG instance, the guarantee for extracting efficient representations is to maintain
the invariance of important information in the ECG records. However, sometimes series
data augmentation methods produce less difference between the augmented sample and
the original ECG sample, making it impossible to generate reliable “hard” samples to help
the model locate the key invariant features related to downstream tasks.

In ECG, arrhythmia may change the ECG rhythm and the morphology of specific
regions, and each type of arrhythmia has distinguishable characteristic patterns. We
attempted to utilize the medical domain knowledge of ECG diagnosis to address the
issue of hard sample generation [46]. The proposed domain knowledge augmentation
is a method that combines diagnostic region augmentation and non-diagnostic region
augmentation. Both the diagnostic and non-diagnostic region augmentation modify the
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signal values in the corresponding regions to generate “hard” samples for achieving robust
learning. The aim is to transform the waveform of the diagnostic/non-diagnostic regions
to a large extent so that it is distinguishable from the original sample and other ECG
categories, thereby explicitly guiding the model to learn distinguishable features.

Diagnostic Region Augmentation: As shown in Figure 2, the key diagnostic regions of
AF lie in the P-wave and QRS-wave regions. Considering that the positive and negative
morphologies of P wave/QRS wave are symmetrical in the vertical direction, we thus
adopt vertical flipping for diagnostic region augmentation. Vertical flipping will create
a sufficiently large difference between the original ECG sample and the augmented sam-
ple, without causing confusion between the P wave and f wave. The vertical flipping
augmentation of the raw ECG signal x can be represented as x̃ = −x.

RR interval

PP interval

QT interval

QRS complex

PR interval

P duration

PR 
segment

ST segment

ST interval TP interval

R R

P P

Q
S

T T

Q
S

U

Figure 2. The classical ECG waveform and crucial segments with measurement points.

Non-Diagnostic Region Augmentation: For the non-diagnostic regions of AF, consid-
ering that the morphology and position of the T wave are not the key factors for diagnosing
AF, we adopt the method of T-wave masking to reduce the interference of the T-wave part
on the extraction of diagnostic features, making the model focus more on the diagnostic
regions such as the P wave and QRS wave. T-wave masking sets the specific ST interval in
the single-lead ECG signal to a fixed value. Specifically, its implementation includes two
steps. First, the QRS-wave region of each heartbeat needs to be identified on the entire
ECG record, since the QRS wave is the most distinctive wave region and is widely used as
a reference for locating other characteristic wave regions. Second, the c% number of the
ST intervals in the single-lead ECG sample are set to a fixed value. Usually, the T wave
appears within the range of 300 ms after the R wave. Considering that the duration of the
QRS wave is usually 80 ms to 100 ms, we achieved T-wave masking by setting the region
from 50 ms to 300 ms after the R wave to a fixed value. In the experiments, a typical value
for the masking parameter is c = 50.

Typically, contrastive learning methods use two augmented variants with different
strengths to improve the robustness of the learned representations [47]. In this paper, the
weak augmented variant directly uses the pre-processed data without transforming the
original ECG sample, since the ECG samples are not augmented in the downstream task.
The strong augmented variant adopts the domain knowledge augmentation strategy to
generate “hard” samples. A typical implementation of domain knowledge augmentation
is shown in Figure 3. In fact, we applied diagnostic region augmentation on top of non-
diagnostic region augmentation with a 50% probability to achieve domain knowledge
enhancement. Given a raw single-lead ECG sample xi, augmentation produces two views
that can be represented as xi and x̃i, respectively. These views are passed to the encoder to
extract their high-dimensional latent representations.
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3.2. Multi-Level Multiple Contrastive Learning Pre-Training

The proposed MLMCL is a semi-supervised contrastive learning method for single-
lead ECGs, which can learn ECG representations from both labeled and unlabeled data
simultaneously. Each single-lead ECG x ∈ RT0×1 is regarded as single-channel 1D data
with a sequence length of T0. Given a labeled dataset DL = {xi, yi}i=1...M that contains M
instance/label pairs and an unlabeled dataset DU = {xi}i=1...N that contains N instances,
the goal of the MLMCL pre-training is to learn an encoder to extract effective representations
zi ∈ RDz relevant to the downstream task from each xi.

During the pre-training stage, two augmented copies of the same sample are fed into
a multi-level encoder to obtain the intermediate hidden representations and the output
encoder representations, and data consistency in multiple attribute dimensions on the
multi-layer representations is encouraged. The temporal contrastive loss is calculated on
the hidden representations, and the channel contrastive loss and label contrastive loss are
calculated on the encoder representations. By utilizing the inherent data consistency in
multiple dimensions through contrastive learning, the encoder is optimized with multiple
contrastive losses to help learn a representation that is both representative and generalizable.

As shown in Figure 4, the multi-level encoder consists of two parts, including a con-
volutional feature extraction network f (·) and a temporal–spatial feature fusion network
g(·). The convolutional feature extraction network adopts a residual block design. It
extracts the context representation of each sample through one input convolutional layer
and six residual blocks. It maps xi to a high-dimensional latent space to obtain the hidden
representation hi = f (xi) ∈ RT×Dh . The hidden representation hi = {hi,1, hi,2, ..., hi,T}
contains T representation vectors in the time dimension. The feature vector hi,t ∈ RDh at
the t-th timestamp is a representation vector with Dh dimensions and is used to calculate
the temporal contrastive loss.
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Figure 4. The encoder architecture used for pre-training and the classifier architecture used for
fine-tuning.

The temporal–spatial feature fusion network g(·) is constructed using the Bidirectional
Long Short-Term Memory Network (Bi-LSTM) to extract the temporal-spatial features
of ECG. The g(·) learns from the hidden representation hi to obtain the representation
ri = g(hi) ∈ RT×Dz , which also contains T representation vectors in the time dimension.
Since the output of the last time step of the LSTM network integrates the temporal–spatial
information of hi in order to reduce the amount of computation, the output zi = ri,T of the
last time step is taken as the output encoder representation. The output zi of the encoder
is normalized onto the unit hypersphere in RDz , which makes it possible to use the inner
product to measure the distance in the latent space.

Unlike the models with the SimCLR architecture, we adopted a projector-free design.
The experimental results (Section 4.4.3) show that our method did not lead to a performance
decline without using a projector. In fact, the absence of an additional projector could
further reduce the pre-training parameters and time consumption.

3.2.1. Temporal Contrastive Learning

Contrastive learning generally assumes that the representation of an augmented sam-
ple will carry information similar to that of the corresponding original sample. Analogously,
their representation vectors at the same timestamp will also carry similar context infor-
mation, especially for high-dimensional latent representations extracted by convolutional
networks because of the same receptive field and the same network parameters. In order
to learn discriminative representations that change over time, we chose to learn temporal
consistency. For two augmentations of the same sample, representation vectors with the
same timestamp are regarded as positive pairs, and representation vectors from different
timestamps are treated as negative pairs [29]. Temporal contrastive learning helps the en-
coder focus on the representative features at a single timestamp. Since temporal consistency
does not rely on labels, temporal contrastive learning was performed on both labeled and
unlabeled data.

For a given ECG sample xi and its augmentation x̃i, the convolutional feature extrac-
tion network in the encoder extracts their respective hidden representations as hi = f (xi)

and h̃i = f (x̃i), respectively. To capture the temporal consistency, the positive pair is
(hi,t, h̃i,t), and the negative pairs are (hi,t, hi,t′) and (hi,t, h̃i,t′). In practice, the contrastive
loss is calculated within a mini-batch of data. In a batch with B raw ECG samples, the
temporal contrastive loss [29] is defined as

LtCL = − 1
B

B

∑
i=1

1
T

T

∑
t=1

log
exp (hi,t ⊙ h̃i,t/τ)

∑T
t′=1(exp (hi,t ⊙ h̃i,t′/τ) + 1{t′ ̸=t}exp (hi,t ⊙ hi,t′/τ))

(1)
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where 1{t′ ̸=t} is an indicator function, which equals 1 when the condition t′ ̸= t is satisfied
and equals 0 otherwise. The function exp(·) is the exponential function and the function
log(·) is the natural logarithm function. The symbol τ ∈ R+ is a scalar temperature
parameter used to adjust the slope of the loss function. The symbol ⊙ represents the inner
product operation and is used to calculate the cosine similarity between two vectors. The
cosine similarity of vectors u and v is defined as u ⊙ v = uTv/(∥u∥∥v∥).

3.2.2. Channel Contrastive Learning

The 12 lead signals in the same ECG can be thought of as natural augmentation
of each other [31], since multiple lead ECG signals collected simultaneously will reflect
the same cardiac activity, and they are associated with the same class. Although some
arrhythmias affect specific parts of the heart so that they can only be detected by a few
leads, the irregular rhythm of AF is special and can be observed in all leads. Minimizing
the inter-lead differences helps to discover the rhythm invariance among the leads [48].
Therefore, we utilize the invariance of different leads for channel contrastive learning.

For a given ECG sample xi, its time-aligned sample of other leads can be represented
as x′i. The samples xi and x′i are input into the encoder to obtain their respective encoder
representations zi and z′i. To capture the channel consistency, the encoder representation
zi should be close to z′i, and conversely, away from the representation zj and z′j of any
other different samples. Specifically, the positive pair is (zi, z′i), and the negative pairs are
(zi, zj) and (zi, z′j). In a batch with B initial ECG samples, the channel contrastive loss [39]
is defined as

LcCL = − 1
B

B

∑
i=1

log
exp (zi ⊙ z′i/τ)

∑N
j=1(exp (zi ⊙ z′j/τ) + 1{j ̸=i} exp (zi ⊙ zj/τ))

(2)

where the indicator function 1{j ̸=i} equals 1 when the condition j ̸= i is satisfied and equals
0 otherwise.

3.2.3. Label Contrastive Learning

In self-supervised contrastive learning, the negative samples of the target sample are
composed of samples randomly selected from the mini-batch data. When multiple negative
samples and the target sample have the same label, the contrastive loss may push samples
of the same class further apart. For downstream supervised tasks, this may lead to a decline
in the quality of the representation. Therefore, label consistency was introduced to solve
this problem. Label consistency is beneficial for learning domain-adaptive representations
of certain diseases across patients or even datasets because it indicates that samples with
the same label should exhibit shared patterns even if they are collected from different
subjects in different ways. Here, we adopted semi-supervised learning in pre-training to
introduce labeled data and label contrastive loss.

In a batch with B initial ECG samples, the positive samples of the target sample xi will
be generalized to any number of samples xp that have the same label as the target sample.
Different from the self-supervised contrastive loss, the label contrastive loss contrasts the
set of all samples with the same class label with the remaining samples of other classes in
the batch. The calculation formula of label contrastive loss [44] is as follows:

LlCL = − 1
B ∑

i∈I

1
|Pi| ∑

p∈Pi

log
exp (zi ⊙ zp/τ)

∑j∈Ai
exp (zi ⊙ zj/τ)

(3)
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In the formula, Ai = {I\{i}} is the set of indices in the batch index I = 1, 2, . . . , B that
do not include i, Pi = {p ∈ Ai :yp = yi} is the set of sample indices in the batch that have
the same label as sample i, and |Pi| is the number of its elements.

3.2.4. Multiple Contrastive Loss

The calculation process of the multiple contrastive loss used in MLMCL is shown
as Figure 5. The multiple contrastive loss LCL consists of three loss terms. The temporal
contrastive loss and the label contrastive loss help to learn robust representations that are
invariant to transformations, while the channel contrastive loss encourages the encoder
to learn lead-invariant representations. To sum up, the multiple contrastive loss of the
MLMCL method is as follows:

LCL = λ1LtCL + λ2LcCL + λ3LlCL (4)

where λ1, λ2, λ3 ∈ [0, 1] are hyperparameters that adjust the scale of each loss and satisfy
λ1 + λ2 + λ3 = 1. For the labeled dataset, three contrastive losses were adopted. For the
unlabeled data, only temporal contrastive loss and channel contrastive loss were adopted,
that is, λ3 was set to 0.
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Figure 5. The calculation process of multiple contrastive loss.

3.3. Fine-Tuning for AF Detection Task

After the MLMCL pre-training is completed, the encoder composed of the convolu-
tional feature extraction network f (·) and the temporal–spatial feature fusion network g(·)
are passed to the downstream AF detection task as a feature extractor. During fine-tuning,
in order to use the pre-trained encoder for classification, the encoder is fine-tuned and a
classifier is trained. The classifier is usually designed as a multi-layer perceptron (MLP)
with a hidden layer, and ReLU is the activation function used between each fully connected
layer. As shown in Figure 4, the classifier used in the downstream task was designed with
three fully connected layers, and a batch normalization layer was added before the activa-
tion function to stabilize the training. The cross-entropy loss was used for the supervised
training of AF detection:
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LCE = − 1
B

B

∑
j=1

C

∑
i=1

(yilogy′i + (1 − yi) log(1 − y′i)) (5)

Among them, C is the number of categories, yi is the i-th element of the true label y, and y′i
is the i-th element of the prediction result y′.

4. Experiments and Results
4.1. Databases and Data Preprocessing

In this work, four public databases from Physionet [49] were used to evaluate the
proposed method. There is no subject overlap among these databases. The specific intro-
ductions are as follows:

• MIT-BIH Atrial Fibrillation Database (AFDB) [50]: It consists of long-term ECG record-
ings of 23 human subjects with AF (mostly paroxysmal). Each recording contains
two different lead ECG signals with unspecified lead names and lasts for 10 h with
a sampling rate of 250 Hz. Rhythm annotation files and heartbeat annotation files
are provided separately. The rhythm annotation files are manually prepared, and
most of the heartbeat annotation files are obtained by an automatic detector without
manual correction.

• The 4th China Physiological Signal Challenge 2021 (CPSC2021) [51]: This database has
publicly released two training sets, which altogether include 1406 dual-lead recordings
from 105 patients. These recordings have been extracted from the ECG readings of
49 AF patients (23 paroxysmal AF patients) and 56 non-AF patients (usually including
other abnormal and normal rhythms). The provided annotations include heartbeat
annotations, rhythm annotations, and diagnoses of the global rhythm. Each recording
consists of lead I and lead II signals, with a sampling frequency of 200 Hz, and the
duration of each recording is not fixed.

• Long-Term AF Database (LTAFDB) [52]: It includes long-term ECG recordings of
84 subjects with paroxysmal or persistent AF. Each recording contains two simultane-
ously recorded ECG signals with a sampling frequency of 128 Hz, and the recording
duration usually ranges from 24 to 25 h.

• MIT-BIH Arrhythmia Database (MITDB) [53]: It contains 48 half-hour dual-channel
ECG recordings from 47 subjects, and the recordings are digitized at 360 Hz. Two
or more cardiologists independently annotated each recording, and the reference
annotations for each heartbeat were given after resolving differences. The lead names
of the two ECG signals in each ECG recording are not fixed, mainly leads II and V1,
and a few are leads V2, V4, and V5.

The detailed information of the four open-source datasets is summarized in Table 1.
The channels of leads I and II were preferentially used when lead information was available.
If it was unavailable, the channel similar to lead II among the two channels was selected
for analysis.

Table 1. Details of the datasets used in this study.

Dataset Freq NR NS Lead Record Length Rhythms TD AFD NEB

AFDB 250 Hz 25 25 ECG1, ECG2 10 h 4 234.28 h 93.40 h (39.87%) /
CPSC2021 200 Hz 1436 105 I, II 0~6.8 h 3 480.19 h 164.44 h (34.24%) 93,545 (4.4%)
LTAFDB 128 Hz 84 84 ECG1, ECG2 6~26 h 9 1960.60 h 1030.89 h (52.58%) 285,100 (3.2%)
MITDB 360 Hz 48 47 II, V1, V2, V4, V5 0.5 h 15 24.07 h 2.21 h (9.18%) 34,442 (31.5%)

Freq: Sampling frequency, NR: Total number of records, NS: Number of subjects in the recording, TD: Total
duration, AFD: AF duration, NEB: Number of ectopic beats.
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Before the experiment, the ECG recordings were resampled to 128 Hz to ensure a
uniform sampling rate. A band-pass filter with a frequency range of 0.5–40 Hz was used
to remove the baseline drift and high-frequency noise in the ECG signals. Each recording
was segmented into 30 s ECG segments for analysis. The parts shorter than 30 s were
discarded. Each ECG segment was normalized using the z-score method. According to the
annotations, each segment was labeled as AF or non-AF. Among them, all rhythms except
AF and AFL were labeled as non-AF rhythms. To remove the segments containing severe
noise, the beat signal quality index (bSQI) [53] of each ECG segment was used to evaluate
the signal quality. The segments with bSQI < 0.8 were excluded from the analysis in this
paper. In addition, we reserved the segments of another simultaneously collected lead for
each ECG segment for subsequent experiments. The detailed segmentation information of
the databases is shown in Table 2.

Table 2. Data description after segmentation.

Dataset Segment Length Overlap Non-AF Segments AF Segments

AFDB 30 s 15 s 31,547 21,383
CPSC2021 30 s 0 s 68,904 37,132
LTAFDB 30 s 0 s 100,163 115,952
MITDB 30 s 15 s 4579 452

4.2. Experimental Settings
4.2.1. Evaluation Paradigms

It is worth noting that the quality of the representations from semi-supervised pre-
training should be evaluated by the downstream AF detection task. Better performance of
AF detection indicates higher quality of ECG representations. To evaluate the performance,
the accuracy (Acc), macro sensitivity (Sen), macro precision (Pre), and macro F1-score (F1)
were used as the metrics of classification performance. All these metrics range from 0 to 1.
The larger the value, the better the performance.

4.2.2. Parameter Settings

For the input data, normalized single-lead ECGs with a sampling frequency of 128 Hz
and a time length of 30 s were used for both pre-training and fine-tuning. In the pre-
training stage, the length of the hidden representation vector was Dh = 128, and the
length of the encoded representation vector was Dz = 256. In addition to τ = 1.0 for
temporal contrastive loss, τ = 0.1 was used as the temperature hyperparameter for all
other contrastive losses. For the labeled data, the loss coefficients adopted λ1 = λ2 = λ3,
while for the unlabeled data, the loss coefficients adopted λ1 = λ2. The entire pre-training
process lasted for 40 epochs, and the batch size of the pre-training data was 256. The Adam
optimizer was used with an initial learning rate of 0.001. The StepLR was adopted to adjust
the learning rate, and the learning rate decayed to 0.8 of the original value every three
epochs, ensuring the stability of the entire optimization process. In the fine-tuning stage,
the Adam optimizer was also used for parameter optimization, and the initial learning rate
ηbase was set to the same as in the pre-training stage. The batch size for fine-tuning was 512,
and the number of iterative epochs Tmax was 30. The formula for the learning rate change
with training epochs is

η = ηbase/(1 + 10 × Tcur/Tmax)
2 (6)

where Tcur represents the current training epoch.

4.2.3. Implementation

All models were implemented based on PyTorch (v1.12.1). With the support of the Intel
(R) Xeon (R) E5-2640 CPU and the NVIDA GeForce RTX 3090 GPU in terms of hardware
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configuration, Python (v3.9.15) was used to implement the pre-training, fine-tuning, and
testing of the proposed MLMCL method.

In this work, we mainly adopted the cross-dataset testing mode, which tests with
external datasets that have not been seen in the model training phase. The cross-dataset
testing follows the inter-patient paradigm. The CPSC2021 dataset was used as the labeled
training set for pre-training and downstream task training, because it has the largest
number of individual subjects, a relatively balanced data distribution, and sufficient training
samples. The AFDB and LTAFDB were respectively used as external independent test sets.
Each test dataset was not used in the pre-training and fine-tuning processes but only for
evaluation. During their testing, the remaining datasets were added to the pre-training as
unlabeled data.

We tried linear probing and full fine-tuning in the training of downstream AF detection
model. During training, linear probing freezes the encoder parameters and only updates
the classifier parameters to perform AF detection. It is usually used to evaluate the quality
of the learned representations for that downstream results completely depend on the pre-
trained encoder. In contrast, full fine-tuning adjusts both the encoder and the classifier
simultaneously to adapt to the AF detection task. In the full fine-tuning mode, pre-training
is equivalent to providing more effective initial parameter values.

4.2.4. Baselines

To compare with the proposed MLMCL method, we conducted four baseline methods.
(1) Fully supervised (FS): Supervised training was started on randomly initialized encoders
and classifiers. (2) Fully supervised with data augmentation (FS + DA): Domain knowledge
augmentation was introduced on the basis of full supervision. (3) SimCLR [24]: As a classi-
cal framework of CL, SimCLR forms positive samples of target sample only through data
augmentation and takes other samples of the same batch as negative samples. (4) T-S [36]:
Temporal reverse, spatial reverse, and temporal–spatial reverse were performed on the
original signals, and then pre-training was completed by classifying four signals, including
the original signal.

It is worth noting that these baseline methods used the same encoder architecture and
datasets as the proposed MLMCL method for comparison.

4.3. Results

In this section, we evaluated the effectiveness of the proposed MLMCL method and
compared it with various baseline methods on the AF detection task.

4.3.1. Linear Probing

Linear probing aims to assess the quality of representations. Table 3 shows the linear
probing results of AF detection on the AFDB and LTAFDB databases. In the linear probing
mode, the fully supervised method used a randomly initialized encoder and did not have
any prior knowledge about ECG information. The results show that MLMCL outperformed
the fully supervised method by 47.54% and 33.54% in terms of Acc and by 50.54% and
33.61% in terms of F1-score on AFDB and LTAFDB, which verifies the effectiveness of the
pre-training. Similarly, MLMCL also obtained results that were significantly higher than
those of the fully supervised method with data augmentation. Compared to SimCLR and
T-S that used self-supervised training, MLMCL achieved better performance. Overall, the
Acc and F1-scores of MLMCL on all external test sets were higher than those of all the
baselines, which indicates that MLMCL is able to provide high-quality representations.
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Table 3. Linear probing results of different methods on the external ECG datasets.

AFDB LTAFDB

Methods Acc (%) Pre (%) Sen (%) F1 (%) Acc (%) Pre (%) Sen (%) F1 (%)

FS 50.64 47.63 47.75 47.56 63.07 63.99 63.71 62.99
FS + DA 47.39 44.03 44.34 44.06 59.15 61.15 60.37 58.53
T-S 67.12 69.10 61.20 59.84 62.71 69.14 64.59 61.00
SimCLR 80.63 81.77 81.31 80.61 81.70 83.58 78.72 79.81
MLMCL 98.18 98.33 97.90 98.10 96.61 96.56 96.64 96.60

4.3.2. Full Fine-Tuning

Full fine-tuning allows fine-tuning of the entire network parameters. Table 4 presents
the full fine-tuning results of MLMCL and multiple baselines. Compared with the fully
supervised training with a randomly initialized encoder, the performance of the model
pre-trained by MLMCL was greatly improved, indicating that it provides a more effective
network initialization. In addition, MLMCL consistently outperformed the fully supervised
method with data augmentation on AFDB and LTAFDB, which shows that MLMCL pre-
training is more helpful for the encoder to extract key features from the augmented data.
Overall, compared to fully supervised training, MLMCL can achieve better performance by
simultaneously utilizing labeled and unlabeled data, alleviating the annotation burden in
practical applications.

Table 4. Full fine-tuning results of different methods on the external ECG datasets.

AFDB LTAFDB

Methods Acc (%) Pre (%) Sen (%) F1 (%) Acc (%) Pre (%) Sen (%) F1 (%)

FS 89.98 90.85 88.47 89.32 95.88 95.82 95.92 95.86
FS + DA 95.03 95.70 94.11 94.76 95.82 95.75 95.90 95.81
T-S 93.65 94.65 92.40 93.25 96.24 96.18 96.28 96.22
SimCLR 96.55 96.41 96.43 96.42 95.68 95.61 95.78 95.67
MLMCL 99.14 99.19 99.03 99.10 97.34 97.34 97.31 97.33

In addition, the Acc and F1-score of MLMCL exceeded those of the best baseline
SimCLR by 2.59% (96.55% vs. 99.14%) and 2.68% (96.42% vs. 99.10%), respectively, on AFDB.
On the LTAFDB dataset, the Acc and F1-score of MLMCL exceeded those of the best baseline
T-S by 1.10% (96.24% vs. 97.34%) and 1.11% (96.22% vs. 97.33%), respectively. Compared
to other contrastive learning baseline methods, MLMCL had a consistent advantage on
different test sets, indicating that it has good stability. As shown in Figure 6, the fully
fine-tuning method generally achieved better performance than linear probing.
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4.4. Ablation Study

In this section, we investigate the necessity and effectiveness of the key components
and settings in the proposed method for AF detection, including domain knowledge
augmentation, multiple contrastive loss, and the design without a projector. The following
ablation experiments all adopt the results of full fine-tuning.

4.4.1. Data Augmentation

The MLMCL method uses ECGs processed by domain knowledge augmentation, not
just the raw ECG records. To evaluate the effectiveness of domain knowledge augmentation
on AF detection, we separately evaluated the performance when the diagnostic region
augmentation (vertical flipping) and non-diagnostic region augmentation (T-wave masking)
were used alone. In addition, the following data augmentation methods commonly used
for time series [35] were compared:

• Gaussian noise: A Gaussian noise signal n(t) with a mean of 0 was added to the ECG
sample x(t) to obtain the augmented signal x̃(t) = x(t) + n(t). A random standard
deviation of noise in the range of [0.01, 0.1] was adopted in the experiment.

• Baseline wander: A low-frequency sinusoidal wave with frequency fw and maximum
amplitude Sw were added to the ECG sample to achieve baseline wander. In the
experiment, the range of fw was [1/30 Hz, 1/10 Hz], and the range of Sw was [0.5, 0.6].

• Channel scaling: The ECG sample was multiplied by a scaling factor S to achieve
scaling. A random scaling factor S in the range of [0.1, 5] was tested in the experiment.

• Horizontal flipping: Horizontal flipping was considered as temporal reverse, which
can be expressed as x̃(t) = x(T0 − t + 1)), where t = 1, 2, ..., T0.

• Time warping: First, the ECG sample x(t) was divided into w segments. Next, for
each segment, half of the areas were randomly selected to stretch them by a factor
of r% while squeezing the other half by the same amount. Finally, we connected the
segments in the original order to generate the augmented sample, denoted as x̃(t). In
the experiment, (w, r) = (1, 5) and (w, r) = (3, 5) were used with the same probability.

• Random masking: It randomly sets c% of the ECG sample to a fixed value. In the
experiment, the masking parameter was set to the typical value c = 20.

Each augmentation method was pre-trained under the same conditions as MLMCL.
Table 5 shows the results of different data augmentation methods on external test sets. In
all downstream tasks with a single data augmentation for pre-training, it can be seen that
there are different suitable augmentation methods on different test sets. Generally, T-wave
masking shows the best single augmentation result on AFDB, while vertical flipping obtains
the second-best result. In the task of LTAFDB, vertical flipping showed the best result. As
for domain knowledge augmentation, it achieved the best performance on AFDB. Although
its performance on LTAFDB did not surpass vertical flipping, it also showed competitive
performance. In other words, domain knowledge augmentation improved the quality
of representations. This improvement may be due to the fact that T-wave masking and
vertical flipping generate more diverse hard samples, which are sufficiently different from
the original samples but retain the key diagnostic information. T-wave masking specifically
modifies the non-diagnostic region, making the model pay more attention to the features
of the P wave and QRS wave in the AF diagnostic region. Vertical flipping modifies the
morphology of the P wave and QRS wave but does not affect the rhythm information.
Existing studies [42] have shown that positive samples with large morphological differences
but the same rhythm can better extract rhythm invariance. In addition, vertical flipping
will not cause confusion between the P wave and f wave. These changes force the model to
learn more discriminative and robust representations.
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Table 5. Ablation study of data augmentation.

AFDB LTAFDB

Data Augmentation Acc (%) Pre (%) Sen (%) F1 (%) Acc (%) Pre (%) Sen (%) F1 (%)

Gaussian Noise 96.56 95.90 95.57 95.73 96.89 96.85 96.91 96.88
Channel Scaling 96.04 95.56 94.60 95.08 97.40 97.38 97.39 97.38
Baseline Wander 97.55 97.72 96.19 96.95 96.32 96.26 96.36 96.31
Horizontal flipping 97.73 97.84 96.52 97.17 96.23 96.16 96.30 96.21
Time Warping 97.88 98.17 96.56 97.35 97.05 97.02 97.04 97.03
Random Masking 97.79 97.65 97.76 97.71 96.70 96.64 96.74 96.68
Vertical Flipping 98.82 98.54 98.54 98.54 97.44 97.43 97.43 97.43
T-wave Masking 99.10 99.14 98.99 99.10 96.85 96.80 96.88 96.84
MLMCL 99.14 99.19 99.03 99.10 97.34 97.34 97.31 97.33

4.4.2. Contrastive Loss

The ablation studies on different contrastive losses were evaluated on the AFDB and
LTAFDB datasets. We examined the effectiveness of each contrastive loss and gradually
combined each contrastive loss pairwise and finally combined all types of contrastive
losses. Table 6 shows the ablation experiment results of six combination variants. Here, T,
C, and L represent temporal contrastive loss, channel contrastive loss, and label contrastive
loss, respectively. Among them, variant T only performs temporal contrastive learning
on the intermediate hidden representations, thus updating only the convolutional feature
extraction network in the encoder. The variant L indicates that only label CL is performed,
so only labeled data are used and unlabeled data are not used. It should be noted that the
equal λ value is used for different contrast losses across variants, whether labeled data or
unlabeled data.

Table 6. Ablation study of multiple contrastive loss.

AFDB LTAFDB

Methods Acc (%) Pre (%) Sen (%) F1 (%) Acc (%) Pre (%) Sen (%) F1 (%)

T 97.90 98.02 97.63 97.81 96.44 96.40 96.46 96.43
C 98.35 98.56 98.04 98.28 96.21 96.14 96.30 96.20
L 96.81 96.60 96.78 96.70 96.65 96.61 96.56 96.87
T + C 98.47 98.66 98.18 98.41 95.79 95.71 95.90 95.77
T + L 98.23 98.31 98.01 98.15 95.96 95.90 95.99 95.94
C + L 99.18 99.23 99.07 99.15 97.00 96.97 97.02 96.99
MLMCL 99.14 99.19 99.03 99.10 97.34 97.34 97.31 97.33

All variant experiments used domain knowledge augmentation and maintained the
same training conditions as the MLMCL method. For the case of using only a single
contrastive loss (T, C, or L), different optimal methods were obtained for different test
sets, because each test task has a specific training dataset and data distribution. For the
combination of two contrastive losses, it can be seen that on the AFDB database, the
combinations of two contrastive losses achieved better Acc and F1 than using a single loss.
On the LTAFDB database, only the C + L combination obtained better performance than
using C or L alone. In addition, it is worth noting that the MLMCL method represented by
the combination T + C + L achieved competitive or the best performance on all external
test datasets, which means that the proposed MLMCL method is quite robust.

4.4.3. No Projecter

As shown in Figure 7, most CL-based methods employed a projector setup similar to
SimCLR to achieve better performance for downstream tasks. They adopted a projector in
pre-training to project the encoder representations into the latent space to calculate CL loss
and discarded the projector in the downstream tasks. Differently, the proposed MLMCL
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did not set an additional projector and simultaneously conducts contrastive learning on
the encoder representations and the intermediate hidden representations. To explore the
necessity of the projector in MLMCL, we conducted the ablation experiment of the projector.
The projector was set as a two-layer MLP, and its output size was kept the same as the input
size. Table 7 shows the AF detection results of the proposed method with and without
a projector. It can be seen that having a projector did not achieve better performance on
either the AFDB or LTAFDB database. Considering that the projector may reduce the
performance, MLMCL did not use a projector for pre-training, which can also reduce the
computational burden.

Contrastive 
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Encoder Projector
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x
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Figure 7. The comparison between MLMCL and SimCLR.

Table 7. Ablation study of the proposed method with/without a projector.

Test Set Methods Acc (%) Pre (%) Sen (%) F1 (%)

AFDB With a projector 99.04 99.09 98.92 99.00
Without a projector 99.14 99.19 99.03 99.10

LTAFDB With a projector 96.69 96.63 96.72 96.67
Without a projector 97.34 97.34 97.31 97.33

4.5. Comparison with Existing Methods

In addition to the contrastive learning methods [36] for AF detection, there are also
many studies on AF detection that adopted other strategies. However, few studies have
reported cross-dataset test results, and some of them have used different training and
testing datasets from those in this paper, which limits the number of studies available for
comparison. Therefore, in order to achieve a good overall comparison with the cross-dataset
evaluation results of other studies, we adjusted to use the same labeled training set and
testing set for pre-training, fine-tuning, and testing. The comparison results with existing
studies are shown in Table 8. Regarding the AF detection task, the method proposed in
this paper outperformed most existing methods in different metrics, including Acc and
F1. Compared to existing studies that only use labels for supervised learning, MLMCL
simultaneously utilizes labels and the ECG inherent consistency to obtain higher-quality
representations. In addition, we guided and optimized the pre-training according to
the downstream AF detection task. We introduced domain knowledge augmentation
for AF and used downstream labels for semi-supervised learning, which reduced the gap
between the pre-trained representations and the requirements of downstream tasks, thereby
achieving better performance.
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Table 8. Comparison of the classification performance between the proposed method and
previous works.

Study Year Training Set Test Set Acc (%) Pre (%) Sen (%) F1 (%)

Andersen et al. [54] 2019 AFDB MITDB 87.40 45.45 98.96 /
Shi et al. [55] 2020 AFDB MITDB 87.4 81.11 97.46 /
Seo et al. [56] 2021 AFDB MITDB 86.68 / / /
Liu et al. [57] 2022 AFDB MITDB 92.23 53.92 95.17 68.84
MLMCL 2024 AFDB MITDB 94.31 80.62 96.87 86.37

Wen et al. [58] 2022 CPSC2021 LTAFDB / 94.60 89.50 91.98
Yun et al. [59] 2024 CPSC2021 LTAFDB / 96.45 94.84 95.64
MLMCL 2024 CPSC2021 LTAFDB 97.34 97.34 97.31 97.33

5. Conclusions
In this work, we proposed a semi-supervised contrastive learning method, MLMCL,

for AF detection, aiming to bridge the gap between the limited availability of labeled
data in AF detection of single-lead ECG and the requirements for model robustness and
generalization. MLMCL utilizes multi-level feature representations of the encoder to per-
form multiple contrastive learning, fully exploiting the temporal consistency, channel
consistency, and label consistency. This method simultaneously uses both labeled and
unlabeled data for pre-training to obtain the robust features required for downstream tasks,
achieving better performance with limited labels and reducing the dependence on ECG
labels. In addition, by utilizing the ECG diagnostic knowledge related to AF, a domain
knowledge augmentation method was proposed to generate hard samples that would be
sufficiently different from the original samples, enabling a full learning of distinguishable
representations. We verified the stability and generalization of the MLMCL method on
multiple different external data sets in a challenging cross-dataset testing environment.
The abundant baseline settings and extensive ablation studies demonstrate that the pro-
posed MLMCL effectively and robustly outperforms other existing AF detection methods.
Our future work aims to test our method on more data sets to more fully examine its
generalization ability. This method can be easily extended to the scenario of AF detection
in multi-lead ECG signals and has reference significance for the development of other
arrhythmia contrastive learning methods.
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