3D Quantitative-Amplified Magnetic Resonance Imaging (3D q-aMRI)
<p>The 3D q-aMRI algorithm pipeline begins with the decomposition of volumetric cine MRI using the 3D complex steerable pyramid. This process separates the images into various scales and orientations, isolating different spatial frequency components. The decomposed images are then split into amplitude and phase components, with the phases encoding information about sub-voxel motion. Next, the phase components are temporally filtered at each spatial location, orientation, and scale to enhance significant temporal changes. These filtered phases are split and proceed along two paths: the original amplification path for visualization and the quantification path for generating voxel displacement maps. For quantitative estimation, the data undergo the estimation of the spatial phase derivative. This involves estimating the spatial phase derivative from the decomposed image. The voxel displacement field is then calculated by solving a least squares optimization objective. This formula calculates the best-fit voxel displacement field that aligns the phase derivatives with the phase temporal changes. The color-coded images display the estimated voxel displacements in the axial (L/R direction, white arrow), sagittal (S/I direction, white arrow), and coronal (S/I direction, white arrow) planes. The plus sign indicates the positive direction of motion.</p> "> Figure 2
<p>Validation of 3D q-aMRI on a 3D cylinder phantom (initial height <math display="inline"><semantics> <msub> <mi>h</mi> <mn>0</mn> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>r</mi> <mn>0</mn> </msub> </semantics></math> radius) that undergoes cyclic tension and compression. (<b>a</b>) The phantom at reference time <math display="inline"><semantics> <msub> <mi>t</mi> <mn>0</mn> </msub> </semantics></math> and deformation time <math display="inline"><semantics> <msub> <mi>t</mi> <mi>i</mi> </msub> </semantics></math>. (<b>b</b>) Error as a function of displacement in the absence of noise.</p> "> Figure 3
<p><span class="html-italic">In vivo</span> validation of the 3D q-aMRI against the observed signal in 3D aMRI. The 4D cine data are amplified by 3D aMRI. In addition, the first volume in the cine data is warped by an amplified version of the estimated motion field, and normalized temporal variance maps are calculated for both amplified movies. The maps suggest that 3D q-aMRI quantification output matches the motion observed qualitatively in 3D aMRI.</p> "> Figure 4
<p>Normalized temporal standard deviation maps of the amplified videos for different pyramid levels. The data were amplified with an amplification parameter of 30 with a Gaussian window with <math display="inline"><semantics> <mrow> <mi>σ</mi> <mo>=</mo> <mn>5</mn> </mrow> </semantics></math>. Coherent motion exists mainly in the first two levels of the steerable pyramid.</p> "> Figure 5
<p>Normalized temporal standard deviation maps of the amplified videos for different temporal frequency bands. The data were amplified with an amplification parameter of 30 with a Gaussian window with <math display="inline"><semantics> <mrow> <mi>σ</mi> <mo>=</mo> <mn>5</mn> </mrow> </semantics></math>. Motion was extracted using the first two levels of the steerable pyramid. Coherent motion exists mainly in the one to four heart rate harmonics band.</p> "> Figure 6
<p>The pulsatile brain motion in the sagittal (S/I direction, indicated by a white arrow) and axial (L/R direction, indicated by a white arrow) for different standard deviation sizes of the Gaussian window. The Gaussian smoothing reduces the noise level in the estimated motion field. For standard deviations larger than <math display="inline"><semantics> <mrow> <mi>σ</mi> <mo>=</mo> <mn>5</mn> </mrow> </semantics></math>, the estimated motion field is smooth and generally remains constant.</p> "> Figure 7
<p>The pulsatile brain motion in the sagittal (S/I direction, indicated by a white arrow) and axial (L/R direction, indicated by a white arrow) directions for different isotropic spatial resolutions. Plus sign represent the positive direction of motion. As can be seen, the algorithm can robustly estimate the motion field for different image resolutions (up to 1.8 mm isotropic voxel size). Note that the dark blue/red regions (red arrows) in the sagittal plane point to the basilar artery, which exhibits apparent motion (larger than 1.5 pixels).</p> "> Figure 8
<p>(<b>a</b>) Comparison between PC-MRI (top) and 3D q-aMRI (bottom) for sagittal (S/I direction), coronal (S/I direction), and axial (L/R direction) planes. The estimated field captures the relative brain tissue deformation over time and the physical change in shape of the ventricles by the relative movement of the surrounding tissues. (<b>b</b>) The extracted flow/motion profile through the cerebral aqueduct as extracted by 3D q-aMRI (left), which is comparable to that reported by [<a href="#B46-bioengineering-11-00851" class="html-bibr">46</a>] as shown in the inset (right). Note that [<a href="#B46-bioengineering-11-00851" class="html-bibr">46</a>] the graph seen here is normalized, but the actual CSF flow values reported were an order of magnitude higher than the 3D q-aMRI flow profile.</p> "> Figure 9
<p>(<b>a</b>) The average (over different brain regions) voxel displacement profile for two subjects (<math display="inline"><semantics> <msub> <mi>S</mi> <mn>1</mn> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>S</mi> <mn>3</mn> </msub> </semantics></math>) in the S/I direction for eight scans (<math display="inline"><semantics> <msub> <mi>t</mi> <mn>0</mn> </msub> </semantics></math> to <math display="inline"><semantics> <msub> <mi>t</mi> <mn>7</mn> </msub> </semantics></math>). Top—the brain regions (lateral ventricles, 3rd ventricle, 4th ventricle, brainstem, and cerebellum) where the average voxel displacement was estimated. Bottom—the first two columns depict the voxel displacement profile for all scans, for each of the two subjects. The black line represents the average motion over all scans, together with an error bar (95% confidence interval). The last column depicts the average motion for all six subjects, along with error bars representing the 95% confidence interval. The results indicate high repeatability across the time points within each subject, with similar motion patterns but different magnitudes across all subjects. (<b>b</b>) The boxplots for each brain region and the Intraclass Correlation Coefficient (ICC) of the dynamic time warping (DTW) distance. The plus sign denotes an outlier.</p> "> Figure 10
<p>Depicts diffuse reduction in brain bulk displacement on both the sagittal (S/I direction, white arrow) and axial (L/R direction, white arrow) planes for elderly adults with MCI due to dementia (70-year-old female) compared to an elderly control (74-year-old female) plus sign represent the positive direction of motion. In addition, loss of symmetry and irregular lateral motion of the lateral ventricles are seen in the displacement maps.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Human Subjects
2.2. MRI Acquisition
2.3. Motion Estimation
2.4. Digital Phantom Simulation
- The phantom volume remains constant over time, resulting in expansion and compression along the cylinder’s radius.
- The radius follows a parabolic curve, , where is the maximum radius and z is the position along the axis of the cylinder of height . These assumptions result in the following equation for a and :
- (1)
- Pearson’s Linear Correlation
- (2)
- (3)
- Ninety-ninth percentile of the error distribution
2.5. In Vivo Validation
- (1)
- Since the native image size of the acquisitions determines the extent and resolution of the 3D steerable pyramid filters, we ensured that all in vivo datasets were zero-padded to a uniform dimension of 256 × 256 × 256.
- (2)
- Accordingly, for the analysis of different image resolutions, we used the corresponding values to match the physical extent of the Gaussian smoothing filter. For example, to compare a 2.4 mm isotropic resolution (128 × 128 × 128) versus an isotropic 1.2 mm isotropic resolution (256 × 256 × 256) dataset (the latter with ), we first zero-padded the 2.4 mm dataset and used to ensure the filter has the same extent as the 1.2 mm dataset in physical units.
- (3)
- To generate a sharp frequency response of the temporal filter that will pass the desired frequency band, the number of cardiac phases was extended to 5 periods—which is a valid procedure since the motion of the cine data is periodic. This was performed since the native number of cardiac phases of 20 may generate side lobes in the filter frequency spectrum—which in turn may propagate errors in the voxel displacement estimation due to noise.
2.6. In Vivo Analysis
3. Results
3.1. Phantom Simulations
3.2. In Vivo Validation
3.3. In Vivo Analysis and Repeatability Study
4. Discussion
5. Conclusions
6. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Enzmann, D.; Pelc, N. Brain motion: Measurement with phase-contrast MR imaging. Radiology 1992, 185, 653–660. [Google Scholar] [CrossRef]
- Poncelet, B.; Wedeen, V.; Weisskoff, R.; Cohen, M. Brain parenchyma motion: Measurement with cine echo-planar MR imaging. Radiology 1992, 185, 645–651. [Google Scholar] [CrossRef]
- Almudayni, A.; Alharbi, M.; Chowdhury, A.; Ince, J.; Alablani, F.; Minhas, J.S.; Lecchini-Visintini, A.; Chung, E.M.L. Magnetic resonance imaging of the pulsing brain: A systematic review. Magn. Reson. Mater. Phys. Biol. Med. 2023, 36, 3–14. [Google Scholar] [CrossRef] [PubMed]
- Alperin, N.; Vikingstad, E.M.; Gomez-Anson, B.; Levin, D.N. Hemodynamically independent analysis of cerebrospinal fluid and brain motion observed with dynamic phase contrast MRI. Magn. Reson. Med. 1996, 35, 741–754. [Google Scholar] [CrossRef]
- Adams, A.L.; Kuijf, H.J.; Viergever, M.A.; Luijten, P.R.; Zwanenburg, J.J. Quantifying cardiac-induced brain tissue expansion using DENSE. NMR Biomed. 2019, 32, e4050. [Google Scholar] [CrossRef] [PubMed]
- Sloots, J.J.; Biessels, G.J.; Zwanenburg, J.J. Cardiac and respiration-induced brain deformations in humans quantified with high-field MRI. NeuroImage 2020, 210, 116581. [Google Scholar] [CrossRef]
- Bothwell, S.W.; Janigro, D.; Patabendige, A. Cerebrospinal fluid dynamics and intracranial pressure elevation in neurological diseases. Fluids Barriers CNS 2019, 16, 1–18. [Google Scholar] [CrossRef]
- Yamada, S.; Kelly, E. Cerebrospinal fluid dynamics and the pathophysiology of hydrocephalus: New concepts. In Seminars in Ultrasound, CT and MRI; Elsevier: Amsterdam, The Netherlands, 2016; Volume 37, pp. 84–91. [Google Scholar]
- Bradley, W.G., Jr. Magnetic resonance imaging of normal pressure hydrocephalus. In Seminars in Ultrasound, CT and MRI; Elsevier: Amsterdam, The Netherlands, 2016; Volume 37, pp. 120–128. [Google Scholar]
- Eppelheimer, M.S.; Nwotchouang, B.S.T.; Heidari Pahlavian, S.; Barrow, J.W.; Barrow, D.L.; Amini, R.; Allen, P.A.; Loth, F.; Oshinski, J.N. Cerebellar and brainstem displacement measured with DENSE MRI in Chiari malformation following posterior fossa decompression surgery. Radiology 2021, 301, 187–194. [Google Scholar] [CrossRef] [PubMed]
- Mohsenian, S.; Ibrahimy, A.; Al Samman, M.M.F.; Oshinski, J.N.; Bhadelia, R.A.; Barrow, D.L.; Allen, P.A.; Amini, R.; Loth, F. Association between resistance to cerebrospinal fluid flow and cardiac-induced brain tissue motion for Chiari malformation type I. Neuroradiology 2023, 65, 1535–1543. [Google Scholar] [CrossRef]
- Nwotchouang, B.S.T.; Eppelheimer, M.S.; Pahlavian, S.H.; Barrow, J.W.; Barrow, D.L.; Qiu, D.; Allen, P.A.; Oshinski, J.N.; Amini, R.; Loth, F. Regional brain tissue displacement and strain is elevated in subjects with Chiari malformation type I compared to healthy controls: A study using DENSE MRI. Ann. Biomed. Eng. 2021, 49, 1462–1476. [Google Scholar] [CrossRef]
- Alperin, N.; Ranganathan, S.; Bagci, A.; Adams, D.; Ertl-Wagner, B.; Saraf-Lavi, E.; Sklar, E.; Lam, B. MRI evidence of impaired CSF homeostasis in obesity-associated idiopathic intracranial hypertension. Am. J. Neuroradiol. 2013, 34, 29–34. [Google Scholar] [CrossRef]
- Eide, P.K.; Pripp, A.H.; Ringstad, G.; Valnes, L.M. Impaired glymphatic function in idiopathic intracranial hypertension. Brain Commun. 2021, 3, fcab043. [Google Scholar] [CrossRef]
- Lv, H.; Kurt, M.; Zeng, N.; Ozkaya, E.; Marcuz, F.; Wu, L.; Laksari, K.; Camarillo, D.B.; Pauly, K.B.; Wang, Z.; et al. MR elastography frequency–dependent and independent parameters demonstrate accelerated decrease of brain stiffness in elder subjects. Eur. Radiol. 2020, 30, 6614–6623. [Google Scholar] [CrossRef] [PubMed]
- Attier-Zmudka, J.; Sérot, J.M.; Valluy, J.; Saffarini, M.; Macaret, A.S.; Diouf, M.; Dao, S.; Douadi, Y.; Malinowski, K.P.; Balédent, O. Decreased cerebrospinal fluid flow is associated with cognitive deficit in elderly patients. Front. Aging Neurosci. 2019, 11, 87. [Google Scholar] [CrossRef] [PubMed]
- Cuadrado-Godia, E.; Dwivedi, P.; Sharma, S.; Santiago, A.O.; Gonzalez, J.R.; Balcells, M.; Laird, J.; Turk, M.; Suri, H.S.; Nicolaides, A.; et al. Cerebral small vessel disease: A review focusing on pathophysiology, biomarkers, and machine learning strategies. J. Stroke 2018, 20, 302. [Google Scholar] [CrossRef]
- Iliff, J.J.; Wang, M.; Liao, Y.; Plogg, B.A.; Peng, W.; Gundersen, G.A.; Benveniste, H.; Vates, G.E.; Deane, R.; Goldman, S.A.; et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci. Transl. Med. 2012, 4, 147ra111. [Google Scholar] [CrossRef] [PubMed]
- Kamagata, K.; Saito, Y.; Andica, C.; Uchida, W.; Takabayashi, K.; Yoshida, S.; Hagiwara, A.; Fujita, S.; Nakaya, M.; Akashi, T.; et al. Noninvasive magnetic resonance imaging measures of glymphatic system activity. J. Magn. Reson. Imaging 2024, 59, 1476–1493. [Google Scholar] [CrossRef] [PubMed]
- Barisano, G.; Lynch, K.M.; Sibilia, F.; Lan, H.; Shih, N.C.; Sepehrband, F.; Choupan, J. Imaging perivascular space structure and function using brain MRI. NeuroImage 2022, 257, 119329. [Google Scholar] [CrossRef]
- Pelc, N.J.; Herfkens, R.J.; Shimakawa, A.; Enzmann, D.R. Phase contrast cine magnetic resonance imaging. Magn. Reson. Q. 1991, 7, 229–254. [Google Scholar]
- Wymer, D.T.; Patel, K.P.; Burke III, W.F.; Bhatia, V.K. Phase-contrast MRI: Physics, techniques, and clinical applications. Radiographics 2020, 40, 122–140. [Google Scholar] [CrossRef]
- Yamada, S.; Tsuchiya, K.; Bradley, W.; Law, M.; Winkler, M.; Borzage, M.; Miyazaki, M.; Kelly, E.; McComb, J. Current and emerging MR imaging techniques for the diagnosis and management of CSF flow disorders: A review of phase-contrast and time–spatial labeling inversion pulse. Am. J. Neuroradiol. 2015, 36, 623–630. [Google Scholar] [CrossRef]
- Knutsen, A.K.; Magrath, E.; McEntee, J.E.; Xing, F.; Prince, J.L.; Bayly, P.V.; Butman, J.A.; Pham, D.L. Improved measurement of brain deformation during mild head acceleration using a novel tagged MRI sequence. J. Biomech. 2014, 47, 3475–3481. [Google Scholar] [CrossRef]
- Soellinger, M.; Ryf, S.; Boesiger, P.; Kozerke, S. Assessment of human brain motion using CSPAMM. J. Magn. Reson. Imaging 2007, 25, 709–714. [Google Scholar] [CrossRef] [PubMed]
- Sloots, J.J.; Biessels, G.J.; De Luca, A.; Zwanenburg, J.J. Strain tensor imaging: Cardiac-induced brain tissue deformation in humans quantified with high-field MRI. NeuroImage 2021, 236, 118078. [Google Scholar] [CrossRef] [PubMed]
- Adams, A.L.; Viergever, M.A.; Luijten, P.R.; Zwanenburg, J.J. Validating faster DENSE measurements of cardiac-induced brain tissue expansion as a potential tool for investigating cerebral microvascular pulsations. NeuroImage 2020, 208, 116466. [Google Scholar] [CrossRef]
- Zhong, X.; Meyer, C.H.; Schlesinger, D.J.; Sheehan, J.P.; Epstein, F.H.; Larner, J.M.; Benedict, S.H.; Read, P.W.; Sheng, K.; Cai, J. Tracking brain motion during the cardiac cycle using spiral cine-DENSE MRI. Med. Phys. 2009, 36, 3413–3419. [Google Scholar] [CrossRef] [PubMed]
- Holdsworth, S.J.; Rahimi, M.S.; Ni, W.W.; Zaharchuk, G.; Moseley, M.E. Amplified magnetic resonance imaging (aMRI). Magn. Reson. Med. 2016, 75, 2245–2254. [Google Scholar] [CrossRef]
- Terem, I.; Ni, W.W.; Goubran, M.; Rahimi, M.S.; Zaharchuk, G.; Yeom, K.W.; Moseley, M.E.; Kurt, M.; Holdsworth, S.J. Revealing sub-voxel motions of brain tissue using phase-based amplified MRI (aMRI). Magn. Reson. Med. 2018, 80, 2549–2559. [Google Scholar] [CrossRef]
- Abderezaei, J.; Pionteck, A.; Chuang, Y.C.; Carrasquilla, A.; Bilgili, G.; Lu, T.A.; Terem, I.; Scadeng, M.; Fillingham, P.; Morgenstern, P.; et al. Increased Hindbrain Motion in Chiari Malformation I Patients Measured Through 3D Amplified MRI (3D aMRI). medRxiv 2022. [Google Scholar] [CrossRef]
- Abderezaei, J.; Martinez, J.; Terem, I.; Fabris, G.; Pionteck, A.; Yang, Y.; Holdsworth, S.J.; Nael, K.; Kurt, M. Amplified flow imaging (aflow): A novel mri-based tool to unravel the coupled dynamics between the human brain and cerebrovasculature. IEEE Trans. Med. Imaging 2020, 39, 4113–4123. [Google Scholar] [CrossRef]
- Pionteck, A.; Abderezaei, J.; Fillingham, P.; Chuang, Y.C.; Sakai, Y.; Belani, P.; Rigney, B.; De Leacy, R.; Fifi, J.; Chien, A.; et al. Intracranial aneurysm wall displacement predicts instability. medRxiv 2022. [Google Scholar] [CrossRef]
- Champagne, A.A.; Peponoulas, E.; Terem, I.; Ross, A.; Tayebi, M.; Chen, Y.; Coverdale, N.S.; Nielsen, P.M.; Wang, A.; Shim, V.; et al. Novel strain analysis informs about injury susceptibility of the corpus callosum to repeated impacts. Brain Commun. 2019, 1, fcz021. [Google Scholar] [CrossRef]
- Ince, J.; Lecchini-Visintini, A.; Almudayni, A.; Horsfield, M.A.; Wormleighton, J.; Banahan, C.; Chung, E.M.; Minhas, J.S. Brain tissue motion in acute hemorrhagic stroke using amplified MRI (aMRI). Magn. Reson. Imaging 2022, 86, 17–19. [Google Scholar] [CrossRef]
- Terem, I.; Dang, L.; Champagne, A.; Abderezaei, J.; Pionteck, A.; Almadan, Z.; Lydon, A.M.; Kurt, M.; Scadeng, M.; Holdsworth, S.J. 3D amplified MRI (aMRI). Magn. Reson. Med. 2021, 86, 1674–1686. [Google Scholar] [CrossRef]
- Abderezaei, J.; Pionteck, A.; Terem, I.; Dang, L.; Scadeng, M.; Morgenstern, P.; Shrivastava, R.; Holdsworth, S.J.; Yang, Y.; Kurt, M. Development, calibration, and testing of 3D amplified MRI (aMRI) for the quantification of intrinsic brain motion. Brain Multiphys. 2021, 2, 100022. [Google Scholar] [CrossRef]
- Fleet, D.J.; Jepson, A.D. Computation of component image velocity from local phase information. Int. J. Comput. Vis. 1990, 5, 77–104. [Google Scholar] [CrossRef]
- Wadhwa, N.; Chen, J.G.; Sellon, J.B.; Wei, D.; Rubinstein, M.; Ghaffari, R.; Freeman, D.M.; Büyüköztürk, O.; Wang, P.; Sun, S.; et al. Motion microscopy for visualizing and quantifying small motions. Proc. Natl. Acad. Sci. USA 2017, 114, 11639–11644. [Google Scholar] [CrossRef] [PubMed]
- Davis, A.; Bouman, K.L.; Chen, J.G.; Rubinstein, M.; Durand, F.; Freeman, W.T. Visual vibrometry: Estimating material properties from small motion in video. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 5335–5343. [Google Scholar]
- Mathewson, J.; Hale, D. Detection of channels in seismic images using the steerable pyramid. In Proceedings of the SEG International Exposition and Annual Meeting, Las Vegas, NV, USA, 9–14 November 2008. Paper No. SEG-2008-0859. [Google Scholar]
- Delle Luche, C.A.; Denis, F.; Baskurt, A. 3D steerable pyramid based on conic filters. In Proceedings of the Wavelet Applications in Industrial Processing, Philadelphia, PA, USA, 27–28 October 2004; Volume 5266, pp. 260–268. [Google Scholar]
- Simoncelli, E.P. Design of multi-dimensional derivative filters. In Proceedings of the 1st International Conference on Image Processing, Austin, TX, USA, 13–16 November 1994; Volume 1, pp. 790–794. [Google Scholar]
- Feng, B.T.; Ogren, A.C.; Daraio, C.; Bouman, K.L. Visual vibration tomography: Estimating interior material properties from monocular video. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 16231–16240. [Google Scholar]
- Billot, B.; Greve, D.N.; Puonti, O.; Thielscher, A.; Van Leemput, K.; Fischl, B.; Dalca, A.V.; Iglesias, J.E. SynthSeg: Segmentation of brain MRI scans of any contrast and resolution without retraining. Med. Image Anal. 2023, 86, 102789. [Google Scholar] [CrossRef]
- Spijkerman, J.M.; Geurts, L.J.; Siero, J.C.; Hendrikse, J.; Luijten, P.R.; Zwanenburg, J.J. Phase contrast MRI measurements of net cerebrospinal fluid flow through the cerebral aqueduct are confounded by respiration. J. Magn. Reson. Imaging 2019, 49, 433–444. [Google Scholar] [CrossRef]
- Strom, A.; Reese, G.; Dong, Z.; Ashenagar, B.; Lewis, D.; Polimeni, R. Effect of spatial resolution on brain tissue displacement estimates based on DENSE MRI at 7T. In Proceedings of the International Society for Magnetic Resonance in Medicine (ISMRM), Toronto, ON, Canada, 3–8 June 2023; p. 4089. [Google Scholar]
- Eide, P.K.; Valnes, L.M.; Lindstrøm, E.K.; Mardal, K.A.; Ringstad, G. Direction and magnitude of cerebrospinal fluid flow vary substantially across central nervous system diseases. Fluids Barriers CNS 2021, 18, 1–18. [Google Scholar] [CrossRef]
- de Zwart, J.A.; van Gelderen, P.; Wang, Y.; Duyn, J.H. Accelerated multislice MRI with patterned excitation. Magn. Reson. Med. 2024, 91, 252–265. [Google Scholar] [CrossRef] [PubMed]
j | |||
---|---|---|---|
1 | 0 | ||
2 | 0 | ||
3 | 0 | ||
4 | 0 | ||
5 | 0 | ||
6 | 0 |
SNR | No Noise | 200 | 100 | 50 | 25 | 12.5 | 6.25 |
---|---|---|---|---|---|---|---|
Correlation | 0.98 | 0.98 | 0.97 | 0.96 | 0.95 | 0.93 | 0.94 |
Error [%] | 5.69 | 5.88 | 6.60 | 9.35 | 12.65 | 12.12 | 16.16 |
Percentile (99%) | 18.13 | 19.18 | 19.09 | 27.31 | 30.26 | 38.81 | 48.16 |
Sigma | 5 | 5 | 7.5 | 10 | 12.5 | 15 | 17.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Terem, I.; Younes, K.; Wang, N.; Condron, P.; Abderezaei, J.; Kumar, H.; Vossler, H.; Kwon, E.; Kurt, M.; Mormino, E.; et al. 3D Quantitative-Amplified Magnetic Resonance Imaging (3D q-aMRI). Bioengineering 2024, 11, 851. https://doi.org/10.3390/bioengineering11080851
Terem I, Younes K, Wang N, Condron P, Abderezaei J, Kumar H, Vossler H, Kwon E, Kurt M, Mormino E, et al. 3D Quantitative-Amplified Magnetic Resonance Imaging (3D q-aMRI). Bioengineering. 2024; 11(8):851. https://doi.org/10.3390/bioengineering11080851
Chicago/Turabian StyleTerem, Itamar, Kyan Younes, Nan Wang, Paul Condron, Javid Abderezaei, Haribalan Kumar, Hillary Vossler, Eryn Kwon, Mehmet Kurt, Elizabeth Mormino, and et al. 2024. "3D Quantitative-Amplified Magnetic Resonance Imaging (3D q-aMRI)" Bioengineering 11, no. 8: 851. https://doi.org/10.3390/bioengineering11080851
APA StyleTerem, I., Younes, K., Wang, N., Condron, P., Abderezaei, J., Kumar, H., Vossler, H., Kwon, E., Kurt, M., Mormino, E., Holdsworth, S., & Setsompop, K. (2024). 3D Quantitative-Amplified Magnetic Resonance Imaging (3D q-aMRI). Bioengineering, 11(8), 851. https://doi.org/10.3390/bioengineering11080851