Puerarin Attenuates the Cytotoxicity Effects of Bisphenol S in HT22 Cells by Regulating the BDNF/TrkB/CREB Signaling Pathway
"> Figure 1
<p>The chemical structures of BPA, BPS, and PUE. (<b>A</b>) BPA; (<b>B</b>) BPS; (<b>C</b>) PUE.</p> "> Figure 2
<p>Cell viability of HT22 cells after treated by PUE and BPS. (<b>A</b>) PUE (<b>B</b>) BPS. Data are expressed as <math display="inline"><semantics> <mrow> <mover accent="true"> <mrow> <mi>X</mi> </mrow> <mo>¯</mo> </mover> </mrow> </semantics></math> ± SD; *: <span class="html-italic">p</span> < 0.05, compared to control group.</p> "> Figure 3
<p>BPS induces oxidative stress in HT22 cells. All data are expressed as X ± SD, <span class="html-italic">n</span> = 3. (<b>A</b>) Microscopic image showing ROS detection, visualized via green fluorescence intensity using the DCFH-DA probe; (<b>B</b>) quantification of ROS using Image J; (<b>C</b>–<b>E</b>) effect of BPS on GSH, MDA, and SOD in HT22 cells. *: <span class="html-italic">p</span> < 0.05, BPS80 group compared to control group; #: <span class="html-italic">p</span> < 0.05 BPS80 group compared to the PUE + BPS group.</p> "> Figure 4
<p>Puerarin ameliorates Bisphenol S-induced apoptosis in HT22 cells. (<b>A</b>) Flow cytometry dot plot of HT22 cells after 24 h of PUE intervention and BPS treatment (red arrows represent apoptotic cells); (<b>B</b>) Quantification of apoptosis rate of each group via FLOW JO. (<b>C</b>) Observation of apoptosis in HT22 cells via Hoechst 33258 staining, red arrows highlighting apoptotic cells; (<b>D</b>) Apoptosis-related protein expression (Bax and Bcl-2); (<b>E</b>) Quantitative results of apoptosis-related proteins. *: <span class="html-italic">p</span> < 0.05, BPS80 group compared to control group; #: <span class="html-italic">p</span> < 0.05, BPS80 group compared to the PUE + BPS group.</p> "> Figure 5
<p>PUE reduces BPS effect on synaptic plasticity in HT22 cells. Data were expressed as X ± SD, n = 3. (<b>A</b>–<b>C</b>) mRNA levels of PSD95, SYP, and SYN1. (<b>D</b>–<b>F</b>) protein levels of PSD95, SYP, and SYN1, respectively. (<b>G</b>) Representative Western blot of PSD95, SYP, and SYN1. *: <span class="html-italic">p</span> < 0.05 between the BPS treatment group and the control group; #: <span class="html-italic">p</span> < 0.05 compared to the PUE + BPS group.</p> "> Figure 6
<p>BPS and PUE effect on BDNF-TrkB-CREB signaling pathway. Data are expressed as X ± SD, n = 3. (<b>A</b>–<b>C</b>) mRNA levels of BDNF, CREB and TrkB. (<b>D</b>–<b>F</b>) protein levels of BDNF, CREB and TrkB, respectively. (<b>G</b>) Representative Western blot of BDNF, CREB and TrkB. *: <span class="html-italic">p</span> < 0.05 between the BPS treatment group and the control group; #: <span class="html-italic">p</span> < 0.05 compared to the PUE + BPS group.</p> ">
Abstract
:1. Introduction
2. Material and Methods
2.1. Cell Culture and Treatment
2.2. Cell Vitality Assay
2.3. Reactive Oxygen Species Assay
2.4. Determination of Oxidative Stress Index
2.5. Hoechst 33258 Staining
2.6. Flow Cytometry Analysis
2.7. Real-Time Polymerase Chain Reaction
2.8. Western Blotting (WB)
2.9. Statistical Analysis
3. Results
3.1. Effects of Bisphenol S and Puerarin on HT22 Cell Viability
3.2. Puerarin Alleviates Bisphenol S-Induced Oxidative Stress in HT22 Cells
3.3. Puerarin Ameliorates Bisphenol S-Induced Apoptosis in HT22 Cells
3.4. Puerarin Alleviates Bisphenol S-Downregulated Synaptic Associated Protein in HT22 Cells
3.5. Puerarin Alleviates Bisphenol S-Downregulated BDNF, CREB, and TrkB in HT22 Cells
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, J.; Hong, X.; Liu, W.; Zhang, L.; Yan, S.; Li, Z.; Zha, J. Comprehensive assessment of the safety of bisphenol A and its analogs based on multi-toxicity tests in vitro. J. Hazard. Mater. 2024, 486, 136983. [Google Scholar] [CrossRef] [PubMed]
- Liao, C.; Liu, F.; Guo, Y.; Moon, H.-B.; Nakata, H.; Wu, Q.; Kannan, K. Occurrence of eight bisphenol analogues in indoor dust from the United States and several Asian countries: Implications for human exposure. Environ. Sci. Technol. 2012, 46, 9138–9145. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.-H.; Zhang, X.-M.; Wang, F.; Gao, C.-J.; Chen, D.; Palumbo, J.R.; Guo, Y.; Zeng, E.Y. Occurrence of bisphenol S in the environment and implications for human exposure: A short review. Sci. Total Environ. 2018, 615, 87–98. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhang, Y.; Li, J.; Yang, M. Occurrence and exposure assessment of bisphenol analogues in source water and drinking water in China. Sci. Total Environ. 2019, 655, 607–613. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.Y.; Ike, M.; Fujita, M. Acute toxicity, mutagenicity, and estrogenicity of bisphenol-A and other bisphenols. Environ. Toxicol. 2002, 17, 80–86. [Google Scholar] [CrossRef]
- Jiang, Y.; Li, J.; Xu, S.; Zhou, Y.; Zhao, H.; Li, Y.; Xiong, C.; Sun, X.; Liu, H.; Liu, W.; et al. Prenatal exposure to bisphenol A and its alternatives and child neurodevelopment at 2 years. J. Hazard. Mater. 2020, 388, 121774. [Google Scholar] [CrossRef]
- Wang, Y.-X.; Dai, W.; Li, Y.-Z.; Wu, Z.-Y.; Kan, Y.-Q.; Zeng, H.-C.; He, Q.-Z. Bisphenol S induces oxidative stress-mediated impairment of testosterone synthesis by inhibiting the Nrf2/HO-1 signaling pathway. J. Biochem. Mol. Toxicol. 2023, 37, e23273. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.-Y.; Luo, L.; Kan, Y.-Q.; Qin, M.-L.; Li, H.-T.; He, Q.-Z.; Zeng, H.-C. Puerarin Prevents Bisphenol S Induced Lipid Accumulation by Reducing Liver Lipid Synthesis and Promoting Lipid Metabolism in C57BL/6J Mice. Toxics 2023, 11, 736. [Google Scholar] [CrossRef]
- Li, Y.-Z.; Wu, Z.-Y.; Zhu, B.-Q.; Wang, Y.-X.; Kan, Y.-Q.; Zeng, H.-C. The BDNF-TrkB-CREB Signalling Pathway Is Involved in Bisphenol S-Induced Neurotoxicity in Male Mice by Regulating Methylation. Toxics 2022, 10, 413. [Google Scholar] [CrossRef]
- Wang, C.; He, J.; Xu, T.; Han, H.; Zhu, Z.; Meng, L.; Pang, Q.; Fan, R. Bisphenol A(BPA), BPS and BPB-induced oxidative stress and apoptosis mediated by mitochondria in human neuroblastoma cell lines. Ecotoxicol. Environ. Saf. 2021, 207, 111299. [Google Scholar] [CrossRef] [PubMed]
- Harnett, K.G.; Chin, A.; Schuh, S.M. BPA and BPA alternatives BPS, BPAF, and TMBPF, induce cytotoxicity and apoptosis in rat and human stem cells. Ecotoxicol. Environ. Saf. 2021, 216, 112210. [Google Scholar] [CrossRef]
- Tiwari, S.; Phoolmala; Goyal, S.; Yadav, R.K.; Chaturvedi, R.K. Bisphenol-F and Bisphenol-S (BPF and BPS) Impair the Stemness of Neural Stem Cells and Neuronal Fate Decision in the Hippocampus Leading to Cognitive Dysfunctions. Mol. Neurobiol. 2024, 61, 9347–9368. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.; Liu, Y.; Fang, M.-S.; Li, Y.; Li, W.; Mahaman, Y.A.R.; Zeng, K.; Xia, Y.; Ke, D.; Liu, R.; et al. ω-3PUFAs Improve Cognitive Impairments Through Ser133 Phosphorylation of CREB Upregulating BDNF/TrkB Signal in Schizophrenia. Neurotherapeutics 2020, 17, 1271–1286. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.; Chen, H.; Wang, T.; Su, H.; Li, J.; He, Y.; Su, S. Electroacupuncture promotes synaptic plasticity in rats with chronic inflammatory pain-related depression by upregulating BDNF/TrkB/CREB signaling pathway. Brain Behav. 2023, 13, e3310. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Yang, W.; Yan, X.; Zhou, X.; Song, X.; Liu, C.; Zhang, Y.; Li, J. Folic acid mitigates the developmental and neurotoxic effects of bisphenol A in zebrafish by inhibiting the oxidative stress/JNK signaling pathway. Ecotoxicol. Environ. Saf. 2024, 288, 117363. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.-X.; Zhang, H.; Peng, C. Puerarin: A review of pharmacological effects. Phytother. Res. 2014, 28, 961–975. [Google Scholar] [CrossRef] [PubMed]
- Lai, Y.; Yang, N.; Shi, D.; Ma, X.; Huang, Y.; Lu, J.; Zhang, X.; Zhou, H.; Gao, W.; Mao, C.; et al. Puerarin enhances TFEB-mediated autophagy and attenuates ROS-induced pyroptosis after ischemic injury of random-pattern skin flaps. Eur. J. Pharmacol. 2024, 974, 176621. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Wu, X.; Zhang, X.; Li, X.; Lin, X.; Huang, Y.; Wu, J. Puerarin protects against H2O2-induced apoptosis of HTR-8/SVneo cells by regulating the miR-20a-5p/VEGFA/Akt axis. Placenta 2022, 126, 202–208. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Hu, Z.; Wang, J.; Liao, Y.; Shu, L. Puerarin alleviates depressive-like behaviors in high-fat diet-induced diabetic mice via modulating hippocampal GLP-1R/BDNF/TrkB signaling. Nutr. Neurosci. 2023, 26, 997–1010. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Yao, M.; Qi, J.; Song, R.; Wang, L.; Li, J.; Zhou, X.; Chang, D.; Huang, Q.; Li, L.; et al. Puerarin inhibited oxidative stress and alleviated cerebral ischemia-reperfusion injury through PI3K/Akt/Nrf2 signaling pathway. Front. Pharmacol. 2023, 14, 1134380. [Google Scholar] [CrossRef] [PubMed]
- Naderi, M.; Kwong, R.W.M. A comprehensive review of the neurobehavioral effects of bisphenol S and the mechanisms of action: New insights from in vitro and in vivo models. Environ. Int. 2020, 145, 106078. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Chen, K.; Zheng, F.; Xu, S.; Li, Y.; Wang, Y.; Ni, H.; Wang, F.; Cui, Z.; Qin, Y.; et al. Low-dose BPA and its substitute BPS promote ovarian cancer cell stemness via a non-canonical PINK1/p53 mitophagic signaling. J. Hazard. Mater. 2023, 452, 131288. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Xu, C.; Xu, J.; Yang, C.; Kong, W.; Xiao, Z.; Chen, X.; Liu, Q.; Weng, Z.; Wang, J.; et al. PPARα Senses Bisphenol S to Trigger EP300-Mediated Autophagy Blockage and Hepatic Steatosis. Environ. Sci. Technol. 2023, 57, 21581–21592. [Google Scholar] [CrossRef]
- Zhao, M.; Xie, Y.; Xu, X.; Zhang, Z.; Shen, C.; Chen, X.; Zhu, B.; Yang, L.; Zhou, B. Reproductive and transgenerational toxicity of bisphenol S exposure in pregnant rats: Insights into hormonal imbalance and steroid biosynthesis pathway disruption. Sci. Total Environ. 2024, 927, 172379. [Google Scholar] [CrossRef] [PubMed]
- Meng, L.; Gui, S.; Ouyang, Z.; Wu, Y.; Zhuang, Y.; Pang, Q.; Fan, R. Low-dose bisphenols exposure sex-specifically induces neurodevelopmental toxicity in juvenile rats and the antagonism of EGCG. J. Hazard. Mater. 2023, 459, 132074. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yang, X.; Ge, X.; Zhang, F. Puerarin attenuates neurological deficits via Bcl-2/Bax/cleaved caspase-3 and Sirt3/SOD2 apoptotic pathways in subarachnoid hemorrhage mice. Biomed. Pharmacother. 2019, 109, 726–733. [Google Scholar] [CrossRef] [PubMed]
- Wu, K.-J.; Lien, J.-C.; Wu, C.-R. Puerarin Attenuates Cycloheximide-Induced Oxidative Damage and Memory-Consolidation Impairment in Rats. J. Integr. Neurosci. 2024, 23, 17. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Xie, N.; Li, L.; Zou, Y.; Zhang, X.; Dong, M. Puerarin alleviates cognitive impairment and oxidative stress in APP/PS1 transgenic mice. Int. J. Neuropsychopharmacol. 2014, 17, 635–644. [Google Scholar] [CrossRef]
- Salahinejad, A.; Attaran, A.; Naderi, M.; Meuthen, D.; Niyogi, S.; Chivers, D.P. Chronic exposure to bisphenol S induces oxidative stress, abnormal anxiety, and fear responses in adult zebrafish (Danio rerio). Sci. Total Environ. 2021, 750, 141633. [Google Scholar] [CrossRef] [PubMed]
- Cheung, E.C.; Vousden, K.H. The role of ROS in tumour development and progression. Nat. Rev. Cancer 2022, 22, 280–297. [Google Scholar] [CrossRef]
- He, Q.-Z.; Zhu, B.-Q.; Xu, X.-N.; Zeng, H.-C. Role of the BDNF/TrkB/CREB signaling pathway in the cytotoxicity of bisphenol S in SK-N-SH cells. J. Biochem. Mol. Toxicol. 2021, 35, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Huang, C.; Li, L.; Pang, Q.; Wang, C.; Fan, R. In vitro and in silico assessment of GPER-dependent neurocytotoxicity of emerging bisphenols. Sci. Total Environ. 2023, 862, 160762. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Wu, H.; Hu, Y.; Zhou, C.; Wu, J.; Wu, Y.; Wang, H.; Lenahan, C.; Huang, L.; Nie, S.; et al. Puerarin Attenuates Oxidative Stress and Ferroptosis via AMPK/PGC1α/Nrf2 Pathway after Subarachnoid Hemorrhage in Rats. Antioxidants 2022, 11, 1259. [Google Scholar] [CrossRef]
- Hu, F.; Li, T.; Gong, H.; Chen, Z.; Jin, Y.; Xu, G.; Wang, M. Bisphenol A Impairs Synaptic Plasticity by Both Pre- and Postsynaptic Mechanisms. Adv. Sci. 2017, 4, 1600493. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Yin, N.; Liang, S.; Yang, R.; Liu, S.; Lu, Y.; Jiang, L.; Zhou, Q.; Jiang, G.; Faiola, F. Bisphenol A and several derivatives exert neural toxicity in human neuron-like cells by decreasing neurite length. Food Chem. Toxicol. 2020, 135, 111015. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Han, Q.; Dong, B.; Lin, H.; Jiang, Y.; Zhang, X.; Chen, H.; Yu, Y. PPARα contributes to the therapeutic effect of hydrogen gas against sepsis-associated encephalopathy with the regulation to the CREB-BDNF signaling pathway and hippocampal neuron plasticity-related gene expression. Brain Res. Bull. 2022, 184, 56–67. [Google Scholar] [CrossRef]
- Li, N.; Liu, G.T. The novel squamosamide derivative FLZ enhances BDNF/TrkB/CREB signaling and inhibits neuronal apoptosis in APP/PS1 mice. Acta Pharmacol. Sin. 2010, 31, 265–272. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.S.; Kavalali, E.T.; Monteggia, L.M. BDNF signaling in context: From synaptic regulation to psychiatric disorders. Cell 2022, 185, 62–76. [Google Scholar] [CrossRef]
Genes | Primer | Sequences (5′–3′) |
---|---|---|
BDNF | Forward | GCCCATGAAAGAAGTAAACGTCC |
Reverse | AGTGTCAGCCAGTGATGTCGTC | |
CREB | Forward | GGAGCAGACAACAGCAGAGTG |
Reverse | GGCATGGATACCTGGGCTAATGTG | |
TrkB | Forward | CGCTTCAGTGGTTCTACA |
Reverse | CCTTCCCATACTCGTTCTT | |
PSD95 | Forward | TCACATTGGAAAGGGGTAA |
Reverse | AAGATGGATGGGTCGTCA | |
SYP | Forward | CTTCGGCGACTTCTACTACTTT |
Reverse | GGAGCGGATGGATGTTTG | |
SYN1 | Forward | CTTCTCGTCGCTGTCTAA |
Reverse | ATGGATCTTCTTCCCTTT | |
GAPDH | Forward | CCTCGTCCC GTAGACAAAATG |
Reverse | TGAGGTCAATGAAGG GGTCGT |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, M.; Guo, X.; Xu, N.; Su, Y.; Pan, M.; Zhang, Z.; Zeng, H. Puerarin Attenuates the Cytotoxicity Effects of Bisphenol S in HT22 Cells by Regulating the BDNF/TrkB/CREB Signaling Pathway. Toxics 2025, 13, 162. https://doi.org/10.3390/toxics13030162
Qin M, Guo X, Xu N, Su Y, Pan M, Zhang Z, Zeng H. Puerarin Attenuates the Cytotoxicity Effects of Bisphenol S in HT22 Cells by Regulating the BDNF/TrkB/CREB Signaling Pathway. Toxics. 2025; 13(3):162. https://doi.org/10.3390/toxics13030162
Chicago/Turabian StyleQin, Meilin, Xinxin Guo, Nuo Xu, Yan Su, Mengfen Pan, Zhengbao Zhang, and Huaicai Zeng. 2025. "Puerarin Attenuates the Cytotoxicity Effects of Bisphenol S in HT22 Cells by Regulating the BDNF/TrkB/CREB Signaling Pathway" Toxics 13, no. 3: 162. https://doi.org/10.3390/toxics13030162
APA StyleQin, M., Guo, X., Xu, N., Su, Y., Pan, M., Zhang, Z., & Zeng, H. (2025). Puerarin Attenuates the Cytotoxicity Effects of Bisphenol S in HT22 Cells by Regulating the BDNF/TrkB/CREB Signaling Pathway. Toxics, 13(3), 162. https://doi.org/10.3390/toxics13030162