Integration of Copper Toxicity Mechanisms in Raphidocelis subcapitata: Advancing Insights at Environmentally Relevant Concentrations
<p>Effect of Cu on <span class="html-italic">R. subcapitata</span> proliferation capacity. Evolution of algal population on OECD medium in the absence (control) or the presence of Cu. Data are presented as mean values ± SD (error bars). At each time, the statistical difference between control and Cu-treated cells was tested using unpaired Student’s <span class="html-italic">t</span>-test; the means with (*) are significantly different from the control (<span class="html-italic">p</span> < 0.05, <span class="html-italic">n</span> = 6).</p> "> Figure 2
<p>Impact of Cu on <span class="html-italic">R. subcapitata</span> chlorophyll <span class="html-italic">a</span> content. Data are presented as mean values ± SD; mean values with different letters are significantly different (<span class="html-italic">p</span> < 0.05, <span class="html-italic">n</span> = 5, Kruskal–Wallis test, Dunn’s post hoc test).</p> "> Figure 3
<p>Influence of Cu on <span class="html-italic">R. subcapitata</span> photosynthetic activity evaluated by pulse-amplitude-modulation fluorescence assay. (<b>A</b>) Maximum photochemical quantum yield of PSII (<span class="html-italic">F</span><sub>v</sub>/<span class="html-italic">F</span><sub>m</sub>). (<b>B</b>) Effective photochemical quantum yield of PSII (Φ<sub>PSII</sub>). (<b>C</b>) Electron transport rate (<span class="html-italic">ETR</span>). (<b>D</b>) Non-photochemical quenching (<span class="html-italic">NPQ</span>). Data are presented as mean values ± SD. At each time, the statistical difference between control and Cu-treated cells was tested using unpaired Student’s <span class="html-italic">t</span>-test; the means with (*) are significantly different from the control (<span class="html-italic">p</span> < 0.05, <span class="html-italic">n</span> = 5).</p> "> Figure 4
<p>ROS accumulation and antioxidant activity of <span class="html-italic">R. subcapitata</span> cells exposed to Cu. (<b>A</b>) Reactive oxygen species (ROS) production. (<b>B</b>) Visualization of the intracellular accumulation of ROS (green cells) by epifluorescence microscopy and using the H<sub>2</sub>DCFDA probe on algae not exposed or exposed to Cu for 72 h. (<b>C</b>) Carotenoids content. (<b>D</b>) Superoxide dismutase (SOD) activity. (<b>E</b>) Catalase (CAT) activity. Data are presented as mean values ± SD. At each time, the statistical difference between control and Cu-treated cells was tested using unpaired Student’s <span class="html-italic">t</span>-test; the means with (*) are significantly different from the control (<span class="html-italic">p</span> < 0.05; <span class="html-italic">n</span> = 4).</p> "> Figure 5
<p>Lipid peroxidation and loss of cell membrane integrity of <span class="html-italic">R. subcapitata</span> exposed to Cu. (<b>A</b>) Malondialdehyde (MDA) content (lipid peroxidation). (<b>B</b>) Loss of plasma membrane integrity. Data are presented as mean values ± SD. At each time, the statistical difference between control and Cu-treated cells was tested using unpaired Student’s <span class="html-italic">t</span>-test; the means with (*) are significantly different from the control (<span class="html-italic">p</span> < 0.05; <span class="html-italic">n</span> = 3 for lipid peroxidation and <span class="html-italic">n</span> = 5 for cell membrane integrity).</p> "> Figure 6
<p>Proposal of the mechanism of action (toxicity pathway) of Cu, at environmentally relevant concentrations on the freshwater alga <span class="html-italic">R. subcapitata</span> based on the results here presented and previous works [<a href="#B13-toxics-12-00905" class="html-bibr">13</a>,<a href="#B23-toxics-12-00905" class="html-bibr">23</a>,<a href="#B27-toxics-12-00905" class="html-bibr">27</a>]. Variations in cellular responses are symbolized by “+” or “−“ for an increase or decrease, respectively. CAT—catalase, GSH—reduced glutathione, ROS—reactive oxygen species.</p> ">
Abstract
:1. Introduction
2. Material and Methods
2.1. Alga and Cultural Conditions
2.2. Exposure of Alga to Copper and Sampling Process
2.3. Determination of Photosynthetic Pigments
2.4. Assessment of Photosynthetic Activity
2.5. Quantification of ROS Production
2.6. Antioxidant Enzymes Activity Determination
2.7. Quantification of Lipid Peroxidation
2.8. Evaluation of Cell Membrane Integrity
2.9. Reproducibility of the Results and Statistical Analysis
3. Results
3.1. Effect of Cu on Alga Proliferation Capacity
3.2. Impact of Cu on Chlorophyll a Content and Photosynthetic Activity
3.3. ROS Production and Antioxidant Activity
3.4. Lipid Peroxidation and Cell Membrane Integrity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Declarations
References
- ATSDR. Toxicological Profile for Copper (Draft for Public Comment); Department of Health and Human Services, Public Health Service, U.S. Agency for Toxic Substances and Disease Registry: Atlanta, GA, USA, 2022. [Google Scholar]
- Arnold, T.; Bexfield, L.M.; Musgrove, M.; Erickson, M.L.; Kingsbury, J.A.; Degnan, J.R.; Tesoriero, A.J.; Kulongoski, J.T.; Belitz, K. Groundwater-Quality and Select Quality-Control Data from the National Water-Quality Assessment Project, January Through December 2016, and Previously Unpublished Data from 2013 to 2015; U.S. Geological Survey Data Series 1124; U.S. Geological Survey: Reston VA, USA, 2020. [Google Scholar] [CrossRef]
- Ogamba, E.N.; Charles, E.E.; Izah, S.C. Distributions, pollution evaluation and health risk of selected heavy metal in surface water of Taylor creek, Bayelsa State, Nigeria. Toxicol. Environ. Health Sci. 2021, 13, 109–121. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, R.; Li, Y.; Ding, X.; Jiang, Y.; Feng, J.; Zhu, L. Trophic transfer of heavy metals in the marine food web based on tissue residuals. Sci. Total Environ. 2021, 772, 145064. [Google Scholar] [CrossRef]
- VandKhanghah, M.M.; Hedayati, A.; Nazeri, S.; Mohammadi Azarm, H.; Ghorbani, R. Biomagnification of copper along the aquatic food chain (Artemia franciscana, Danio rerio, and Astronotus ocellatus). Biol. Trace Elem. Res. 2022, 200, 1854–1860. [Google Scholar] [CrossRef] [PubMed]
- Arnal, N.; Astiz, M.; de Alaniz, M.J.T.; Marra, C.A. Clinical parameters and biomarkers of oxidative stress in agricultural workers who applied copper-based pesticides. Ecotoxicol. Environ. Saf. 2011, 74, 1779–1786. [Google Scholar] [CrossRef] [PubMed]
- Cid, A.; Herrero, C.; Torres, E.; Abalde, J. Copper toxicity on the marine microalga Phaeodactylum tricornutum: Effects on photosynthesis and related parameters. Aquat. Toxicol. 1995, 31, 165–174. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhu, Y.; Hu, Z.; Lei, A.; Wang, J. Towards elucidation of the toxic mechanism of copper on the model green alga Chlamydomonas reinhardtii. Ecotoxicology 2016, 25, 1417–1425. [Google Scholar] [CrossRef]
- Yong, W.-K.; Sim, K.-S.; Poong, S.-W.; Wei, D.; Phang, S.-M.; Lim, P.-E. Interactive effects of warming and copper toxicity on a tropical freshwater green microalga Chloromonas augustae (Chlorophyceae). J. Appl. Phycol. 2021, 33, 67–77. [Google Scholar] [CrossRef]
- Akimov, A.I.; Solomonova, E.S.; Shoman, N.Y.; Rylkova, A.O. Changes in the growth rate and fluorescent and cytometric parameters of the microalga Dunaliella salina (Teod.) at different Cu2+ concentrations in the cultivation medium. Contemp. Probl. Ecol. 2023, 16, 356–366. [Google Scholar] [CrossRef]
- Tripathi, B.N.; Gaur, J.P. Physiological behavior of Scenedesmus sp. during exposure to elevated levels of Cu and Zn and after withdrawal of metal stress. Protoplasma 2006, 229, 1–9. [Google Scholar] [CrossRef]
- Machado, M.D.; Soares, E.V. Modification of cell volume and proliferative capacity of Pseudokirchneriella subcapitata cells exposed to metal stress. Aquat. Toxicol. 2014, 147, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Machado, M.D.; Lopes, A.R.; Soares, E.V. Responses of the alga Pseudokirchneriella subcapitata to long-term exposure to metal stress. J. Hazard. Mater. 2015, 296, 82–92. [Google Scholar] [CrossRef] [PubMed]
- Silva, V.; Marques, C.R.; Campos, I.; Vidal, T.; Keizer, J.J.; Gonçalves, F.; Abrantes, N. Combined effect of copper sulfate and water temperature on key freshwater trophic levels—Approaching potential climatic change scenarios. Ecotoxicol. Environ. Saf. 2018, 148, 384–392. [Google Scholar] [CrossRef]
- Rocha, G.S.; Parrish, C.C.; Espíndola, E.L.G. Effects of copper on photosynthetic and physiological parameters of a freshwater microalga (Chlorophyceae). Algal Res. 2021, 54, 102223. [Google Scholar] [CrossRef]
- Cid, A.; Fidalgo, P.; Herrero, C.; Abalde, J. Toxic action of copper on the membrane system of a marine diatom measured by flow cytometry. Cytometry 1996, 25, 32–36. [Google Scholar] [CrossRef]
- Hamed, S.M.; Selim, S.; Klöck, G.; AbdElgawad, H. Sensitivity of two green microalgae to copper stress: Growth, oxidative and antioxidants analyses. Ecotoxicol. Environ. Saf. 2017, 144, 19–25. [Google Scholar] [CrossRef]
- Szivák, I.; Behra, R.; Sigg, L. Metal-induced reactive oxygen species production in Chlamydomonas reinhardtii (Chlorophyceae). J. Phycol. 2019, 45, 427–435. [Google Scholar] [CrossRef]
- Jamers, A.; Blust, R.; De Coen, W.; Griffin, J.L.; Jones, O.A.H. Copper toxicity in the microalga Chlamydomonas reinhardtii: An integrated approach. BioMetals 2013, 26, 731–740. [Google Scholar] [CrossRef]
- Stoiber, T.L.; Shafer, M.M.; Armstrong, D.E. Induction of reactive oxygen species in Chlamydomonas reinhardtii in response to contrasting trace metal exposures. Environ. Toxicol. 2013, 28, 516–523. [Google Scholar] [CrossRef]
- Nowicka, B.; Zyzik, M.; Kapsiak, M.; Ogrodzińska, W.; Kruk, J. Oxidative stress limits growth of Chlamydomonas reinhardtii (Chlorophyta, Chlamydomonadales) exposed to copper ions at the early stage of culture growth. Phycologia 2021, 60, 303–313. [Google Scholar] [CrossRef]
- Knauert, S.; Knauer, K. The role of reactive oxygen species in copper toxicity to two freshwater green algae. J. Phycol. 2008, 44, 311–319. [Google Scholar] [CrossRef]
- Machado, M.D.; Soares, E.V. Short- and long-term exposure to heavy metals induced oxidative stress response in Pseudokirchneriella subcapitata. Clean Soil Air Water 2016, 44, 1578–1583. [Google Scholar] [CrossRef]
- Tripathi, B.N.; Mehta, S.K.; Amar, A.; Gaur, J.P. Oxidative stress in Scenedesmus sp. during short- and long-term exposure to Cu2+ and Zn2+. Chemosphere 2006, 62, 538–544. [Google Scholar] [CrossRef] [PubMed]
- Franklin, N.M.; Adams, M.S.; Stauber, J.L.; Lim, R.P. Development of an improved rapid enzyme inhibition bioassay with marine and freshwater microalgae using flow cytometry. Arch. Environ. Contam. Toxicol. 2001, 40, 469–480. [Google Scholar] [CrossRef] [PubMed]
- Franklin, N.M.; Stauber, J.L.; Lim, R.P. Development of flow cytometry-based algal bioassays for assessing toxicity of copper in natural waters. Environ. Toxicol. Chem. 2001, 20, 160–170. [Google Scholar] [CrossRef] [PubMed]
- Machado, M.D.; Soares, E.V. Use of a fluorescence-based approach to assess short-term responses of the alga Pseudokirchneriella subcapitata to metal stress. J. Appl. Phycol. 2015, 27, 805–813. [Google Scholar] [CrossRef]
- Jamers, A.; Van der Ven, K.; Moens, L.; Robbens, J.; Potters, G.; Guisez, Y.; Blust, R.; De Coen, W. Effect of copper exposure on gene expression profiles in Chlamydomonas reinhardtii based on microarray analysis. Aquat. Toxicol. 2006, 80, 249–260. [Google Scholar] [CrossRef] [PubMed]
- Nowicka, B.; Pluciński, B.; Kuczyńska, P.; Kruk, J. Physiological characterization of Chlamydomonas reinhardtii acclimated to chronic stress induced by Ag, Cd, Cr, Cu and Hg ions. Ecotoxicol. Environ. Saf. 2016, 130, 133–145. [Google Scholar] [CrossRef]
- Shakya, M.; Silvester, E.; Rees, G.; Rajapaksha, K.H.; Faou, P.; Holland, A. Changes to the amino acid profile and proteome of the tropical freshwater microalga Chlorella sp. in response to copper stress. Ecotoxicol. Environ. Saf. 2022, 233, 113336. [Google Scholar] [CrossRef] [PubMed]
- Machado, M.D.; Soares, E.V. Features of the microalga Raphidocelis subcapitata: Physiology and applications. Appl. Microbiol. Biotechnol. 2024, 108, 219. [Google Scholar] [CrossRef] [PubMed]
- OECD. Test No. 201: Freshwater Alga and Cyanobacteria, Growth Inhibition Test; Organization for Economic Cooperation and Development: Paris, France, 2011. [Google Scholar]
- Schecher, W.D.; McAvoy, D.C. MINEQL+: A Chemical Equilibrium Modeling System, Version 4.5 for Windows, User’s Manual; Environmental Research Software: Hallowell, ME, USA, 2003. [Google Scholar]
- Martell, A.E.; Smith, R.M. NIST Standard Reference Database Vol. 46, Version 8. NIST Critically Selected Stability Constants of Metal Complexes Database; US Department of Commerce, National Institute of Standards and Technology: Gaithersburg, MD, USA, 2004. [Google Scholar]
- Ritchie, R.J. Universal chlorophyll equations for estimating chlorophylls a, b, c, and d and total chlorophylls in natural assemblages of photosynthetic organisms using acetone, methanol, or ethanol solvents. Photosynthetica 2008, 46, 115–126. [Google Scholar] [CrossRef]
- Strickland, J.; Parsons, T.R. A Practical Handbook of Seawater Analysis, 2nd ed.; Fisheries Research Board: Ottawa, OT, Canada, 1972. [Google Scholar]
- Maxwell, K.; Johnson, G.N. Chlorophyll fluorescence—A practical guide. J. Exp. Bot. 2000, 51, 659–668. [Google Scholar] [CrossRef]
- McCord, J.M.; Fridovic, I. Superoxide dismutase. An. enzymatic function for erythrocuprein (hemocuprein). J. Biol. Chem. 1969, 244, 6049–6055. [Google Scholar] [CrossRef] [PubMed]
- Aebi, H. Catalase in vitro. Methods Enzymol. 1984, 105, 121–126. [Google Scholar]
- Gutteridge, J.M.C.; Halliwell, B. The measurement and mechanism of lipid peroxidation in biological systems. Trends Biochem. Sci. 1990, 15, 129–135. [Google Scholar] [CrossRef]
- Buege, J.A.; Aust, S.D. Microsomal lipid peroxidation. In Biomembranes—Part C: Biological Oxidations; Fleischer, S., Packer, L., Eds.; Academic Press: New York, NY, USA, 1978; pp. 302–310. [Google Scholar]
- Machado, M.D.; Soares, E.V. Development of a short-term assay based on the evaluation of the plasma membrane integrity of the alga Pseudokirchneriella subcapitata. Appl. Microbiol. Biotechnol. 2012, 95, 1035–1042. [Google Scholar] [CrossRef]
- Van der Grinten, E.; Pikkemaat, M.G.; van den Brandhof, E.-J.; Stroomberg, G.J.; Kraak, M.H.S. Comparing the sensitivity of algal, cyanobacterial and bacterial bioassays to different groups of antibiotics. Chemosphere 2010, 80, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Machado, M.D.; Soares, E.V. Life and death of Pseudokirchneriella subcapitata: Physiological changes during chronological aging. Appl. Microbiol. Biotechnol. 2022, 106, 8245–8258. [Google Scholar] [CrossRef]
- Hashimoto, H.; Uragami, C.; Cogdell, R.J. Carotenoids and photosynthesis. In Carotenoids in Nature: Biosynthesis, Regulation and Function; Stange, C., Ed.; Springer International Publishing: Cham, Switzerland, 2016; pp. 111–139. [Google Scholar]
- Yin, H.; Xu, L.; Porter, N.A. Free radical lipid peroxidation: Mechanisms and analysis. Chem. Rev. 2011, 111, 5944–5972. [Google Scholar] [CrossRef] [PubMed]
- Moldovan, L.; Moldovan, N.I. Oxygen free radicals and redox biology of organelles. Histochem. Cell Biol. 2004, 122, 395–412. [Google Scholar] [CrossRef]
- Nowicka, B. Heavy metal–induced stress in eukaryotic algae—Mechanisms of heavy metal toxicity and tolerance with particular emphasis on oxidative stress in exposed cells and the role of antioxidant response. Environ. Sci. Pollut. Res. 2022, 29, 16860–16911. [Google Scholar] [CrossRef] [PubMed]
- Borowitzka, M.A. The ‘stress’ concept in microalgal biology—Homeostasis, acclimation and adaptation. J. Appl. Phycol. 2018, 30, 2815–2825. [Google Scholar] [CrossRef]
- Stoiber, T.L.; Shafer, M.M.; Perkins, D.A.K.; Hemming, J.D.C.; Armstrong, D.E. Analysis of glutathione endpoints for measuring copper stress in Chlamydomonas reinhardtii. Environ. Toxicol. Chem. 2007, 26, 1563–1571. [Google Scholar] [CrossRef]
- Wei, Y.; Zhu, N.; Lavoie, M.; Wang, J.; Qian, H.; Fu, Z. Copper toxicity to Phaeodactylum tricornutum: A survey of the sensitivity of various toxicity endpoints at the physiological, biochemical, molecular and structural levels. BioMetals 2014, 27, 527–537. [Google Scholar] [CrossRef]
- Calomeni, A.; Rodgers, J.H.; Kinley, C.M. Responses of Planktothrix agardhii and Pseudokirchneriella subcapitata to copper sulfate (CuSO4.5H2O) and a chelated copper compound (Cutrine®-Ultra). Water Air Soil Pollut. 2014, 225, 2231. [Google Scholar] [CrossRef]
- Joshi, M.K.; Mohanty, P. Chlorophyll a fluorescence as a probe of heavy metal ion toxicity in plants. In Advances in Photosynthesis and Respiration; Papageorgiou, G.C., Govindjee, Eds.; Springer: Dordrecht, The Netherlands, 2004; Volume 19, pp. 637–661. [Google Scholar] [CrossRef]
- Schiphorst, C.; Bassi, R. Chlorophyll-xanthophyll antenna complexes: In between light harvesting and energy dissipation. In Photosynthesis in Algae: Biochemical and Physiological Mechanisms, Advances in Photosynthesis and Respiration; Larkum, A.W.D., Grossman, A.R., Raven, J.A., Eds.; Springer: Cham, Switzerland, 2020; Volume 45, Chapter 3; pp. 27–55. [Google Scholar] [CrossRef]
- Stauber, J.L.; Florence, T.M. Mechanism of toxicity of ionic copper and copper complexes to algae. Mar. Biol. 1987, 94, 511–519. [Google Scholar] [CrossRef]
- Kehrer, J.P. The Haber–Weiss reaction and mechanisms of toxicity. Toxicology 2000, 149, 43–50. [Google Scholar] [CrossRef]
- Rezayian, M.; Niknam, V.; Ebrahimzadeh, H. Oxidative damage and antioxidative system in algae. Toxicol. Rep. 2019, 6, 1309–1313. [Google Scholar] [CrossRef] [PubMed]
- Guarini, J.-M.; Moritz, C. Modelling the dynamics of the electron transport rate measured by PAM fluorimetry during rapid light curve experiments. Photosynthetica 2009, 47, 206–214. [Google Scholar] [CrossRef]
- Valavanidis, A.; Vlahogianni, T.; Dassenakis, M.; Scoullos, M. Molecular biomarkers of oxidative stress in aquatic organisms in relation to toxic environmental pollutants. Ecotoxicol. Environ. Saf. 2006, 64, 178–189. [Google Scholar] [CrossRef]
- Prado, R.; García, R.; Rioboo, C.; Herrero, C.; Cid, Á. Suitability of cytotoxicity endpoints and test microalgal species to disclose the toxic effect of common aquatic pollutants. Ecotoxicol. Environ. Saf. 2015, 114, 117–125. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Ki, J.-S. Molecular characterization and expression analysis of copper-zinc superoxide dismutases from the freshwater alga Closterium ehrenbergii under metal stress. Environ. Toxicol. 2020, 35, 5–14. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.; Guo, S.; Wen, F.; Zhang, X.; Wang, C.; Si, L. Transcriptional and physiological responses of Dunaliella salina to cadmium reveals time-dependent turnover of ribosome, photosystem, and ROS-scavenging pathways. Aquat. Toxicol. 2019, 207, 153–162. [Google Scholar] [CrossRef]
- Lu, J.J.; Ma, Y.L.; Xing, G.L.; Li, W.L.; Kong, X.X.; Li, J.Y.; Wang, L.J.; Yuan, H.L.; Yang, J.S. Revelation of microalgae’s lipid production and resistance mechanism to ultra-high Cd stress by integrated transcriptome and physiochemical analyses. Environ. Pollut. 2019, 250, 186–195. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Machado, M.D.; Soares, E.V. Integration of Copper Toxicity Mechanisms in Raphidocelis subcapitata: Advancing Insights at Environmentally Relevant Concentrations. Toxics 2024, 12, 905. https://doi.org/10.3390/toxics12120905
Machado MD, Soares EV. Integration of Copper Toxicity Mechanisms in Raphidocelis subcapitata: Advancing Insights at Environmentally Relevant Concentrations. Toxics. 2024; 12(12):905. https://doi.org/10.3390/toxics12120905
Chicago/Turabian StyleMachado, Manuela D., and Eduardo V. Soares. 2024. "Integration of Copper Toxicity Mechanisms in Raphidocelis subcapitata: Advancing Insights at Environmentally Relevant Concentrations" Toxics 12, no. 12: 905. https://doi.org/10.3390/toxics12120905
APA StyleMachado, M. D., & Soares, E. V. (2024). Integration of Copper Toxicity Mechanisms in Raphidocelis subcapitata: Advancing Insights at Environmentally Relevant Concentrations. Toxics, 12(12), 905. https://doi.org/10.3390/toxics12120905