Optimizing Heavy Metal Uptake in Carpobrotus aequilaterus Through Electrokinetic Treatment: A Comprehensive Study on Phytoremediation from Mine Tailings
"> Figure 1
<p>Geographical location of the study area according to (<b>a</b>) Chile reference and (<b>b</b>) the Ovejería tailings dam.</p> "> Figure 2
<p>Experimental scheme of the assays.</p> "> Figure 3
<p>Heavy metal contents in plant tissues: Cu content; Fe content; Mn content; Zn content. Comparative analysis of the control and treatment groups: 15 V-4 h, 15 V-8 h, 30 V-4 h and 30 V-8 h. The error bar in the graph indicates the standard error of the mean, whereas different letters over the bars indicate statistically significant differences between means at <span class="html-italic">p</span> < 0.05.</p> "> Figure 4
<p>Variations in the leaf area of the designated <span class="html-italic">C. aequilaterus</span> shoots (<b>a</b>) and root length (<b>b</b>) during their expansion were noted for both the control group and the optimal treatment conditions (15 V-8 h). The research included four plants, with the vertical bars depicted on the graph indicating the standard error of the mean. The associations among the observed data points were delineated via a logistic growth model.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mine Tailings Samples
2.2. Determination of the Physicochemical Properties of Mine Tailings
2.3. Experimental Columns Setup
2.4. Plant Growth and Biomass Accumulation
2.5. Analytical Determinations in Plant Tissues
2.6. Statistical Analysis
3. Results and Discussion
3.1. Physicochemical Characterization of Mine Tailings
3.2. Heavy Metal Contents in Carpobrotus aequilaterus Compartments
3.3. Plant Growth
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Candeias, C.; Ávila, P.; Coelho, P.; Teixeira, J.P. Mining Activities: Health Impacts. In Encyclopedia of Environmental Health; Elsevier: Amsterdam, The Netherlands, 2019; pp. 415–435. [Google Scholar] [CrossRef]
- USGS Copper Statistics and Information. Available online: https://pubs.usgs.gov/periodicals/mcs2023/mcs2023-copper.pdf (accessed on 23 April 2023).
- Seck, G.S.; Hache, E.; Bonnet, C.; Simoën, M.; Carcanague, S. Copper at the Crossroads: Assessment of the Interactions between Low-Carbon Energy Transition and Supply Limitations. Resour. Conserv. Recycl. 2020, 163, 105072. [Google Scholar] [CrossRef] [PubMed]
- Edraki, M.; Baumgartl, T.; Manlapig, E.; Bradshaw, D.; Franks, D.M.; Moran, C.J. Designing Mine Tailings for Better Environmental, Social and Economic Outcomes: A Review of Alternative Approaches. J. Clean. Prod. 2014, 84, 411–420. [Google Scholar] [CrossRef]
- Ramirez, M.; Massolo, S.; Frache, R.; Correa, J.A. Metal Speciation and Environmental Impact on Sandy Beaches Due to El Salvador Copper Mine, Chile. Mar. Pollut. Bull. 2005, 50, 62–72. [Google Scholar] [CrossRef]
- Stauber, J.L.; Andrade, S.; Ramirez, M.; Adams, M.; Correa, J.A. Copper Bioavailability in a Coastal Environment of Northern Chile: Comparison of Bioassay and Analytical Speciation Approaches. Mar. Pollut. Bull. 2005, 50, 1363–1372. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Yang, H.; Cui, Z. Migration and Speciation of Heavy Metal in Salinized Mine Tailings Affected by Iron Mining. Water Sci. Technol. 2017, 76, 1867–1874. [Google Scholar] [CrossRef]
- Gerding, J.; Novoselov, A.A.; Morales, J. Climate and Pyrite: Two Factors to Control the Evolution of Abandoned Tailings in Northern Chile. J. Geochem. Explor. 2021, 221, 106686. [Google Scholar] [CrossRef]
- Ritcey, G.M. Tailings Management in Gold Plants. Hydrometallurgy 2005, 78, 3–20. [Google Scholar] [CrossRef]
- Santibañez, C.; De La Fuente, L.M.; Bustamante, E.; Silva, S.; León-Lobos, P.; Ginocchio, R. Potential Use of Organic- and Hard-Rock Mine Wastes on Aided Phytostabilization of Large-Scale Mine Tailings under Semiarid Mediterranean Climatic Conditions: Short-Term Field Study. Appl. Environ. Soil Sci. 2012, 2012, 895817. [Google Scholar] [CrossRef]
- Tapia, Y.; Bustos, P.; Salazar, O.; Casanova, M.; Castillo, B.; Acuña, E.; Masaguer, A. Phytostabilization of Cu in Mine Tailings Using Native Plant Carpobrotus Aequilaterus and the Addition of Potassium Humates. J. Geochem. Explor. 2017, 183, 102–113. [Google Scholar] [CrossRef]
- Nieva, N.E.; Borgnino, L.; García, M.G. Long Term Metal Release and Acid Generation in Abandoned Mine Wastes Containing Metal-Sulphides. Environ. Pollut. 2018, 242, 264–276. [Google Scholar] [CrossRef]
- UNEP, G. Water Data Summary 1985–1987; Canada Centre for Inland: Burlington, VT, USA, 1990. [Google Scholar]
- Kumar, S.; Prasad, S.; Yadav, K.K.; Shrivastava, M.; Gupta, N.; Nagar, S.; Bach, Q.V.; Kamyab, H.; Khan, S.A.; Yadav, S.; et al. Hazardous Heavy Metals Contamination of Vegetables and Food Chain: Role of Sustainable Remediation Approaches—A Review. Environ. Res. 2019, 179, 108792. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Song, Q.; Tang, Y.; Li, W.; Xu, J.; Wu, J.; Wang, F.; Brookes, P.C. Human Health Risk Assessment of Heavy Metals in Soil–Vegetable System: A Multi-Medium Analysis. Sci. Total Environ. 2013, 463–464, 530–540. [Google Scholar] [CrossRef] [PubMed]
- Hosseinniaee, S.; Jafari, M.; Tavili, A.; Zare, S.; Cappai, G. Investigating Metal Pollution in the Food Chain Surrounding a Lead-Zinc Mine (Northwestern Iran); an Evaluation of Health Risks to Humans and Animals. Environ. Monit. Assess. 2023, 195, 946. [Google Scholar] [CrossRef] [PubMed]
- EPA, U.S. Integrated Risk Information System (IRIS) [Online Electronic Data File]; US Environment Protection Agency, Office of Research and Development; Last updated December; National Center for Environment Assessment: Washington, DC, USA, 1996; Volume 1. [Google Scholar]
- Wang, Z.; Jackson, L.S.; Jablonski, J.E. Factors Affecting the Levels of Heavy Metals in Juices Processed with Filter Aids. J. Food Prot. 2017, 80, 892–902. [Google Scholar] [CrossRef]
- Ryan, R. Safety of Food and Beverages: Soft Drinks and Fruit Juices. Encycl. Food Saf. 2014, 3, 360–363. [Google Scholar] [CrossRef]
- Asuku, A.O.; Ayinla, M.T.; Ajibare, A.J.; Adeyemo, M.B.; Adeyemo, R.O. Heavy Metals and Emerging Contaminants in Foods and Food Products Associated with Neurotoxicity. In Emerging Contaminants in Food and Food Products; CRC Press: Boca Raton, FL, USA, 2024; pp. 236–250. [Google Scholar] [CrossRef]
- Neaman, A.; Reyes, L.; Trolard, F.; Bourrié, G.; Sauvé, S. Copper Mobility in Contaminated Soils of the Puchuncaví Valley, Central Chile. Geoderma 2009, 150, 359–366. [Google Scholar] [CrossRef]
- Carkovic, A.B.; Calcagni, M.S.; Vega, A.S.; Coquery, M.; Moya, P.M.; Bonilla, C.A.; Pastén, P.A. Active and Legacy Mining in an Arid Urban Environment: Challenges and Perspectives for Copiapó, Northern Chile. Environ. Geochem. Health 2016, 38, 1001–1014. [Google Scholar] [CrossRef]
- CETESB. Companhia de Tecnologia de Saneamento Ambiental Decisão de Diretoria; CETESB: Sao Paulo, Brazil, 2005. [Google Scholar]
- Munir, M.A.M.; Irshad, S.; Yousaf, B.; Ali, M.U.; Dan, C.; Abbas, Q.; Liu, G.; Yang, X. Interactive Assessment of Lignite and Bamboo-Biochar for Geochemical Speciation, Modulation and Uptake of Cu and Other Heavy Metals in the Copper Mine Tailing. Sci. Total Environ. 2021, 779, 146536. [Google Scholar] [CrossRef] [PubMed]
- Mujtaba Munir, M.A.; Liu, G.; Yousaf, B.; Ali, M.U.; Abbas, Q.; Ullah, H. Synergistic Effects of Biochar and Processed Fly Ash on Bioavailability, Transformation and Accumulation of Heavy Metals by Maize (Zea mays L.) in Coal-Mining Contaminated Soil. Chemosphere 2020, 240, 124845. [Google Scholar] [CrossRef]
- Doku, E.T.; Sylverken, A.A.; Belford, J.D.E. Rhizosphere Microbiome of Plants Used in Phytoremediation of Mine Tailing Dams. Int. J. Phytoremediat. 2024, 26, 1212–1220. [Google Scholar] [CrossRef]
- Yongpisanphop, J.; Babel, S.; Kruatrachue, M.; Pokethitiyook, P. Phytoremediation Potential of Plants Growing on the Pb-Contaminated Soil at the Song Tho Pb Mine, Thailand. Soil Sediment Contam. Int. J. 2017, 26, 426–437. [Google Scholar] [CrossRef]
- Lam, E.J.; Cánovas, M.; Gálvez, M.E.; Montofré, Í.L.; Keith, B.F.; Faz, Á. Evaluation of the Phytoremediation Potential of Native Plants Growing on a Copper Mine Tailing in Northern Chile. J. Geochem. Explor. 2017, 182, 210–217. [Google Scholar] [CrossRef]
- Orchard, C.; León-Lobos, P.; Ginocchio, R. Phytostabilization of Massive Mine Wastes with Native Phytogenetic Resources: Potential for Sustainable Use and Conservation of the Native Flora in North-Central Chile. Cienc. Investig. Agrar. 2009, 36, 329–352. [Google Scholar] [CrossRef]
- Tapia, Y.; Salazar, O.; Joven, A.; Castillo, B.; Urdiales, C.; Garcia, A.; Ihle, C.; Acuña, E. Evaluation of Sulfate Rhizofiltration by Carpobrotus chilensis for Treating Mining Waters. Int. J. Phytoremediat. 2024, 26, 1556–1663. [Google Scholar] [CrossRef] [PubMed]
- Adeoye, A.O.; Adebayo, I.A.; Afodun, A.M.; Ajijolakewu, K.A. Benefits and Limitations of Phytoremediation: Heavy Metal Remediation Review. In Phytoremediation; Biotechnological Strategies for Promoting Invigorating Environs; Academic Press: Cambridge, MA, USA, 2022; pp. 227–238. [Google Scholar] [CrossRef]
- Shahid, M.; Austruy, A.; Echevarria, G.; Arshad, M.; Sanaullah, M.; Aslam, M.; Nadeem, M.; Nasim, W.; Dumat, C. EDTA-Enhanced Phytoremediation of Heavy Metals: A Review. Soil Sediment Contam. Int. J. 2014, 23, 389–416. [Google Scholar] [CrossRef]
- Lim, J.M.; Salido, A.L.; Butcher, D.J. Phytoremediation of Lead Using Indian Mustard (Brassica juncea) with EDTA and Electrodics. Microchem. J. 2004, 76, 3–9. [Google Scholar] [CrossRef]
- Guo, J.K.; Lv, X.; Jia, H.L.; Hua, L.; Ren, X.H.; Muhammad, H.; Wei, T.; Ding, Y. Effects of EDTA and Plant Growth-Promoting Rhizobacteria on Plant Growth and Heavy Metal Uptake of Hyperaccumulator Sedum Alfredii Hance. J. Environ. Sci. 2020, 88, 361–369. [Google Scholar] [CrossRef]
- Beiyuan, J.; Tsang, D.C.W.; Bolan, N.S.; Baek, K.; Ok, Y.S.; Li, X.D. Interactions of Food Waste Compost with Metals and Metal-Chelant Complexes during Soil Remediation. J. Clean. Prod. 2018, 192, 199–206. [Google Scholar] [CrossRef]
- Yin, F.; Li, J.; Wang, Y.; Yang, Z. Biodegradable Chelating Agents for Enhancing Phytoremediation: Mechanisms, Market Feasibility, and Future Studies. Ecotoxicol. Environ. Saf. 2024, 272, 116113. [Google Scholar] [CrossRef]
- Aponte, H.; Sulbaran-Bracho, Y.; Mondaca, P.; Vidal, C.; Pérez, R.; Meier, S.; Cornejo, P.; Rojas, C. Biochemical, Catabolic, and PGP Activity of Microbial Communities and Bacterial Strains from the Root Zone of Baccharis Linearis in a Mediterranean Mine Tailing. Microorganisms 2023, 11, 2639. [Google Scholar] [CrossRef]
- Novo, L.A.B.; Castro, P.M.L.; Alvarenga, P.; da Silva, E.F. Plant Growth–Promoting Rhizobacteria-Assisted Phytoremediation of Mine Soils. In Bio-Geotechnologies for Mine Site Rehabilitation; Elsevier: Amsterdam, The Netherlands, 2018; pp. 281–295. [Google Scholar] [CrossRef]
- Wang, L.; Ji, B.; Hu, Y.; Liu, R.; Sun, W. A Review on in Situ Phytoremediation of Mine Tailings. Chemosphere 2017, 184, 594–600. [Google Scholar] [CrossRef] [PubMed]
- Cang, L.; Wang, Q.Y.; Zhou, D.M.; Xu, H. Effects of Electrokinetic-Assisted Phytoremediation of a Multiple-Metal Contaminated Soil on Soil Metal Bioavailability and Uptake by Indian Mustard. Sep. Purif. Technol. 2011, 79, 246–253. [Google Scholar] [CrossRef]
- Chen, Y.; Dong, M.; Lyu, P.; Wang, A.; Wang, H.; Li, J. Analysis of Metal(Loid) Pollution and Possibilities of Electrokinetic Phytoremediation of Abandoned Coking Plant Soil. Sci. Total Environ. 2023, 870, 161982. [Google Scholar] [CrossRef] [PubMed]
- Cameselle, C.; Reddy, K.R. Development and Enhancement of Electro-Osmotic Flow for the Removal of Contaminants from Soils. Electrochim. Acta 2012, 86, 10–22. [Google Scholar] [CrossRef]
- Stegmann, R.; Brunner, G.; Calmano, W.; Matz, G. Treatment of Contaminated Soil; Springer: Berlin/Heidelberg, Germany, 2001. [Google Scholar]
- Robles, I.; Serrano, T.; Pérez, J.J.; Hernández, G.; Solís, S.; García, R.; Pi, T.; Bustos, E. Influence of EDTA on the Electrochemical Removal of Mercury (II) in Soil from San Joaquín, Querétaro, México. J. Mex. Chem. Soc. 2014, 58, 332–338. [Google Scholar] [CrossRef]
- Popescu, M.; Rosales, E.; Sandu, C.; Meijide, J.; Pazos, M.; Lazar, G.; Sanromán, M.A. Soil Flushing and Simultaneous Degradation of Organic Pollutants in Soils by Electrokinetic-Fenton Treatment. Process Saf. Environ. Prot. 2017, 108, 99–107. [Google Scholar] [CrossRef]
- Kim, G.N.; Jung, Y.H.; Lee, J.J.; Moon, J.K.; Jung, C.H. An Analysis of a Flushing Effect on the Electrokinetic-Flushing Removal of Cobalt and Cesium from a Soil around Decommissioning Site. Sep. Purif. Technol. 2008, 63, 116–121. [Google Scholar] [CrossRef]
- Cameselle, C.; Chirakkara, R.A.; Reddy, K.R. Electrokinetic-Enhanced Phytoremediation of Soils: Status and Opportunities. Chemosphere 2013, 93, 626–636. [Google Scholar] [CrossRef]
- Chirakkara, R.A.; Reddy, K.R.; Cameselle, C. Electrokinetic Amendment in Phytoremediation of Mixed Contaminated Soil. Electrochim. Acta 2015, 181, 179–191. [Google Scholar] [CrossRef]
- Sadzawka, A.; Carrasco, M.A.; Grez, R.; Mora, M.L.; Flores, H.; Neaman, A. Métodos de Análisis de Suelos Recomendados Para Los Suelos de Chile: Revisión 2006. 2006, 34. Available online: https://biblioteca.inia.cl/items/9ec1aab6-f9aa-4e4b-b2c5-28d1fed798c3 (accessed on 25 November 2024).
- United States Environmental Protection Agency. Method 3052: Microwave Assisted Acid Digestion of Siliceous and Organically Based Matrices; United States Environmental Protection Agency: Washington, DC, USA, 1996. [Google Scholar]
- Bouyoucos, G.J. Hydrometer Method Improved for Making Particle Size Analyses of Soils1. Agron. J. 1962, 54, 464–465. [Google Scholar] [CrossRef]
- Jury, W.A.; Horton, R. Soil Physics, 6th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2004; ISBN 047105965X. [Google Scholar]
- Villagrán, C.; Castro Rojas, M.V. Ciencia Indígena de Los Andes Del Norte de Chile: Programa Interdisciplinario de Estudios En Biodiversidad (PIEB), Universidad de Chile, 1st ed.; Biodiversidad; Editorial Universitaria: Santiago de Chile, Chile, 2004; ISBN 9561116979. [Google Scholar]
- Rodriguez, R.; Marticorena, C.; Alarcón, D.; Baeza, C.; Cavieres, L.; Finot, V.L.; Fuentes, N.; Kiessling, A.; Mihoc, M.; Pauchard, A.; et al. Catálogo de Las Plantas Vasculares de Chile. Gayana Bot. 2018, 75, 1–430. [Google Scholar] [CrossRef]
- Hansen, H.K.; Lamas, V.; Gutierrez, C.; Nuñez, P.; Rojo, A.; Cameselle, C.; Ottosen, L.M. Electro-Remediation of Copper Mine Tailings. Comparing Copper Removal Efficiencies for Two Tailings of Different Age. Min. Eng. 2013, 41, 1–8. [Google Scholar] [CrossRef]
- Robson, T.; Golos, P.J.; Stevens, J.; Reid, N. Enhancing Tailings Revegetation Using Shallow Cover Systems in Arid Environments: Hydrogeochemical, Nutritional, and Ecophysiological Constraints. Land. Degrad. Dev. 2018, 29, 2785–2796. [Google Scholar] [CrossRef]
- Liu, Z.; Hamuti, A.; Abdulla, H.; Zhang, F.; Mao, X. Accumulation of Metallic Elements by Native Species Thriving in Two Mine Tailings in Aletai, China. Environ. Earth Sci. 2016, 75, 781. [Google Scholar] [CrossRef]
- Zeng, H.; Wu, H.; Yan, F.; Yi, K.; Zhu, Y. Molecular Regulation of Zinc Deficiency Responses in Plants. J. Plant Physiol. 2021, 261, 153419. [Google Scholar] [CrossRef]
- Sadeghzadeh, B.; Rengel, Z. Zinc in Soils and Crop Nutrition. In The Molecular and Physiological Basis of Nutrient Use Efficiency in Crops; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2011; pp. 335–375. [Google Scholar] [CrossRef]
- Clemens, S.; Weber, M. The Essential Role of Coumarin Secretion for Fe Acquisition from Alkaline Soil. Plant Signal Behav. 2016, 11, e1114197. [Google Scholar] [CrossRef] [PubMed]
- Pandey, N. Role of Plant Nutrients in Plant Growth and Physiology. In Plant Nutrients and Abiotic Stress Tolerance; Springer: Singapore, 2018; pp. 51–93. [Google Scholar] [CrossRef]
- Cang, L.; Zhou, D.M.; Wang, Q.Y.; Fan, G.P. Impact of Electrokinetic-Assisted Phytoremediation of Heavy Metal Contaminated Soil on Its Physicochemical Properties, Enzymatic and Microbial Activities. Electrochim. Acta 2012, 86, 41–48. [Google Scholar] [CrossRef]
- Wu, C.; Fan, C.; Xie, Q. Study on Electrokinetic Remediation of PBDEs Contaminated Soil. Adv. Mater. Res. 2012, 518–523, 2829–2833. [Google Scholar] [CrossRef]
- Fu, R.; Wen, D.; Xia, X.; Zhang, W.; Gu, Y. Electrokinetic Remediation of Chromium (Cr)-Contaminated Soil with Citric Acid (CA) and Polyaspartic Acid (PASP) as Electrolytes. Chem. Eng. J. 2017, 316, 601–608. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
pH | 5.80 ± 0.055 |
EC (mS cm−1) | 2.74 ± 0.04 |
Organic matter (%) | 0.55 ± 0.04 |
Available N (mg kg−1) | 3.73 ± 0.47 |
Available P (mg kg−1) | 1.64 ± 0.02 |
Available K (mg kg−1) | 6.23 ± 0.17 |
Available SO42− (mg kg−1) | 410 ± 12 |
Bioavailable Cu (mg kg−1) | 28.1 ± 1.04 |
Bioavailable Fe (mg kg−1) | 307 ± 9.23 |
Bioavailable Mn (mg kg−1) | 1.73 ± 0.23 |
Bioavailable Zn (mg kg−1) | 4.37 ± 0.31 |
Total Cu (mg kg−1) | 1924 ± 119 |
Total Fe (mg kg−1) | 8769 ± 468 |
Total Mn (mg kg−1) | 187 ± 3.58 |
Total Zn (mg kg−1) | 92.6 ± 10.2 |
Bulk density (g cm−3) | 1.67 |
Sand (%) | 72.73 |
Silt (%) | 7.22 |
Clay (%) | 20.05 |
(cm2) | (day) | K (day−1) | Reduced Chi-Sqr | R2 | |
---|---|---|---|---|---|
Shoots | |||||
Control | 13.63 ± 1.349 | 4.291 ± 2.737 | 0.07405 ± 0.02037 | 0.2466 | 0.9647 |
15 V-8 h | 19.93 ± 1.176 | 11.86 ± 2.033 | 0.07304 ± 0.00834 | 0.2186 | 0.9939 |
Roots | |||||
Control | 8.889 ± 0.1303 | 10.66 ± 0.2453 | 0.2495 ± 0.01121 | 0.3277 | 0.9985 |
15 V-8 h | 12.54 ± 0.957 | 23.46 ± 2.497 | 0.1148 ± 0.01054 | 2.6585 | 0.9979 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tapia, Y.; Salazar, O.; Seguel, O.; Suazo-Hernández, J.; Urdiales-Flores, D.; Aponte, H.; Urdiales, C. Optimizing Heavy Metal Uptake in Carpobrotus aequilaterus Through Electrokinetic Treatment: A Comprehensive Study on Phytoremediation from Mine Tailings. Toxics 2024, 12, 860. https://doi.org/10.3390/toxics12120860
Tapia Y, Salazar O, Seguel O, Suazo-Hernández J, Urdiales-Flores D, Aponte H, Urdiales C. Optimizing Heavy Metal Uptake in Carpobrotus aequilaterus Through Electrokinetic Treatment: A Comprehensive Study on Phytoremediation from Mine Tailings. Toxics. 2024; 12(12):860. https://doi.org/10.3390/toxics12120860
Chicago/Turabian StyleTapia, Yasna, Osvaldo Salazar, Oscar Seguel, Jonathan Suazo-Hernández, Diego Urdiales-Flores, Humberto Aponte, and Cristian Urdiales. 2024. "Optimizing Heavy Metal Uptake in Carpobrotus aequilaterus Through Electrokinetic Treatment: A Comprehensive Study on Phytoremediation from Mine Tailings" Toxics 12, no. 12: 860. https://doi.org/10.3390/toxics12120860
APA StyleTapia, Y., Salazar, O., Seguel, O., Suazo-Hernández, J., Urdiales-Flores, D., Aponte, H., & Urdiales, C. (2024). Optimizing Heavy Metal Uptake in Carpobrotus aequilaterus Through Electrokinetic Treatment: A Comprehensive Study on Phytoremediation from Mine Tailings. Toxics, 12(12), 860. https://doi.org/10.3390/toxics12120860