Virtual Reality-Based Therapy Can Enhance Balance and Muscular Endurance in Children and Adolescents with Down Syndrome: A Systematic Review with a Meta-Analysis
<p>The PRISMA flow diagram for the study selection process.</p> "> Figure 2
<p>The forest plot of the effectiveness of VRBT in increasing functional balance [<a href="#B69-bioengineering-11-01112" class="html-bibr">69</a>,<a href="#B70-bioengineering-11-01112" class="html-bibr">70</a>,<a href="#B71-bioengineering-11-01112" class="html-bibr">71</a>,<a href="#B72-bioengineering-11-01112" class="html-bibr">72</a>,<a href="#B73-bioengineering-11-01112" class="html-bibr">73</a>,<a href="#B74-bioengineering-11-01112" class="html-bibr">74</a>].</p> "> Figure 3
<p>The forest plot of the effectiveness of VRBT in increasing dynamic balance [<a href="#B69-bioengineering-11-01112" class="html-bibr">69</a>,<a href="#B74-bioengineering-11-01112" class="html-bibr">74</a>,<a href="#B77-bioengineering-11-01112" class="html-bibr">77</a>].</p> "> Figure 4
<p>The forest plot of the effectiveness of VRBT in increasing static balance with open and closed eyes [<a href="#B70-bioengineering-11-01112" class="html-bibr">70</a>,<a href="#B75-bioengineering-11-01112" class="html-bibr">75</a>].</p> "> Figure 5
<p>The forest plot of the effectiveness of VRBT in increasing muscular endurance [<a href="#B69-bioengineering-11-01112" class="html-bibr">69</a>,<a href="#B73-bioengineering-11-01112" class="html-bibr">73</a>,<a href="#B76-bioengineering-11-01112" class="html-bibr">76</a>,<a href="#B77-bioengineering-11-01112" class="html-bibr">77</a>].</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Type of Study and Register
2.2. Literature Search and Databases Consulted
2.3. Study Selection: Inclusion and Exclusion Criteria
2.4. Data Extraction
2.5. Variables
2.6. Assessment of the Methodological Quality, Risk of Bias, and Quality of Evidence
2.7. Statistical Analysis
2.8. Secondary Analyses
3. Results
3.1. Study Selection
3.2. Characteristics of the Studies Included
3.3. Methodological Quality and Risk of Bias Assessments
3.4. Meta-Analyses
3.4.1. Functional Balance
3.4.2. Dynamic Balance
3.4.3. Static Balance (Posturographic Postural Control)
3.4.4. Muscular Endurance
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bull, M.J. Down Syndrome. N. Engl. J. Med. 2020, 382, 2344–2352. [Google Scholar] [CrossRef] [PubMed]
- Baburamani, A.A.; Patkee, P.A.; Arichi, T.; Rutherford, M.A. New approaches to studying early brain development in Down syndrome. Dev. Med. Child Neurol. 2019, 61, 867–879. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.; Fakurazi, S.; Cheah, P.-S.; Ling, K.-H. Chromosomal and cellular therapeutic approaches for Down syndrome: A research update. Biochem. Biophys. Res. Commun. 2024, 735, 150664. [Google Scholar] [CrossRef]
- Vandoni, M.; Giuriato, M.; Pirazzi, A.; Zanelli, S.; Gaboardi, F.; Carnevale Pellino, V.; Gazzarri, A.A.; Baldassarre, P.; Zuccotti, G.; Calcaterra, V. Motor Skills and Executive Functions in Pediatric Patients with Down Syndrome: A Challenge for Tailoring Physical Activity Interventions. Pediatr. Rep. 2023, 15, 691–706. [Google Scholar] [CrossRef] [PubMed]
- Schieve, L.A.; Boulet, S.L.; Boyle, C.; Rasmussen, S.A.; Schendel, D. Health of Children 3 to 17 Years of Age with Down Syndrome in the 1997–2005 National Health Interview Survey. Pediatrics 2009, 123, e253–e260. [Google Scholar] [CrossRef]
- Verstegen, R.H.J.; Kusters, M.A.A. Inborn Errors of Adaptive Immunity in Down Syndrome. J. Clin. Immunol. 2020, 40, 791–806. [Google Scholar] [CrossRef]
- Mannion, A.; Neil, N.; Fiani, T.; Athamanah, L.; Lyons, J.; McDonagh, K.; Boland, E.; Cooney, R.; Lynch, M.; Youssef, M.; et al. An investigation of sleep problems, gastrointestinal symptoms, comorbid psychopathology and challenging behavior in children and adolescents with Down Syndrome. Res. Dev. Disabil. 2024, 151, 104788. [Google Scholar] [CrossRef]
- Cho, Y.; Kwon, Y.; DelRosso, L.; Sobremonte-King, M. Dysphagia severity is associated with worse sleep-disordered breathing in infants with Down syndrome. J. Clin. Sleep Med. 2023, 19, 883–887. [Google Scholar] [CrossRef] [PubMed]
- Bala, U.; Leong, M.P.-Y.; Lim, C.L.; Shahar, H.K.; Othman, F.; Lai, M.-I.; Law, Z.-K.; Ramli, K.; Htwe, O.; Ling, K.-H.; et al. Defects in nerve conduction velocity and different muscle fibre-type specificity contribute to muscle weakness in Ts1Cje Down syndrome mouse model. PLoS ONE 2018, 13, e0197711. [Google Scholar] [CrossRef]
- Maïano, C.; Hue, O.; Lepage, G.; Morin, A.J.S.; Tracey, D.; Moullec, G. Do Exercise Interventions Improve Balance for Children and Adolescents With Down Syndrome? A Systematic Review. Phys. Ther. 2019, 99, 507–518. [Google Scholar] [CrossRef]
- Ghaeeni, S.; Bahari, Z.; Khazaei, A.A. Effect of core stability training on static balance of the children with Down syndrome. Phys. Treat. Phys. Ther. J. 2015, 5, 49–54. [Google Scholar]
- Aleksander-Szymanowicz, P.; Filar-Mierzwa, K.; Skiba, A. Effect of dance movement therapy on balance in adults with Down Syndrome. A pilot study. J. Intellect. Disabil. 2023. [Google Scholar] [CrossRef]
- Pua, Y.-H.; Ong, P.-H.; Clark, R.A.; Matcher, D.B.; Lim, E.C.-W. Falls efficacy, postural balance, and risk for falls in older adults with falls-related emergency department visits: Prospective cohort study. BMC Geriatr. 2017, 17, 291. [Google Scholar] [CrossRef]
- Tsimaras, V.K.; Fotiadou, E.G. Effect of Training on the Muscle Strength and Dynamic Balance Ability of Adults With Down Syndrome. J. Strength Cond. Res. 2004, 18, 343. [Google Scholar] [CrossRef]
- de Graaf, G.; Buckley, F.; Skotko, B.G. Estimates of the live births, natural losses, and elective terminations with Down syndrome in the United States. Am. J. Med. Genet. Part A 2015, 167, 756–767. [Google Scholar] [CrossRef] [PubMed]
- Bu, Q.; Qiang, R.; Cheng, H.; Wang, A.; Chen, H.; Pan, Z. Analysis of the Global Disease Burden of Down Syndrome Using YLDs, YLLs, and DALYs Based on the Global Burden of Disease 2019 Data. Front. Pediatr. 2022, 10, 882722. [Google Scholar] [CrossRef]
- Horak, F.B. Postural orientation and equilibrium: What do we need to know about neural control of balance to prevent falls? Age Ageing 2006, 35 (Suppl. 2), ii7–ii11. [Google Scholar] [CrossRef] [PubMed]
- Atalan Efkere, P.; Tarsuslu, T. The effects of Kinesio taping on static and dynamic balance in children with down syndrome: A randomized controlled trial. Somatosens. Mot. Res. 2024, 41, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-González, L.; Lucena-Antón, D.; Salazar, A.; Martín-Valero, R.; Moral-Munoz, J.A. Physical therapy in Down syndrome: Systematic review and meta-analysis. J. Intellect. Disabil. Res. 2019, 63, 1041–1067. [Google Scholar] [CrossRef]
- Büyükçelik, N.M.; Yiğit, S.; Turhan, B. An investigation of the effects of dual-task balance exercises on balance, functional status and dual-task performance in children with Down syndrome. Dev. Neurorehabil. 2023, 26, 320–327. [Google Scholar] [CrossRef]
- Takahashi, H.; An, M.; Sasai, T.; Seki, M.; Matsumura, T.; Ogawa, Y.; Matsushima, K.; Tabata, A.; Kato, T. The effectiveness of dance movement therapy for individuals with Down syndrome: A pilot randomised controlled trial. J. Intellect. Disabil. Res. 2023, 67, 640–654. [Google Scholar] [CrossRef] [PubMed]
- Purpura, G.; Di Giusto, V.; Zorzi, C.F.; Figliano, G.; Randazzo, M.; Volpicelli, V.; Blonda, R.; Brazzoli, E.; Reina, T.; Rezzonico, S.; et al. Use of Virtual Reality in School-Aged Children with Developmental Coordination Disorder: A Novel Approach. Sensors 2024, 24, 5578. [Google Scholar] [CrossRef] [PubMed]
- Arman, N.; Tarakci, E.; Tarakci, D.; Kasapcopur, O. Effects of Video Games–Based Task-Oriented Activity Training (Xbox 360 Kinect) on Activity Performance and Participation in Patients With Juvenile Idiopathic Arthritis. Am. J. Phys. Med. Rehabil. 2019, 98, 174–181. [Google Scholar] [CrossRef] [PubMed]
- Tobaiqi, M.A.; Albadawi, E.A.; Fadlalmola, H.A.; Albadrani, M.S. Application of Virtual Reality-Assisted Exergaming on the Rehabilitation of Children with Cerebral Palsy: A Systematic Review and Meta-Analysis. J. Clin. Med. 2023, 12, 7091. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Caballero, E.; Ortega-Donaire, L.; Sanz-Martos, S. Immersive Virtual Reality for Pain and Anxiety Management Associated with Medical Procedures in Children and Adolescents: A Systematic Review. Children 2024, 11, 975. [Google Scholar] [CrossRef]
- Bateni, H.; Carruthers, J.; Mohan, R.; Pishva, S. Use of Virtual Reality in Physical Therapy as an Intervention and Diagnostic Tool. Rehabil. Res. Pract. 2024, 2024, 1122286. [Google Scholar] [CrossRef]
- Lee, H.-S.; Lim, J.-H.; Jeon, B.-H.; Song, C.-S. Non-immersive Virtual Reality Rehabilitation Applied to a Task-oriented Approach for Stroke Patients: A Randomized Controlled Trial. Restor. Neurol. Neurosci. 2020, 38, 165–172. [Google Scholar] [CrossRef]
- Palacios-Navarro, G.; Hogan, N. Head-Mounted Display-Based Therapies for Adults Post-Stroke: A Systematic Review and Meta-Analysis. Sensors 2021, 21, 1111. [Google Scholar] [CrossRef]
- Matallaoui, A.; Koivisto, J.; Hamari, J.; Zarnekow, R. How effective is “exergamification”? A systematic review on the effectiveness of gamification features in exergames. In Proceedings of the 50th Hawaii International Conference on System Sciences, Hilton Waikoloa Village, HI, USA, 4–7 January 2017. [Google Scholar]
- Holden, M.K. Virtual environments for motor rehabilitation. Cyberpsychol. Behav. 2005, 8, 187–211. [Google Scholar] [CrossRef]
- Merians, A.S.; Tunik, E.; Adamovich, S.V. Virtual reality to maximize function for hand and arm rehabilitation: Exploration of neural mechanisms. Stud. Health Technol. Inform. 2009, 145, 109–125. [Google Scholar] [CrossRef]
- Maggio, M.G.; Valeri, M.C.; De Luca, R.; Di Iulio, F.; Ciancarelli, I.; De Francesco, M.; Calabrò, R.S.; Morone, G. The Role of Immersive Virtual Reality Interventions in Pediatric Cerebral Palsy: A Systematic Review across Motor and Cognitive Domains. Brain Sci. 2024, 14, 490. [Google Scholar] [CrossRef] [PubMed]
- Berg, P.; Becker, T.; Martian, A.; Danielle, P.K.; Wingen, J. Motor Control Outcomes Following Nintendo Wii Use by a Child With Down Syndrome. Pediatr. Phys. Ther. 2012, 24, 78–84. [Google Scholar] [CrossRef] [PubMed]
- Corey, J.; Tsai, J.M.; Mhadeshwar, A.; Srinivasan, S.; Bhat, A. Digital motor intervention effects on physical activity performance of individuals with developmental disabilities: A systematic review. Disabil. Rehabil. 2024, 1–16. [Google Scholar] [CrossRef] [PubMed]
- de Menezes, L.D.C.; Massetti, T.; Oliveira, F.R.; de Abreu, L.C.; Malheiros, S.R.P.; Trevizan, I.L.; Moriyama, C.H.; de Mello Monteiro, C.B. Motor learning and virtual reality in Down syndrome; a literature review. Int. Arch. Med. 2015, 8. [Google Scholar] [CrossRef]
- Mohamed, R.A.; Abdel-Rahman, S.; Aly, M.G. Virtual reality for motor rehabilitation of children with Down syndrome: Systematic review. Med. J. Cairo Univ. 2019, 87, 1117–1123. [Google Scholar]
- Lopes, J.B.P.; de Almeida Carvalho Duarte, N.; Lazzari, R.D.; Oliveira, C.S. Virtual reality in the rehabilitation process for individuals with cerebral palsy and Down syndrome: A systematic review. J. Bodyw. Mov. Ther. 2020, 24, 479–483. [Google Scholar] [CrossRef]
- Stander, J.; du Preez, J.C.; Kritzinger, C.; Obermeyer, N.M.; Struwig, S.; van Wyk, N.; Zaayman, J.; Burger, M. Effect of virtual reality therapy, combined with physiotherapy for improving motor proficiency in individuals with Down syndrome: A systematic review. S. Afr. J. Physiother. 2021, 77, 1516. [Google Scholar] [CrossRef]
- Alba-Rueda, A.; Moral-Munoz, J.A.; De Miguel-Rubio, A.; Lucena-Anton, D. Exergaming for Physical Therapy in Patients with Down Syndrome: A Systematic Review and Meta-Analysis of Randomized-Controlled Trials. Games Health J. 2022, 11, 67–78. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Higgins, J.; Green, S. Cochrane Handbook for Systematic Reviews of Interventions; John Wiley & Sons: London, UK, 2011. [Google Scholar]
- Cooper, H.; Hedges, L.; Valentine, J.C. The Handbook of Research Synthesis and Meta-Analysis; Russell Sage Foundation: New York, NY, USA, 2009. [Google Scholar]
- Shea, B.J.; Reeves, B.C.; Wells, G.; Thuku, M.; Hamel, C.; Moran, J.; Moher, D.; Tugwell, P.; Welch, V.; Kristjansson, E.; et al. AMSTAR 2: A critical appraisal tool for systematic reviews that include randomised or non-randomised studies of healthcare interventions, or both. BMJ 2017, 358, j4008. [Google Scholar] [CrossRef]
- Amir-Behghadami, M.; Janati, A. Population, Intervention, Comparison, Outcomes and Study (PICOS) design as a framework to formulate eligibility criteria in systematic reviews. Emerg. Med. J. 2020, 37, 387. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. A Coefficient of Agreement for Nominal Scales. Educ. Psychol. Meas. 1960, 20, 37–46. [Google Scholar] [CrossRef]
- Landis, J.R.; Koch, G.G. The Measurement of Observer Agreement for Categorical Data. Biometrics 1977, 33, 159. [Google Scholar] [CrossRef]
- Hozo, S.P.; Djulbegovic, B.; Hozo, I. Estimating the mean and variance from the median, range, and the size of a sample. BMC Med. Res. Methodol. 2005, 5, 13. [Google Scholar] [CrossRef] [PubMed]
- Berg, K.O.; Maki, B.E.; Williams, J.I.; Holliday, P.J.; Wood-Dauphinee, S.L. Clinical and laboratory measures of postural balance in an elderly population. Arch. Phys. Med. Rehabil. 1992, 73, 1073–1080. [Google Scholar]
- Podsiadlo, D.; Richardson, S. The timed “Up & Go”: A test of basic functional mobility for frail elderly persons. J. Am. Geriatr. Soc. 1991, 39, 142–148. [Google Scholar] [CrossRef]
- Noamani, A.; Riahi, N.; Vette, A.H.; Rouhani, H. Clinical Static Balance Assessment: A Narrative Review of Traditional and IMU-Based Posturography in Older Adults and Individuals with Incomplete Spinal Cord Injury. Sensors 2023, 23, 8881. [Google Scholar] [CrossRef]
- Booth, F.W.; Ruegsegger, G.N.; Toedebusch, R.G.; Yan, Z. Endurance Exercise and the Regulation of Skeletal Muscle Metabolism. Prog. Mol. Biol. Transl. Sci. 2015, 135, 129–151. [Google Scholar]
- Maher, C.G.; Sherrington, C.; Herbert, R.D.; Moseley, A.M.; Elkins, M. Reliability of the PEDro scale for rating quality of randomized controlled trials. Phys. Ther. 2003, 83, 713–721. [Google Scholar] [CrossRef]
- Verhagen, A.P.; de Vet, H.C.; de Bie, R.A.; Kessels, A.G.; Boers, M.; Bouter, L.M.; Knipschild, P.G. The Delphi list: A criteria list for quality assessment of randomized clinical trials for conducting systematic reviews developed by Delphi consensus. J. Clin. Epidemiol. 1998, 51, 1235–1241. [Google Scholar] [CrossRef]
- Gonzalez, G.Z.; Moseley, A.M.; Maher, C.G.; Nascimento, D.P.; da Cunha Menezes Costa, L.; Costa, L.O. Methodologic Quality and Statistical Reporting of Physical Therapy Randomized Controlled Trials Relevant to Musculoskeletal Conditions. Arch. Phys. Med. Rehabil. 2018, 99, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Atkins, D.; Best, D.; Briss, P.A.; Eccles, M.; Falck-Ytter, Y.; Flottorp, S.; Guyatt, G.H.; Harbour, R.T. Grading quality of evidence and strength of recommendations. BMJ 2004, 328, 1490. [Google Scholar] [CrossRef] [PubMed]
- Schuünemann, H.; Brozżek, J.; Guyatt, G.; Oxman, A. Manual GRADE (Grading of Recommendations, Assessment, Development and Evaluation); Javierana GRADE Center: Bogotá, Colombia, 2017. [Google Scholar]
- Meader, N.; King, K.; Llewellyn, A.; Norman, G.; Brown, J.; Rodgers, M.; Moe-Byrne, T.; Higgins, J.P.; Sowden, A.; Stewart, G. A checklist designed to aid consistency and reproducibility of GRADE assessments: Development and pilot validation. Syst. Rev. 2014, 3, 82. [Google Scholar] [CrossRef]
- Borenstein, M.; Hedges, L.; Higgins, J.; Rothstein, H. Comprehensive Meta-Analysis Software. version 4; Biostat: Englewood, NY, USA, 2023. [Google Scholar]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Academic Press: New York, NY, USA, 1977. [Google Scholar]
- DerSimonian, R.; Laird, N. Meta-analysis in clinical trials. Control. Clin. Trials 1986, 7, 177–188. [Google Scholar] [CrossRef]
- Rücker, G.; Schwarzer, G. Beyond the forest plot: The drapery plot. Res. Synth. Methods 2021, 12, 13–19. [Google Scholar] [CrossRef]
- Kinney, A.R.; Eakman, A.M.; Graham, J.E. Novel Effect Size Interpretation Guidelines and an Evaluation of Statistical Power in Rehabilitation Research. Arch. Phys. Med. Rehabil. 2020, 101, 2219–2226. [Google Scholar] [CrossRef]
- Copay, A.G.; Subach, B.R.; Glassman, S.D.; Polly, D.W.; Schuler, T.C. Understanding the minimum clinically important difference: A review of concepts and methods. Spine J. 2007, 7, 541–546. [Google Scholar] [CrossRef]
- Man-Son-Hing, M.; Laupacis, A.; O’Rourke, K.; Molnar, F.J.; Mahon, J.; Chan, K.B.Y.; Wells, G. Determination of the clinical importance of study results. J. Gen. Intern. Med. 2002, 17, 469–476. [Google Scholar] [CrossRef] [PubMed]
- Higgins, J.; Thompson, S.; Altman, D. Statistical heterogeneity in systematic reviews of clinical trials: A critical appraisal of guidelines and practice. J. Health Serv. Res. Policy 2002, 7, 51–61. [Google Scholar] [CrossRef]
- Higgins, J.P.T.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring inconsistency in meta-analyses. BMJ 2003, 327, 557–560. [Google Scholar] [CrossRef]
- Perrot, A.; Maillot, P.; Le Foulon, A.; Rebillat, A.-S. Effect of Exergaming on Physical Fitness, Functional Mobility, and Cognitive Functioning in Adults With Down Syndrome. Am. J. Intellect. Dev. Disabil. 2021, 126, 34–44. [Google Scholar] [CrossRef] [PubMed]
- Silva, V.; Campos, C.; Sá, A.; Cavadas, M.; Pinto, J.; Simões, P.; Machado, S.; Murillo-Rodríguez, E.; Barbosa-Rocha, N. Wii-based exercise program to improve physical fitness, motor proficiency and functional mobility in adults with Down syndrome. J. Intellect. Disabil. Res. 2017, 61, 755–765. [Google Scholar] [CrossRef]
- Abdel Ghafar, M.A.; Abdelraouf, O.R. Effect of virtual reality versus traditional physical therapy on functional balance in children with Down Syndrome: A randomized comparative study. Int. J. Physiother. Res. 2017, 5, 2088–2094. [Google Scholar] [CrossRef]
- Memon, A.G.; Ali, S.; Adnan, Q.; Tahir, S. Effects of Virtual Reality on Static and Dynamic Balance among Individuals with Down Syndrome. J. Liaquat Univ. Med. Health Sci. 2024, 23, 116–120. [Google Scholar]
- Rahman, S.A.; Rahman, A. Efficacy of virtual reality-based therapy on balance in children with Down syndrome. World Appl. Sci. J. 2010, 10, 254–261. [Google Scholar]
- Reis, J.R.G.; Neiva, C.M.; Pessoa Filho, D.M.; Ciolac, E.G.; Verardi, C.E.L.; da Cruz Siqueira, L.O.; de Freitas Gonçalves, D.; da Silva, G.R.; Hiraga, C.Y.; Tonello, M.G.M. Virtual reality therapy: Motor coordination and balance analysis in children and teenagers with Down syndrome. Eur. J. Hum. Mov. 2017, 38, 53–67. [Google Scholar]
- Wuang, Y.P.; Chiang, C.S.; Su, C.Y.; Wang, C.C. Effectiveness of virtual reality using Wii gaming technology in children with Down syndrome. Res. Dev. Disabil. 2011, 32, 312–321. [Google Scholar] [CrossRef]
- Yunus, F.T.; Widagda, I.M.; Isma, R. The Effect Of Sensory-Motor Virtual Reality on Balance in Children with Clinical Down Syndrome. J. Kedokt. Diponegoro (Diponegoro Med. J.) 2024, 13, 66–71. [Google Scholar] [CrossRef]
- Gómez Álvarez, N.; Venegas Mortecinos, A.; Zapata Rodríguez, V.; López Fontanilla, M.; Maudier Vásquez, M.; Pavez-Adasme, G.; Hemández-Mosqueira, C. Efecto de una intervención basada en realidad virtual sobre las habi lidades motrices básicas y control postural de niños con Síndrome de Down. Rev. Chil. Pediatría 2018, 89, 747–752. [Google Scholar] [CrossRef]
- Lin, H.-C.; Wuang, Y.-P. Strength and agility training in adolescents with Down syndrome: A randomized controlled trial. Res. Dev. Disabil. 2012, 33, 2236–2244. [Google Scholar] [CrossRef]
- Suarez-Villadat, B.; Sadarangani, K.P.; Villagra, A. Effectiveness of exergames programme to modify body composition and health-related physical fitness in adolescents with down syndrome after COVID-19 quarantine. Eur. J. Sport Sci. 2023, 23, 2210–2220. [Google Scholar] [CrossRef] [PubMed]
- AL-Nemr, A.; Reffat, S. Effect of Pilates exercises on balance and gross motor coordination in children with Down syndrome. Acta Neurol. Belg. 2024. [Google Scholar] [CrossRef] [PubMed]
- Boato, E.; Melo, G.; Filho, M.; Moresi, E.; Lourenço, C.; Tristão, R. The Use of Virtual and Computational Technologies in the Psychomotor and Cognitive Development of Children with Down Syndrome: A Systematic Literature Review. Int. J. Environ. Res. Public Health 2022, 19, 2955. [Google Scholar] [CrossRef]
- Chen, C.; Shen, I.; Chen, C.; Wu, C.; Liu, W.-Y.; Chung, C. Validity, responsiveness, minimal detectable change, and minimal clinically important change of Pediatric Balance Scale in children with cerebral palsy. Res. Dev. Disabil. 2013, 34, 916–922. [Google Scholar] [CrossRef] [PubMed]
- Nicolini-Panisson, R.D.; Donadio, M.V.F. Normative values for the Timed “Up and Go” test in children and adolescents and validation for individuals with Down syndrome. Dev. Med. Child Neurol. 2014, 56, 490–497. [Google Scholar] [CrossRef]
- Gao, Z.; Lee, J.E.; Pope, Z.; Zhang, D. Effect of Active Videogames on Underserved Children’s Classroom Behaviors, Effort, and Fitness. Games Health J. 2016, 5, 318–324. [Google Scholar] [CrossRef]
- Benzing, V.; Schmidt, M. Exergaming for Children and Adolescents: Strengths, Weaknesses, Opportunities and Threats. J. Clin. Med. 2018, 7, 422. [Google Scholar] [CrossRef]
- Ju, Y.-J.; Du, Y.-C.; Huang, H.-C.; Hu Kao, P.-S.; Cherng, R.-J. Development and feasibility of a virtual reality-based exergaming program to enhance cardiopulmonary fitness in children with developmental coordination disorder. Front. Pediatr. 2023, 11, 1238471. [Google Scholar] [CrossRef]
- Montoro-Cárdenas, D.; Cortés-Pérez, I.; del Rocío Ibancos-Losada, M.; Zagalaz-Anula, N.; Obrero-Gaitán, E.; Osuna-Pérez, M.C. Nintendo® Wii Therapy Improves Upper Extremity Motor Function in Children with Cerebral Palsy: A Systematic Review with Meta-Analysis. Int. J. Environ. Res. Public Health 2022, 19, 12343. [Google Scholar] [CrossRef]
- Meriggi, P.; Mandalà, M.; Randazzo, M.; Brazzoli, E.; Castagna, A.; Di Giusto, V.; Cavallini, A.; Marzegan, A.; Lencioni, T.; Olivieri, I. Non-immersive virtual reality based treatment for children with unilateral cerebral palsy: Preliminary results. J. Pediatr. Rehabil. Med. 2024, 17, 107–123. [Google Scholar] [CrossRef]
- Huang, D.; Mao, Y.; Chen, P.; Li, L. Virtual reality training improves balance function. Neural Regen. Res. 2014, 9, 1628. [Google Scholar] [CrossRef] [PubMed]
- Drigas, A.; Sideraki, A. Brain Neuroplasticity Leveraging Virtual Reality and Brain–Computer Interface Technologies. Sensors 2024, 24, 5725. [Google Scholar] [CrossRef] [PubMed]
- Sideraki, A.; Drigas, A. Development of social skills for people with ASD through intervention with digital technologies and virtual reality (VR) tools. Res. Soc. Dev. 2023, 12, e11512541407. [Google Scholar] [CrossRef]
- Phelan, I.; Carrion-Plaza, A.; Furness, P.J.; Dimitri, P. Home-based immersive virtual reality physical rehabilitation in paediatric patients for upper limb motor impairment: A feasibility study. Virtual Real. 2023, 27, 3505–3520. [Google Scholar] [CrossRef]
- Armijo-Olivo, S.; Saltaji, H.; da Costa, B.R.; Fuentes, J.; Ha, C.; Cummings, G.G. What is the influence of randomisation sequence generation and allocation concealment on treatment effects of physical therapy trials? A meta-epidemiological study. BMJ Open 2015, 5, e008562. [Google Scholar] [CrossRef]
- Armijo-Olivo, S.; Fuentes, J.; da Costa, B.R.; Saltaji, H.; Ha, C.; Cummings, G.G. Blinding in Physical Therapy Trials and Its Association with Treatment Effects. Am. J. Phys. Med. Rehabil. 2017, 96, 34–44. [Google Scholar] [CrossRef]
Databases | Search Strategy |
---|---|
PubMed Medline | (down syndrome[mh] or down* syndrome[tiab] or syndrome, down [tiab] or trisomy-21[tiab]) AND (virtual reality[mh] or virtual reality[tiab] or reality, virtual[tiab] or virtual reality exposure therapy[mh] or virtual reality exposure therap*[tiab] or virtual reality immersion therap* [tiab] or reality therapy, virtual [tiab] or exergaming[mh] or exergam*[tiab] or virtual reality exercise[tiab] or active-video gam*[tiab]) |
SCOPUS | TITLE-ABS-KEY(“down syndrome” or “syndrome, down” or “trisomy-21”) AND TITLE-ABS-KEY(“virtual reality” or “reality, virtual” or “virtual reality exposure therapy” or “virtual reality immersion therapy” or “reality therapy, virtual” or “exergaming” or “exergame” or “exergames” or “virtual reality exercise” or “active-video game”) |
Web of Science | TOPIC (*down syndrome* or *syndrome, down* or *trisomy-21*) AND TOPIC (*virtual reality* or *reality, virtual* or *virtual reality exposure therapy* or *virtual reality immersion therapy* or *reality therapy, virtual* or *exergaming* or *exergame* or *exergames* or *virtual reality exercise* or *active-video game*) |
CINAHL Complete | AB (down syndrome or down, syndrome or trisomia 21) AND AB (virtual reality or reality, virtual or virtual reality exposure therapy or virtual reality immersion therapy or reality therapy, virtual or exergaming or exergame or exergames or virtual reality exercise or active-video game) |
PEDro | Down syndrome and virtual reality |
Study | VRBT Group | Control Group | Variable (Test) | Qualitative Findings in Individual Studies | ||||
---|---|---|---|---|---|---|---|---|
Sample Characteristics | VRBT Intervention Characteristics | Sample Characteristics | Control Intervention Characteristics | Intra-Group Differences | Inter-Group Differences | |||
VR System | Duration of VRBT | |||||||
Abdel Ghafar, MA et al., 2017 [69] (Saudi Arabia) Non-single blinded RCT Setting: Special Education School Funding: NR | 13 children; 7.2 ± 1.9 years; Sex per group ND ID severity: IQ mild (SBIS) | NIVR device: Nintendo Wii Fit using sports video games. | 24 sessions, during 8 weeks, 3 per week and 30 min per session | 13 children; 7.4 ± 1.3 years; Sex per group ND | Traditional physical therapy, including balance exercises in standing and sitting position | Functional balance (PBS) | NR | Statistically significant differences favors VRBT group (p = 0.046) |
Dynamic balance (TUG) | NR | Statistically significant differences favors VRBT group (p = 0.043) | ||||||
Muscular endurance (5-TSS) | NR | Statistically significant differences favors VRBT group (p = 0.027) | ||||||
Gómez-Alvárez, N et al., 2018 [75] (Chile) Non-blinded RCT Setting: Special Education School Funding: No | 9 children; 8.3 ± 2.1 years; Sex per group ND ID severity: IQ NR | NIVR device: Nintendo Wii Fit Balance Board using sports video games. | 10 sessions, during 5 weeks, twice per week, and 20 min per session | 7 children; 8.4 ± 1.6 years; Sex per group ND | Usual care daily routine | Static balance (posturograpy) | Statistically significant intragroup differences in VRBT for closed eyes assessment (p = 0.039) | Not statistically significant differences between groups in any open and closed eyes condition (p > 0.05) |
Lin, HC and Wang, YP 2012 [76] (Taiwan) Single-blind RCTSetting: University Funding: NR | 46 adolescents, 15.6 ± 3.6 years; 21B:25G ID severity: IQ 52.5 ± 11.7 (WISC-III) | NIVR device: Nintendo Wii sports video games. | 18 sessions during 6 weeks, 3 sessions per week, and 20 min per session | 46 adolescents; 14.9 ± 3.9 years; 22B:24G | Usual care daily routine | Muscular endurance (BOT-2) | NR | Statistically significant differences favors VRBT group (p = 0.02) |
Memon, AG et al., 2024 [70] (Pakistan) Non-blinded RCT Setting: Rehabilitation Center Funding: No | 12 children; 8.1 ± 0.8 years; Sex ND ID severity: IQ 62.5 ± 3.5 (SBIS) | NIVR device: Nintendo Wii Fit using video games. | 24 sessions during 8 weeks, 3 sessions per week, and 30 min per session | 12 children; 7.6 ± 0.9 years; Sex ND | Traditional physical therapy, including balance exercises in standing and sitting position | Functional balance (PBS) | Statistically significant intragroup differences in VRBT (p = 0.005) and control (p < 0.01) groups | Not statistically significant differences between groups (p = 0.38) |
Static balance (posturograpy) | Statistically significant intragroup differences in VRBT (p < 0.05) and control (p < 0.05) groups | Not statistically significant differences between groups (p > 0.05) | ||||||
Rahman, SA et al., 2010 [71] (Egypt) Non-blinded RCT Setting: Community association Funding: NR | 15 children; 10.9 ± 1.2 years; 6B:9G ID severity: IQ 36–67 (SBIS) | NIVR device: Nintendo Wii Fit Balance Board using three sports video games. Additionally, individuals were performing conventional physical therapy exercises. | 36 sessions during 6 weeks, 6 sessions per week, and 60 min per session | 15 children; 11.6 ± 0.4 years; 7B:8G | Traditional physical therapy program comprising strengthening, walking, and climbing stairs exercises | Functional balance (BOT-2) | Statistically significant intragroup differences in VRBT (p < 0.001) and control (p = 0.017) groups | Statistically significant differences favors VRBT group (p < 0.001) |
Reis, JRG et al., 2017 [72] (Brazil) Non-blinded RCT Setting: Community association Funding: NR | 7 children; 9 ± 2.5 years; Sex ND ID severity: IQ NR | NIVR device: Xbox 360 plus Kinect sensor using two video games (River Rush and Hall of ricochets) | 16 sessions during 4 weeks, 4 sessions per week, and maximal 20 min per session | 5 children; 8 ± 2.5 years; Sex ND | Usual care daily routine | Functional balance (PBS) | NR | Statistically significant differences favors VRBT group (p = 0.01) |
Suarez-Villadat, B et al., 2023 [77] (Spain) Single-blind RCT Setting: Special Education School Funding: NR | 24 adolescents; 14.1 ± 1.2 years; 14B:10G ID severity: mild–moderate | NIVR device: Nintendo Wii Fit using sports video games. | 60 sessions during 20 weeks, 3 sessions per week, and 60 min per session | 25 adolescents; 14.3 ± 1 years; 16B:9G | Traditional physical therapy program comprising motor and coordination exercises related motor skills | Dynamic balance (TUG) | Statistically significant intragroup differences in VRBT (p = 0.002) | Statistically significant differences favors VRBT group (p = 0.038) |
Muscular endurance (30-SCST) | Statistically significant intragroup differences in VRBT (p = 0.008) | Statistically significant differences favors VRBT group (p = 0.027) | ||||||
Wuang, YP et al., 2011 [73] (Taiwan) Single-blind RCT Setting: University Funding: NR | 52 children; 7–12 years old (range) Sex ND ID severity: IQ NR | NIVR device: Nintendo Wii Fit using sports video games. | 48 sessions during 24 weeks, twice per week, and 60 min per session | 53 children; 7–12 years old (range); Sex ND | Traditional physical therapy, including balance exercises | Functional balance (BOT-2) | NR | Not statistically significant differences between groups (p > 0.05) |
50 children; 7–12 years old (range); Sex ND | Usual care daily routine | Muscular endurance (BOT-2) | NR | Not statistically significant differences between groups (p > 0.05) | ||||
Yunus, FT et al., 2024 [74] (Indonesia) Single-blind RCT Setting: University Funding: No | 10 adolescents; 12.9 ± 3.2 years; Sex per group ND ID severity: IQ score 55–69 | IVR device: Head mounted displays SenMor’s VR. | 8 sessions, during 4 weeks, twice per week, and 20 min per session | 10 adolescents; 12.9 ± 3.2 years; Sex per group ND | Usual care daily routine | Functional balance (PBS) | Statistically significant intragroup differences in VRBT (p < 0.001) | Statistically significant differences favors VRBT group (p < 0.001) |
Dynamic balance (TUG) | Statistically significant intragroup differences in VRBT (p < 0.001) | Statistically significant differences favors VRBT group (p < 0.001) |
Study | Items | Total | Quality | Biases | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | ||||
Abdel Ghafar, MA et al., 2017 [69] | Yes | Yes | Yes | Yes | No | No | No | Yes | Yes | Yes | Yes | 7/10 | Good | Performance and detection |
Gómez-Alvárez, N et al., 2018 [75] | Yes | Yes | No | Yes | No | No | No | Yes | Yes | Yes | Yes | 6/10 | Good | Selection, performance, and detection |
Lin, HC and Wuang, YP 2012 [76] | Yes | Yes | No | Yes | No | No | Yes | Yes | Yes | Yes | Yes | 7/10 | Good | Selection and performance |
Memon, AG et al., 2024 [70] | Yes | Yes | No | Yes | No | No | No | Yes | Yes | Yes | Yes | 6/10 | Good | Selection, performance, and detection |
Rahman, SA et al., 2010 * [71] | Yes | Yes | No | Yes | No | No | No | No | No | Yes | Yes | 4/10 | Moderate | Selection, performance, and detection |
Reis, JRG et al., 2017 [72] | Yes | Yes | No | Yes | No | No | No | Yes | Yes | Yes | Yes | 6/10 | Good | Selection, performance, and detection |
Suarez-Villadat, B et al., 2023 [77] | Yes | Yes | Yes | Yes | No | No | Yes | Yes | Yes | Yes | Yes | 8/10 | Good | Performance |
Wuang, YP et al., 2011 * [73] | Yes | Yes | No | Yes | No | No | Yes | Yes | No | Yes | Yes | 6/10 | Good | Selection and performance |
Yunus, FT et al., 2024 [74] | Yes | Yes | No | Yes | No | No | Yes | Yes | Yes | Yes | Yes | 7/10 | Good | Selection and performance |
Effect Size | Heterogeneity | PUBLICATION BIAS | Quality of Evidence (GRADE) | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Variables | K | N | Ns | SMD | 95% CI | p | Q (df) | I2 (p) | Funnel Plot (Egger p) | Trim and Fill | Risk of Bias | Incons | Indirect | Imprec | Pub Bias | Quality | |
Adj SMD | % var | ||||||||||||||||
Functional balance | 7 | 319 | 45.6 | 1.22 | 0.64 to 1.81 | <0.001 | 4.2 (6) | 0% (0.65) | Sym (0.38) | 1.22 | 0% | Medium | No | No | Yes | No | Low |
Dynamic balance | 3 | 95 | 31.7 | −2.2 | −3.1 to −1.25 | <0.001 | 2.7 (2) | 27.1% (0.3) | Sym (0.42) | −2.15 | 0% | Medium | Prob. | No | Yes | No | Very low |
Static balance OE | 2 | 38 | 19 | 0.53 | −1.1 to 2.2 | 0.52 | 1.2 (1) | 18.5% (0.3) | NP | NP | NP | Medium | Prob. | No | Yes | Prob. | Very low |
Static balance CE | 2 | 38 | 19 | −0.75 | −2.37 to 0.87 | 0.36 | 0.7 (1) | 0% (0.4) | NP | NP | NP | Medium | No | No | Yes | Prob. | Very low |
Muscular endurance | 5 | 314 | 62.8 | 1.37 | 0.58 to 2.2 | <0.001 | 3.7 (4) | 0% (0.4) | Sym (0.24) | 1.37 | 0% | Medium | No | No | Yes | No | Low |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piñar-Lara, M.; Cortés-Pérez, I.; Díaz-Fernández, Á.; Montilla-Ibáñez, M.d.A.; Sedeño-Vidal, A.; Obrero-Gaitán, E. Virtual Reality-Based Therapy Can Enhance Balance and Muscular Endurance in Children and Adolescents with Down Syndrome: A Systematic Review with a Meta-Analysis. Bioengineering 2024, 11, 1112. https://doi.org/10.3390/bioengineering11111112
Piñar-Lara M, Cortés-Pérez I, Díaz-Fernández Á, Montilla-Ibáñez MdA, Sedeño-Vidal A, Obrero-Gaitán E. Virtual Reality-Based Therapy Can Enhance Balance and Muscular Endurance in Children and Adolescents with Down Syndrome: A Systematic Review with a Meta-Analysis. Bioengineering. 2024; 11(11):1112. https://doi.org/10.3390/bioengineering11111112
Chicago/Turabian StylePiñar-Lara, Marina, Irene Cortés-Pérez, Ángeles Díaz-Fernández, María de Alharilla Montilla-Ibáñez, Ana Sedeño-Vidal, and Esteban Obrero-Gaitán. 2024. "Virtual Reality-Based Therapy Can Enhance Balance and Muscular Endurance in Children and Adolescents with Down Syndrome: A Systematic Review with a Meta-Analysis" Bioengineering 11, no. 11: 1112. https://doi.org/10.3390/bioengineering11111112
APA StylePiñar-Lara, M., Cortés-Pérez, I., Díaz-Fernández, Á., Montilla-Ibáñez, M. d. A., Sedeño-Vidal, A., & Obrero-Gaitán, E. (2024). Virtual Reality-Based Therapy Can Enhance Balance and Muscular Endurance in Children and Adolescents with Down Syndrome: A Systematic Review with a Meta-Analysis. Bioengineering, 11(11), 1112. https://doi.org/10.3390/bioengineering11111112