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Abstract: A critical meta-analysis of the past decade’s investigations was carried out with the aim
of assessing the use of plant-based techniques for soil remediation. Potentially toxic element (PTE)
contaminated soils were selected since these contaminants are considered hazardous and have long-
term effects. Furthermore, energy, aromatic, and medicinal plants were studied as their high-value
products seem to be affected by PTEs’ existence. Lead (Pb), Cu, Cd, Zn, Cr, Co, Ni, Hg, and As
accumulation in different parts of plant species has been investigated using proper indices. Aromatic
plants seem to provide high phytoremediation yields. Increasing toxicity levels and the coexistence
of many metals enhance the accumulation capacity of aromatic plants, even of toxic Cd. In plants
usable as energy sources, antagonistic effects were observed, as the simultaneous presence of Cu and
Cd resulted in lower thermic capacity. Finally, in most of the plants studied, it was observed that the
phytostabilization technique, i.e., the accumulation of metals mainly in the roots of the plants, was
often used, allowing for the aboveground part to be almost completely free of metallic pollutants.
Using plants for remediation was proven to be advantageous within a circular economy model. Such
a process is a promising solution, both economically and environmentally, since it provides a useful
tool for keeping environmental balance and producing safe goods.

Keywords: soil remediation; heavy-metal-polluted soils; phytostabilization; low-cost materials;
eco-friendly methods

1. Introduction
1.1. Mechanisms and Methods of Phytoremediation

Phytoremediation is a technique that uses plants to remove pollutants such as PTEs
from contaminated soils [1]. This method is cost-effective, environmentally friendly, and
important for soil quality, preventing erosion by wind and water, and enriching soils with
organic matter and microorganisms [2,3].

Different plant species have developed different mechanisms and methods to reduce
the levels of potentially toxic elements (PTEs) found either in soil, water, or air [4–6]. For
example, in phytoextraction (or phytoaccumulation), the plant extracts and thus removes
the PTEs from soil [7,8]. Genetically modified species of hyperaccumulator plants have
shown promising results for this mechanism [9,10]. The primary drawback of this method
is its potential toxicity to pollinators, herbivores, and other animal species that come into
contact with these plants [6,8,11].

In phytovolatilization, the plant transforms the PTE in the soil into one of its volatile
forms and releases it into the atmosphere. PTEs such as As, Hg, and Se [12,13] can be
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released by different plant species as a result of the chemical transformation of inorganic to
more volatile organometallic forms; however, this technique is considered controversial
as large amounts of PTEs released into the atmosphere could act as a source of secondary
contamination for the environment [7].

In phytostabilization, the plant makes the PTEs in the soil less bioavailable [14,15]; the
main aim of phytostabilization is to decrease the soil’s metal toxicity and bioavailability to
prevent metal from entering the food chain. The best way to apply phytostabilization in
the field is to use native plants or combinations of different species [16–18].

In phytofiltration, the plant is grown in hydroponic conditions and absorbs (or adsorbs)
PTE ions from the water solution in which it is growing. It can be used as an efficient way
to remove PTEs such as As, Cd, and Hg [19–21]; however, the lack of suitable plants which
can be used for this technology constitutes a major issue [22,23].

1.2. Plant Categories Used for Phytoremediation Purposes

Plants can absorb and adsorb metals through root and foliar systems, preventing
further transport and reducing their adverse effects [4,24]. However, the main drawback of
this process relies on the possibility of a future use of the contaminated biomass generated
from phytoremediation [3] owing to the possibility that PTEs can enter the food chain
and lead to dangerous consequences for human health [5]. For instance, using food crops
such as grains, legumes, and vegetables for phytoremediation may not be environmentally
safe [6,25]. Therefore, the scientific community’s interest turned to providing solutions for
phytoremediation with a minor impact on the food chain and human health [5].

The cultivation of non-edible plants with high economic value in industry can be
a feasible strategy to use and remediate contaminated soils with PTEs [26–28], allow-
ing for environmentally safe and cost-effective phytoremediation [6]. In this regard, the
use of ornamental plants for phytoremediation provides environmental and economic
benefits [6,29,30]. Industrial plants can also reduce the risk of human exposure to PTEs
through the food chain [26,31,32]. Utilizing plants as energy sources [12,33,34] can lead to
the production of biomass for bioenergy and the fiber industry, and other valuable applica-
tions including the decontamination of soil [35–37]. Bioenergy production contributes to
green energy production in contaminated soils in which food crops cannot grow [34,38].
Globally, plant biomass is a significant renewable energy source, and national and regional
energy policies now place more emphasis on it [39,40] as it plays a progressively vital role in
Europe’s energy stability [41]. The utilization of biomass energy offers a promising solution
to mitigate greenhouse gas emissions and enhance environmental conditions [42]. It is
projected that by 2050, bioenergy has the potential to contribute up to 15% of the world’s
primary energy supply. Moreover, there is a vast expanse of approximately 1.4 billion
hectares worldwide that has been identified as suitable for bioenergy production [34].

Another option is the phytoremediation of contaminated soils with medicinal and
aromatic plants grown mainly for their essential oils, reducing the risk of contamina-
tion in the food chain as essential oils do not contain PTEs [6,33,43]. Growing aro-
matic plants for phytoremediation will facilitate restoring the soil and provide economic
benefits as essential oils have great value as insect repellents and can be used in per-
fumery, aromatherapy, food processing, detergents, soaps, and cosmetic industries [44].
Moreover, there are no significant alterations in the essential oil composition that may
impair marketability [45], and cultivation in PTE-contaminated soils may lead to an en-
hanced essential oil yield [25]. The most promising aromatic plant groups found for phy-
toremediation are Poaceae (e.g., Arundo donax, Chrysopogon zizanioides, Cynodon dactylon,
Panicum virgatum, and Phalaris arundinacea), Asteraceae (e.g., Cynara cardunculus and
Silybum marianum), and Lamiaceae (e.g., Lavandula spp., Mentha spp., Ocimum basilicum,
Ocimum gratissimum, and Rosmarinus officinalis). These are high-value economic crops that
provide financial benefits by being grown in polluted regions rather than food crops [33,44].
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1.3. Plant Selection for Phytoremediation

The phytoremediation process is significantly affected by the selected plant [1,15,46]
as the plants’ mechanisms of element uptake and homeostasis are highly dependent on
plant species and environmental factors [47–49]. Generally, PTEs cause toxicity to plants,
either directly or indirectly, by generating an increased quantity of reactive oxygen species
(ROS). ROS, like superoxide radicals (O2), hydroxyl radicals (OH), and hydrogen peroxide
(H2O2), are produced as byproducts associated with membrane transport activities and
other metabolic pathways [50–53] (Figure 1).
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Plants have antioxidant defense systems to protect them from oxidative damage
caused by ROS, and detoxifying activities are very complicated and compartmentalized
across plant cells [15,28,50]. Physiological, biochemical, and molecular processes play an
essential role in stress tolerance, especially the antioxidant enzymes ascorbate peroxidase
(APX), superoxide dismutase (SOD) [51], catalase (CAT), peroxidase (POX) [8], guaiacol
peroxidase (POD), and glutathione S-transferase (GPX) [30,44], followed by non-enzymatic
antioxidants, including glutathione, polyphenols, flavonoids, carotenoids, ascorbic acid,
tocopherols, and organic acids [44,54].

In this regard, phytoremediation requires plant species that are contaminant-tolerant
and can also be adapted to grow in specific environmental conditions [54]. Plants are
classified as indicators, accumulators, or excluders based on their function and reac-
tivity against PTEs [44]. Plants that can take up large amounts of metals are called
hyperaccumulators [55]. A common strategy for phytoremediation involves the use of
hyperaccumulating plants capable of removing, stabilizing, or immobilizing PTEs in the
soil [56]. However, there are restrictions in the selection of plants since numerous hyperac-
cumulators with a strong metal resistance and a strong acquisition of metal pollutants are
much less efficient in their independent commercial operation [29]. In general, hyperaccu-
mulating plants used for remediation can accumulate 100-fold higher metal concentrations
than non-accumulator plants under the same growing conditions [57]. However, some
non-accumulators can extract a comparative quantity of pollutants as hyperaccumulators
owing to their greater biomass production [2]. Potential plants for phytoremediation must
have the capability to remove PTEs from contaminated soil and have tolerance to PTE
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toxicity; they should also have rapid growth with deep and extensive root systems, produce
high biomass, have excellent transpiration, and be easy to establish [2,36,58]. The suitability
of the plant species also depends on crop requirements such as nutrients, water, average
temperature [46], and, ideally, low input needs [38] (Figure 2). Finally, the plant species
should be able to grow in the soil and climatic conditions of contaminated areas, and the
use of native species is recommended to achieve optimum growth [59]. Therefore, the
aim of this study was to highlight the ability of energy, aromatic, and medicinal plants
to accumulate PTEs in their plant tissues and to use them for the phytoremediation of
contaminated soils, reducing the risk of PTEs entering the food chain.
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2. Materials and Methods
2.1. Methodology for Data Collection

In order to obtain useful data to be used in the following work, a critical meta-analysis
of the available research papers regarding the phytoremediation of PTEs-polluted soils
was carried out. Various online libraries and search engines, such as Google Scholar,
Scopus, and ScienceDirect, were used. As a first step, papers regarding plant species
suitable for phytoremediation were searched. Subsequentially, phytoremediation data
for each plant species were searched on the internet using the Latin name of the plant
followed by the word phytoremediation (e.g., Silybum marianum phytoremediation) for the
period 2014–2024 (Figure 3). Therefore, the species which could give the highest amount
of experimental data could be considered for this meta-analysis work. In addition to this,
general information such as native country of the plant, maximum height, pH, and soil
tolerance, as well as life cycle duration, were collected for each considered species. All data
about PTEs absorption were standardized in mg of metal per kg of plant dry matter, and
the origin of the pollution was specified (natural pollution occurring in the soil or artificial
exposure to PTEs).
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2.2. PTEs Determination

The process of establishing PTEs concentrations involves two steps: extraction using
an appropriate solution or a mixture of extractants followed by the quantitative determina-
tion of the metals. Thereafter, it is necessary to identify the actual objectives of the metal
quantification, and this will depend entirely on the extraction medium used. It is well
known that by using diethylene triamine penta-acetic acid (DTPA) solution, the potentially
available concentrations of the microelements Fe, Cu, Mn, and Zn in the plants may be
determined [60]. Furthermore, it is evident that this metal concentration is proportional
to the soil’s capacity to supply plants with a fraction of the total amount of metals in the
soil. However, although DTPA solution extraction is widely used by soil laboratories for all
soil types and for all metals, its results present analytical limitations, mainly due to the pH
of the solution, which is set at 7.3 [61]. Moreover, the estimated available concentration of
metals cannot be generalized for each type of plant for all climatic growing conditions as it
depends on critical parameters, including the plant species, the growth stage, and the soil
and climatic conditions [62].

The majority of the papers published on this topic focus on total metal concentrations,
despite significant scaling and variability. For 44% of the papers reporting on total metal
concentrations, extraction is achieved by using mineralization in aqua regia (a mixture of
1:3 HNO3:HCl), but this, explicitly, cannot extract the total metal concentration. This con-
centration is referred to as “pseudo-total”, which corresponds to the actual concentration,
and only 16% of the works explicitly mention this term. In cases where the total amount of
PTEs is to be extracted, a mixture of four strong acids (51% of the published papers referring
to total metal concentration) is most often used, consisting of aqua regia, enriched with
concentrated HClO4 (mainly to destroy the organic matter), and c. HBr (mainly to obtain
the fraction of metals bound within the silicate minerals in the soil samples). A very small
proportion (3%) of the published studies indicate that the solid residue is obtained after
dry combustion with, e.g., HNO3 or, e.g., alkali solution (NaOH). Finally, a small number
of published studies also point to the use of H2O2 to degrade the organic matter of soil and
to recover the metals bound within it, frequently forming complex compounds (2%).

Except these cases, combinations of these have appeared as investigations have iden-
tified both available pseudo-total and total concentrations. Finally, a small category of
articles (9%), refers to the determination of metal fractionation using BCR-based methods
by referring to, and discriminating among, the concentration that is water-soluble and ex-
changeable with the soil solid surface (BCR1), the amount bound to Fe/Mn oxides (BCR2),
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the soil organic matter (BCR3), or the insoluble, undissolved, or residual fraction of the soil
samples (BCR4) [63].

Regarding the determination of concentrations in plants, the procedure involves
combustion and extraction with an acid solution, such as HCl (56% of published articles)
or HNO3 (34%). However, there are cases where aqua regia is used [15,28]. Many of
the evaluated papers note that the metals are determined in different plant parts, as
Papadimou et al. [27] stated. The plant is dissected, and metals are determined separately
both underground (root) and aboveground (shoots, leaves, flowers, and seeds).

3. Results
3.1. Overview of Selected Published Studies

All plant species and studies that are included in the meta-analysis are presented in
Table 1.

Table 1. Published studies related to energy, aromatic, and medicinal plants used for phytoremedia-
tion purposes.

Plant Species PTEs Countries References

Aloe vera Pb, Cu, Cd, Zn, Cr, Ni, Hg Iran, Pakistan, China [13,52,64,65]

Arundo donax Pb, Cu, Cd, Zn, Cr, Ni, Hg, As Algeria, Portugal, Italy, India [12,36,48,55,66]

Cannabis sativa Pb, Cu, Cd, Zn, Cr, Co, Ni India, Belgium, Poland,
Italy, Croatia [39,40,49,67–73]

Chrysopogon zizanioides Pb, Cu, Cd, Zn, Cr, Co, Ni, As China, Iran, Malesia, South Africa [8,10,13,47,74]

Cynara cardunculus Pb, Cu, Cd, Zn, Cr, Ni, As Italy, Spain [5,38,46,75]

Cynodon dactylon Pb, Cu, Cd, Zn, Cr, Ni Nigeria, India, China, Pakistan [76–79]

Cyperus rotundus Pb, Cu, Cd, Zn, Cr, Co, Ni Nigeria, India [76,80–83]

Eucalyptus spp. Cu, Cd, Zn, Cr, Hg, As Morocco, China, Italy, Portugal [2,53,84–86]

Hibiscus rosa-sinesis Pb, Cd, Cr, Ni Egypt [29,87]

Jatropha curcas Pb, Cu, Cd, Zn, Cr, Ni, Hg Colombia, Taiwan, Spain,
Nigeria, India [3,57,88–90]

Lavandula spp. Pb, Cu, Cd, Zn, Cr, Ni Bulgaria, Iran, China, Italy [6,14,30,54,86]

Linum spp. Pb, Cu, Cd, Ni India, China, Pakistan [1,8,55,91]

Mentha spp. Pb, Cu, Cd, Zn, Ni, Hg India, Brazil, China, Iran, Pakistan [50,56,66,92,93]

Ocimum basilicum Pb, Cd, Zn Bulgaria, USA, Iran, Egypt [25,45,94,95]

Ocimum gratissimum Pb, Cu, Cd, Zn, Ni, As Thailand, Nigeria, India, China [4,43,96,97]

Panicum virgatum Pb, Cu, Cd, Zn, Cr, Co India, China, USA [9,58,67,98]

Phalaris arundinacea Pb, Cu, Cd, Zn, Cr, Co, Ni Poland, China, Czech Republic [37,99–101]

Populus spp. Pb, Cu, Cd, Zn, Cr, Co, Ni, As Egypt, Czech Republic,
Pakistan, Italy [102–106]

Ricinus communis Pb, Cu, Cd, Zn, Cr, Co, As Oman, Pakistan, India [67,77,107–109]

Rosmarinus officinalis Pb, Cu, Cd, Zn, As Iran, France, Spain [110–114]

Salix spp. Pb, Cu, Cd, Zn, Cr, Ni, As Poland, Czech Republic, Serbia,
China, Egypt [37,103,115–117]

Silybum marianum Pb, Cu, Cd, Zn Greece, Iran, Bulgaria, Ukraine [15,27,118–121]
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In Figure 4, the number of published surveys distributed according to country are
displayed. Most studies were conducted in India, followed by China, Italy, and Iran.
Excluding Italy, the percentage of European countries involved ranged from 1 to 3.9%.
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The majority of studies include a quantification of the highly toxic element Cd (Table 1),
while a particularly high proportion of studies deal with the discrimination of metal
concentrations in different parts of the plant; they determine the metal concentrations and
report the results separately for the underground and aboveground parts of the plant. The
percentages in the reported survey involving the phytoremediation of polluted soils with
varying metal element levels are summarized in Figure 5. Only one metal has been the
subject of more than 40% of surveys.
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3.2. Pb Accumulation in Plant Parts

Figure 6 presents the average Pb concentration in the different parts of the studied plants,
as well as the average total Pb metal concentration per plant species. Cynara cardunculus
appears to have the highest average total Pb concentration compared to the other species,
reaching 1741.44 mg kg−1 (dw), followed by Lavandula spp., with 985.15 mg kg−1 (dw).
On the other hand, the lowest average total Pb concentrations were observed in
Ocimum gratissimum, Aloe vera, Cannabis sativa, and Phalaris arundinacea species, with
2.01, 5.75, 6.54 and 9.23 mg kg−1 (dw), respectively.
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In the root systems of the studied plants, extremely high average Pb concentrations
were identified in Cynara cardunculus (2613.50 mg kg−1 dw), while elevated concentra-
tions were also observed in Panicum virgatum, Lavandula spp., and Rosmarinus officinalis,
with 634.41, 331.37 and 202.10 mg kg−1 (dw), respectively. Aloe vera showed the lowest
concentration, with a mean Pb concentration of 4.70 mg kg−1 (dw) in the root system.

By comparing the average Pb concentration in the plant shoots, the highest concentra-
tion was observed in Lavandula spp. (1638.93 mg kg−1 dw), followed by Silybum marianum
and Rosmarinus officinalis, with 487.95 and 122.75 mg kg−1 (dw), respectively. Cannabis sativa,
Phalaris arundinacea, Aloe vera, Cynara cardunculus, and Ricinus communis recorded the low-
est mean Pb concentrations in their shoots, i.e., at less than 10 mg kg−1 (dw).

Finally, in plant leaves, the maximum mean Pb concentration was observed in
Lavandula spp. (2894.65 mg kg−1 dw), followed by Cynara cardunculus and Ocimum basilicum,
with 432.23 and 108.36 mg kg−1 (dw), respectively. The average Pb concentration
in the leaves of all other examined plant species was below 10 mg kg−1 (dw), with
Cynodon dactylon and Ricinus communis species exhibiting the lowest values at
0.78 and 0.38 mg kg−1 (dw), respectively. According to the results, Cynara cardunculus
and Lavandula spp. appear to be significant Pb accumulators, while in species like
Ocimum gratissimum, Aloe vera, and Cannabis sativa, the lowest Pb concentrations
were observed.

3.3. Cu Accumulation in Plant Parts

Figure 7 presents the average Cu concentration in the different parts of the
studied plants, as well as the average Cu total concentration per plant species.
Linum spp. had the highest mean total Cu concentration among the studied species, with
323.75 mg kg−1 (dw), followed by Arundo donax, with 247.10 mg kg−1 (dw). In all other
plant species, the average Cu total concentration was less than 60 mg kg−1 (dw).
Chrysopogon zizanioides and Phalaris arundinacea had the lowest concentrations at
9.50 mg kg−1 (dw) and 9.46 mg kg−1 (dw), respectively.
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In both the root system and shoot of Linum spp., exceptionally high mean Cu concen-
trations, i.e., exceeding 300 mg kg−1 (dw), were observed. An elevated average Cu concen-
tration was also observed in the root system of Cynara cardunculus (181.10 mg kg−1 dw).
The other species had concentrations below 70 mg kg−1 (dw), with the Lavandula spp. and
Phalaris arundinacea root systems exhibiting the lowest values at 7.90 and 7.40 mg kg−1 (dw),
respectively. The average Cu level in the shoots of all the plants tested, except for Linus
spp., was less than 40 mg kg−1 (dw). Eucalyptus spp. and Chrysopogon zizanioides had the
lowest levels, at 6.75 and 4.40 mg kg−1 (dw), respectively.

Finally, Salix spp. had the highest mean Cu concentration in leaves, with
23.36 mg kg−1 (dw), followed by Aloe vera and Lavandula spp., with 17.25 and
17.00 mg kg−1 (dw), respectively. Eucalyptus spp. leaves showed the lowest concen-
tration, with 0.25 mg kg−1 (dw). According to the results, Linum spp. and Arundo donax
appear to be significant Cu accumulators, while in species like Chrysopogon zizanioides and
Phalaris arundinacea, the lowest Cu concentrations were observed.

3.4. Cd Accumulation in Plant Parts

Figure 8 presents the average Cd concentration in plant tissues, highlighting significant
differences across species. Regarding the total average Cd, Eucalyptus spp. leads with an
exceptionally high concentration (4323.59 mg kg−1 dw), followed by Ricinus communis
and Arundo donax, with 701.50 and 486.23 mg kg−1 dw, respectively. On the contrary, a
very low total average Cd concentration (<5 mg kg−1 dw) was detected in species like
Populus spp., Ocimum basilicum, Cannabis sativa, Hibiscus rosa-sinesis, Mentha spp., Aloe vera,
Phalaris arundinacea, Lavandula spp., and Linum spp.

Cd concentrations in the plant root system are similarly dominated by Eucalyptus spp.
(6173.35 mg kg−1 dw), highlighting its significant Cd uptake from soil. Elevated Cd
concentrations, ranging from 100 to 500 mg kg−1 (dw), were also detected in the roots of
Arundo donax, Mentha spp., Ricinus communis, Ocimum gratissimum, Panicum virgatum, and
Cyperus rotundus, while in species like Aloe vera, Cannabis sativa, Phalaris arundinacea, and
Lavandula spp. Cd, mean root concentration was below 5 mg kg−1 (dw).
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The highest shoot Cd concentration was observed in Eucalyptus spp., with
416.06 mg kg−1 dw, followed by Arundo donax, with 398.50 mg kg−1 (dw). In all other
species examined, the mean Cd shoot concentration was found to be below 150 mg kg−1 (dw),
while Cannabis sativa, Mentha spp., Phalaris arundinacea, and Lavandula spp. had the lowest
mean concentrations (<1 mg kg−1 dw). In plant leaves, the average Cd concentration was
exceptionally high in Ricinus communis (700 mg kg−1 dw).

The lowest concentrations (<1 mg kg−1 dw) were observed in the leaves of Cannabis sativa,
Rosmarinus officinalis, and Phalaris arundinacea. These observations illustrate the differential
ability of plants to accumulate and distribute Cd within their various tissues, which is
crucial for selecting species for phytoremediation purposes. Eucalyptus spp. appears to
possess the highest Cd concentrations, particularly in roots and shoots, indicating its strong
accumulation capacity, while species like Aloe vera, Phalaris arundinacea, and Lavandula spp.
show the lowest Cd concentrations overall, suggesting their limited Cd uptake capability.

3.5. Zn Accumulation in Plant Parts

The data in Figure 9 present the average Zn concentration (mg kg−1 dw) in the stud-
ied plants, revealing significant variability in Zn concentration across different species
and tissues. Cynara cardunculus shows the highest total average Zn concentration at
3538.57 mg kg−1 (dw), followed by Lavandula spp. (1364.65 mg kg−1 dw) and Populus spp.
(536.96 mg kg−1 dw). The lowest total average Zn concentrations (<30 mg kg−1 dw) were
detected in Panicum virgatum, Chrysopogon zizanioides, and Aloe vera.

Similarly, in Cynara cardunculus, Populus spp., and Lavandula spp., the highest mean
Zn root concentrations were observed at 4961.64, 1434.60, and 890.85 mg kg−1 (dw), respec-
tively. Elevated Zn root concentrations were detected in most of the rest species studied,
with the only exception being Eucalyptus spp.at 1.79 mg kg−1 dw.

The highest Zn shoot concentrations were observed once again in Cynara cardunculus
and Lavandula spp. at 2115.49 and 1838.45 (mg kg−1 dw), respectively, while Mentha spp.,
Aloe vera, Panicum virgatum, and Chrysopogon zizanioides had the lowest concentrations
(<40 mg kg−1 dw). There was a profound limitation with respect to the availability of
data on Zn concentration in plant leaves. However, based on the existing data, the highest
concentrations were observed in Lavandula spp., Rosmarinus officinalis, and Populus spp.,
at 1482.30, 301.00, and 299.67 mg kg−1 (dw), respectively, while the lowest concentration
(<1 mg kg−1 dw) was observed in the leaves of Eucalyptus spp.



Toxics 2024, 12, 914 11 of 20
Toxics 2024, 12, x FOR PEER REVIEW 11 of 21 
 

 

 
Figure 9. Average Zn concentration (mg kg−1 dw) in plant tissues. 

Therefore, Cynara cardunculus and Lavandula spp. appear to be significant Zn accu-
mulators, whereas Aloe vera. Panicum virgatum, and Chrysopogon zizanioides were found to 
have minimal Zn concentrations in their tissues. A considerable variation was observed 
across the different species, with plant roots generally showing higher Zn concentrations 
compared to shoots and leaves, suggesting a higher capacity of the roots for Zn uptake 
and accumulation. 

3.6. Cr Accumulation in Plant Parts 
Figure 10 presents the data on the average Cr concentration (mg kg−1 dw) in the stud-

ied plant species. The highest total Cr concentration was detected in Chrysopogon zizani-
oides at 1861.31 mg kg−1 (dw), followed by Lavandula spp., with a notably high concentra-
tion of 830.70 mg kg−1 (dw). In all other species studied, the corresponding concentrations 
were below 120 mg kg−1 (dw), with the lowest concentrations (<10 mg kg−1 dw) observed 
in Populus spp., Cynara cardunculus, Aloe vera, Hibiscus-rosa sinesis, and Salix spp. 

High Cr concentrations were detected in the roots of Chrysopogon zizanioides (1974.61 
mg kg−1 dw), Lavandula spp. (817.50 mg kg−1 dw), Cyperus rotundus (400.00 mg kg−1 dw), 
and Cannabis sativa (107.98 mg kg−1 dw). On the contrary, the lowest concentrations (<5 mg 
kg−1 dw) were observed in Aloe vera, Salix spp., Hibiscus-rosa sinesis, and Eucalyptus spp. 

The highest Cr shoot concentrations were once again detected in Chrysopogon zizani-
oides and Lavandula spp., with 1748.02 and 843.90 mg kg−1 (dw), respectively. In the re-
maining species studied, Cr shoot concentration was below 85 mg kg−1 (dw), while the 
lowest was observed in Populus spp. (0.24 mg kg−1 dw). 

Data availability concerning Cr concentration in plant leaves was limited. However, 
based on the existing data, it is noteworthy that all species were found to have low Cr 
concentrations (<15 mg kg−1 dw) in their leaves. According to the results, Chrysopogon zi-
zanioides and Lavandula spp. appear to be significant Cr accumulators, while in species like 
Salix spp., Hibiscus-rosa sinesis, Aloe vera, Cynara cardunculus, and Populus spp., the lowest 
Cr concentrations were observed. 
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Therefore, Cynara cardunculus and Lavandula spp. appear to be significant Zn accu-
mulators, whereas Aloe vera. Panicum virgatum, and Chrysopogon zizanioides were found to
have minimal Zn concentrations in their tissues. A considerable variation was observed
across the different species, with plant roots generally showing higher Zn concentrations
compared to shoots and leaves, suggesting a higher capacity of the roots for Zn uptake
and accumulation.

3.6. Cr Accumulation in Plant Parts

Figure 10 presents the data on the average Cr concentration (mg kg−1 dw) in the stud-
ied plant species. The highest total Cr concentration was detected in Chrysopogon zizanioides
at 1861.31 mg kg−1 (dw), followed by Lavandula spp., with a notably high concentration of
830.70 mg kg−1 (dw). In all other species studied, the corresponding concentrations were
below 120 mg kg−1 (dw), with the lowest concentrations (<10 mg kg−1 dw) observed in
Populus spp., Cynara cardunculus, Aloe vera, Hibiscus-rosa sinesis, and Salix spp.

High Cr concentrations were detected in the roots of Chrysopogon zizanioides
(1974.61 mg kg−1 dw), Lavandula spp. (817.50 mg kg−1 dw), Cyperus rotundus
(400.00 mg kg−1 dw), and Cannabis sativa (107.98 mg kg−1 dw). On the contrary, the lowest
concentrations (<5 mg kg−1 dw) were observed in Aloe vera, Salix spp., Hibiscus-rosa sinesis,
and Eucalyptus spp.

The highest Cr shoot concentrations were once again detected in Chrysopogon zizanioides
and Lavandula spp., with 1748.02 and 843.90 mg kg−1 (dw), respectively. In the remaining
species studied, Cr shoot concentration was below 85 mg kg−1 (dw), while the lowest was
observed in Populus spp. (0.24 mg kg−1 dw).

Data availability concerning Cr concentration in plant leaves was limited. However,
based on the existing data, it is noteworthy that all species were found to have low Cr concen-
trations (<15 mg kg−1 dw) in their leaves. According to the results, Chrysopogon zizanioides
and Lavandula spp. appear to be significant Cr accumulators, while in species like Salix spp.,
Hibiscus-rosa sinesis, Aloe vera, Cynara cardunculus, and Populus spp., the lowest Cr concen-
trations were observed.
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Figure 10. Average Cr concentration (mg kg−1 dw) in plant tissues.

3.7. Ni Accumulation in Plant Parts

Figure 11 presents the data on the average Ni concentration (mg kg−1 dw) in the
studied plant species. The highest total Ni concentration was observed in Mentha spp.
(720.09 mg kg−1 dw), indicating a strong ability to accumulate Ni, followed by Arundo donax
(176.10 mg kg−1 dw). In contrast, the lower Ni total concentrations (<4 mg kg−1 dw) were
detected in Ocimum gratissimum, Aloe vera, Lavandula spp., Populus spp., Cynara cardunculus,
Chrysopogon zizanioides, and Linum spp.
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Similarly, the highest root Ni concentration was found in Mentha spp.
(700.07 mg kg−1 dw), while elevated concentrations were also detected in Phalaris arundinacea



Toxics 2024, 12, 914 13 of 20

and Cyperus rotundus with 133.00 and 114.50 mg kg−1 (dw), respectively. On the other
hand, the lowest root Ni concentrations (<10 mg kg−1 dw) were found in Lavandula spp.,
Populus spp., Chrysopogon zizanioides, Hibiscus-rosa sinesis, and Aloe vera.

Ni concentration in shoots was once again the highest in Mentha spp. (740.12 mg kg−1 dw),
followed by Cyperus rotundus (68.00 mg kg−1 dw). In contrast, the lowest Ni shoot con-
centrations (<4 mg kg−1 dw) were observed in Populus spp., Chrysopogon zizanioides,
Lavandula spp., Salix spp., and Cynara cardunculus.

Regarding Ni concentration in plant leaves for species where corresponding data
were available, it was below 20 mg kg−1 (dw), with the only exception being Mentha spp.
(273.57 mg kg−1 dw). In summary, Mentha spp. consistently shows high Ni concentrations
in all tissues, indicating a strong capacity for Ni uptake and accumulation. On the other
hand, Aloe vera, Lavandula spp., Populus spp., Cynara cardunculus, and Chrysopogon zizanioides
had the lowest Ni concentrations for most tissues.

3.8. Co Accumulation in Plant Parts

Figure 12 presents the average Co concentration in different parts of the studied plants.
Data are available only for seven species (Cyperus rotundus, Cannabis sativa, Panicum virgatum,
Phalaris arundinacea, Populus spp., Chrysopogon zizanioides, and Ricinus communis).
Cyperus rotundus appears to have the strongest Co accumulation capacity since the concen-
trations detected in all its tissues were by far the highest. In all the remaining species, Co
concentrations in tissues were below 12 mg kg−1 (dw), while the lowest (<2 mg kg−1 dw)
were observed in Chrysopogon zizanioides and Populus spp.
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3.9. Hg Accumulation in Plant Parts

Figure 13 presents the average Hg concentration in different parts of selected plant
species (Mentha spp., Aloe vera, Jatropha curcas, Arundo donax, and Eucalyptus spp.) based
on data availability. Mentha spp. was found to have the highest total Hg concentration in
all its tissues, followed by Aloe vera. Far lower Hg concentrations (<7 mg kg−1 dw) were
observed in the tissues of the remaining species, while the lowest were detected in all parts
of Eucalyptus spp. (0.01 mg kg−1 dw).
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3.10. As Accumulation in Plant Parts

Figure 14 presents the average As concentrations across different plant species
and their tissues. Arundo donax demonstrates the highest total As concentration at
14.80 mg kg−1 (dw), followed by Cynara cardunculus at 7.50 mg kg−1 (dw). All the re-
maining species had total concentrations below 4 mg kg−1 (dw), whereas the lowest
(<1 mg kg−1 dw) were detected in Rosmarinus officinalis, Populus spp., and Ocimum gratissimum.
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In root tissues, Eucalyptus spp. presents a comparable high concentration of
69.17 mg kg−1 (dw), which is significantly higher than the other species, with Cynara cardunculus
following at 30.76 mg kg−1 (dw). The lowest As root concentrations were observed in
Populus spp. and Rosmarinus officinalis, with 1.11 and 1.34 mg kg−1 (dw), respectively.

As concentration in all plants’ shoots, based on existing data, was found
to be below 2.50 mg kg−1 (dw). The higher shoot concentrations, ranging between
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2.00 and 2.50 mg kg−1 (dw), were detected in Cynara cardunculus, Ricinus communis, and
Salix spp.

Finally, considering the limited data availability, the highest As concentration in plant
leaves was observed in Eucalyptus spp. (5.83 mg kg−1 dw), followed by Cynara cardunculus
(1.70 mg kg−1 dw), while in the remaining species, the corresponding concentrations were
found to be below 0.70 mg kg−1 (dw). Therefore, Eucalyptus spp. and Cynara cardunculus ap-
pear to be significant As accumulators, in contrast to Populus spp. and Ocimum gratissimum,
where the lowest As concentrations were observed.

4. Conclusions

A critical meta-analysis of the absorption of PTEs by energy, medicinal, and aromatic
plants described in the literature over the last decade was conducted to draw helpful
conclusions about the possible use of these plants for phytoremediation. Most studies were
conducted in Asian countries, followed by European countries, and mainly involved a
single metal or a combination of metals and metalloids. In total, nine PTEs were studied,
with Cd being the most extensively investigated. The accumulation and distribution of
Pb, Cu, Cd, Zn, Cr, Co, Ni, Hg, and As in different parts of plant species was surveyed,
concluding that the highest concentration of PTEs was observed in the plant roots. Some
species seemed to be more efficient in the accumulation of certain PTEs. Specifically,
Cynara cardunculus and Lavandula spp. may function as Pb accumulators; Linum spp. and
Arundo donax as Cu may function as accumulators, whereas Eucalyptus spp. appears to
have the strongest Cd accumulation; Cynara cardunculus and Lavandula spp. may func-
tion as Zn accumulatorsl Chrysopogon zizanioides and Lavandula spp. May function as
significant Cr accumulator; and Mentha spp. may function as a strong accumulator of Ni
and Hg. Cyperus rotundus appears to have the strongest Co accumulation capacity, while
Eucalyptus spp. and Cynara cardunculus may function as arsenic accumulators.

Energy, medicinal, and aromatic plants have proved to be suitable candidates for the
remediation of PTE-contaminated soils, decreasing the risk of PTE entrance to the food
chain. Phytoremediation is suggested as a cost-effective and eco-friendly method, serving
two distinct functions: it contributes to contaminated soil restoration, as well as to the high
energy value oils, secondary metabolites, fiber, and bioenergy production, following a kind
of a circular economy model.

Future work should be carried out to obtain comprehensive knowledge of the phy-
toremediation potential for energy, aromatic, and medicinal plants. In addition, it will
serve as a guide to the utilization and management of the plant tissue, resulting from
the use of phytoremediation to reduce the environmental footprint. The costs of various
phytoremediation approaches should also be investigated, allowing for a comparison with
other methods utilized for the remediation of PTE-contaminated soils.
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103. Kubátová, P.; Hejcman, M.; Száková, J.; Vondráčková, S.; Tlustoš, P. Effects of Sewage Sludge Application on Biomass Production
and Concentrations of Cd, Pb and Zn in Shoots of Salix and Populus Clones: Improvement of Phytoremediation Efficiency in
Contaminated Soils. BioEnergy Res. 2016, 9, 809–819. [CrossRef]

104. Hussain, S.; Akram, M.; Abbas, G.; Murtaza, B.; Shahid, M.; Shah, N.S.; Bibi, I.; Niazi, N.K. Arsenic Tolerance and Phy-
toremediation Potential of Conocarpus erectus L. and Populus deltoides L. Int. J. Phytoremediat. 2017, 19, 985–991. [CrossRef]
[PubMed]

105. Romeo, S.; Francini, A.; Ariani, A.; Sebastiani, L. Phytoremediation of Zn: Identify the Diverging Resistance, Uptake and Biomass
Production Behaviours of Poplar Clones under High Zinc Stress. Water Air Soil Pollut. 2014, 225, 1813. [CrossRef]

106. Ancona, V.; Caracciolo, A.B.; Campanale, C.; Rascio, I.; Grenni, P.; Di Lenola, M.; Bagnuolo, G.; Uricchio, V.F. Heavy Metal
Phytoremediation of a Poplar Clone in a Contaminated Soil in Southern Italy. J. Chem. Technol. Biotechnol. 2020, 95, 940–949.
[CrossRef]

107. Hadi, F.; Arifeen, M.Z.U.; Aziz, T.; Nawab, S.; Nabi, G. Phytoremediation of Cadmium by Ricinus communis L. in Hydrophonic
Condition. Cell 2015, 92, 8112741. [CrossRef]
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