Volatile Compounds of Sucuk, a Dry Fermented Sausage: The Effects of Ripening Rate, Autochthonous Starter Cultures and Fat Type
<p>Cluster analysis of heat map showing relationship between ripening rate and volatile compounds (<b>a</b>) and between ripening rate and chemical groups of volatile compounds (<b>b</b>).</p> "> Figure 2
<p>Cluster analysis of heat map showing relationship between starter culture and volatile compounds (<b>a</b>) and between starter culture and chemical groups of volatile compounds (<b>b</b>).</p> "> Figure 3
<p>Cluster analysis of heat map showing the relationship between fat type and volatile compounds (<b>a</b>) and between fat type and chemical groups of volatile compounds (<b>b</b>).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Production of Sucuk
2.3. Volatile Compounds Analysis
2.4. Statistical Analysis
3. Results and Discussion
3.1. Aldehydes
3.2. Acids
3.3. Ketones
3.4. Nitrogenous Compounds
Compounds | KI | RI | Ripening Rate | Fat Type | Starter Culture | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Slow | Fast | BF | STF | BF+STF | Control | Lp | Sx | Lp+Sx | |||
Aldehydes | |||||||||||
Acetaldehyde | <500 | a | 1.80 ± 4.59 b | 7.00 ± 8.87 a | 3.82 ± 7.78 | 4.88 ± 8.89 | 4.51 ± 5.60 | 4.39 ± 5.35 | 6.93 ± 11.76 | 3.32 ± 5.44 | 2.98 ± 4.89 |
Pentanal | 742 | a | 1.57 ± 3.81 a | 0.34 ± 0.71 b | 0.22 ± 0.82 b | 1.93 ± 4.03 a | 0.71 ± 2.33 a | 0.33 ± 0.75 b | 0.65 ± 0.97 b | 0.12 ± 0.33 b | 2.70 ± 5.11 a |
Hexanal | 849 | a | 10.10 ± 14.20 | 7.76 ± 36.93 | 10.00 ± 35.80 | 9.06 ± 16.10 | 7.74 ± 28.73 | 9.87 ± 32.39 | 10.10 ± 41.05 | 3.09 ± 3.34 | 12.68 ± 19.58 |
Heptanal | 955 | a | 1.27 ± 3.24 | 1.67 ± 11.76 | 2.79 ± 14.50 | 0.85 ± 2.65 | 0.76 ± 2.25 | 0.50 ± 0.58 | 3.37 ± 16.58 | 0.31 ± 0.41 | 1.69 ± 4.54 |
Octanal | 1044 | a | 0.47 ± 2.57 | 0.15 ± 0.62 | 0.07 ± 0.24 | 0.71 ± 3.20 | 0.14 ± 0.36 | 0.03 ± 0.20 | 0.51 ± 0.93 | 0.00 ± 0.00 | 0.69 ± 3.61 |
Nonanal | 1146 | a | 1.43 ± 8.40 | 0.51 ± 1.25 | 0.38 ± 0.98 | 0.31 ± 0.79 | 2.23 ± 10.27 | 0.00 ± 0.00 | 1.07 ± 1.34 | 0.00 ± 0.00 | 2.81 ± 11.83 |
2-methyl-3-phenyl propanal | 1318 | b | 46.97 ± 42.85 | 39.51 ± 45.14 | 42.85 ± 33.50 | 44.26 ± 44.97 | 42.62 ± 52.42 | 55.02 ± 59.46 a | 18.12 ± 6.81 b | 42.50 ± 18.04 a | 57.32 ± 54.88 a |
Acids | |||||||||||
Acetic acid | 717 | a | 118.37 ± 221.73 a | 11.37 ± 9.11 b | 69.65 ± 166.42 a | 93.66 ± 208.40 a | 31.30 ± 100.07 b | 14.04 ± 13.40 b | 20.70 ± 10.12 b | 14.21 ± 8.04 b | 210.54 ± 286.70 a |
Ketones | |||||||||||
Acetone | 541 | a | 0.00 ± 0.00 b | 0.47 ± 0.83 a | 0.30 ± 0.92 | 0.23 ± 0.49 | 0.18 ± 0.35 | 0.00 ± 0.00 c | 0.64 ± 1.10 a | 0.00 ± 0.00 c | 0.30 ± 0.37 b |
Diacetyl | 645 | a | 9.85 ± 20.21 a | 0.95 ± 1.85 b | 6.18 ± 15.02 a | 8.69 ± 20.59 a | 1.34 ± 2.26 b | 0.04 ± 0.21 c | 5.67 ± 4.76 b | 0.00 ± 0.00 c | 15.91 ± 26.86 a |
Acetoin | 779 | a | 7.40 ± 15.19 a | 0.11 ± 0.49 b | 4.06 ± 10.97 | 4.72 ± 13.36 | 2.48 ± 9.40 | 0.00 ± 0.00 b | 2.74 ± 3.02 b | 0.00 ± 0.00 b | 12.28 ± 20.23 a |
Nitrogenous compounds | |||||||||||
1-methyl-1H-pyrrole | 786 | b | 2.30 ± 4.79 a | 0.58 ± 0.75 b | 1.27 ± 2.85 b | 2.19 ± 4.77 a | 0.86 ± 2.43 b | 0.39 ± 1.07 b | 0.90 ± 0.93 b | 0.33 ± 0.39 b | 4.15 ± 6.19 a |
3.5. Aromatic and Aliphatic Hydrocarbons
Compounds | KI | RI | Ripening Rate | Fat Type | Starter Culture | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Slow | Fast | BF | STF | BF+STF | Control | Lp | Sx | Lp+Sx | |||
Aromatic hydrocarbons | |||||||||||
Toluene | 785 | a | 6.47 ± 8.94 a | 1.69 ± 1.59 b | 4.73 ± 9.16 | 4.27 ± 6.47 | 3.25 ± 3.85 | 5.89 ± 9.88 a | 1.97 ± 1.36 b | 2.52 ± 2.03 b | 5.94 ± 8.57 a |
p-xylene | 892 | a | 1.42 ± 2.82 a | 0.59 ± 1.09 b | 0.30 ± 0.62 b | 1.93 ± 3.24 a | 0.79 ± 1.41 b | 0.59 ± 0.71 b | 0.49 ± 0.65 b | 0.99 ± 1.45 b | 1.95 ± 3.85 a |
Styrene | 916 | b | 0.49 ± 1.37 | 0.30 ± 0.54 | 0.33 ± 0.65 b | 0.70 ± 1.63 a | 0.15 ± 0.32 b | 0.23 ± 0.35 | 0.31 ± 0.71 | 0.34 ± 0.51 | 0.69 ± 1.86 |
1-methyl-4-(1-methylethyl)-benzene | 1060 | b | 216.09 ± 264.57 a | 63.95 ± 58.86 b | 160.19 ± 239.90 | 132.74 ± 190.97 | 127.13 ± 184.51 | 105.70 ± 57.36 b | 88.40 ± 63.51 b | 106.15 ± 131.13 b | 259.82 ± 358.35 a |
1-methyl-4-(1-methyl ethenyl)-benzene | 1112 | b | 10.44 ± 13.72 a | 2.71 ± 2.52 b | 5.48 ± 7.41 | 7.53 ± 10.81 | 6.72 ± 12.88 | 4.52 ± 4.19 b | 4.90 ± 4.43 b | 4.47 ± 3.96 b | 12.42 ± 18.88 a |
1-methoxy-4-(1-propenyl)-benzene | 1342 | b | 0.10 ± 0.27 b | 0.35 ± 0.44 a | 0.25 ± 0.37 | 0.17 ± 0.27 | 0.27 ± 0.49 | 0.16 ± 0.28 b | 0.15 ± 0.39 b | 0.34 ± 0.39 a | 0.25 ± 0.45 ab |
1,2-dimethoxy-4-(2-propenyl)-benzene | 1457 | b | 6.30 ± 9.45 a | 4.18 ± 2.26 b | 4.93 ± 5.45 | 6.05 ± 8.43 | 4.75 ± 6.66 | 2.83 ± 2.74 b | 3.25 ± 2.09 b | 3.10 ± 2.02 b | 11.77 ± 11.03 a |
Aliphatic hydrocarbons | |||||||||||
Heptane | 700 | a | 13.89 ± 28.19 a | 1.16 ± 2.21 b | 15.20 ± 33.16 a | 3.05 ± 4.43 b | 4.32 ± 11.03 a | 14.24 ± 34.45 a | 1.61 ± 2.14 b | 8.02 ± 14.71 ab | 6.23 ± 17.21 ab |
Nonane | 900 | a | 0.13 ± 0.44 | 0.06 ± 0.23 | 0.07 ± 0.26 | 0.09 ± 0.33 | 0.13 ± 0.45 | 0.27 ± 0.60 a | 0.00 ± 0.00 a | 0.11 ± 0.32 b | 0.00 ± 0.00 b |
Decane | 1000 | a | 1.04 ± 2.35 | 0.65 ± 181 | 0.83 ± 2.18 | 1.11 ± 2.58 | 0.61 ± 1.40 | 0.75 ± 1.87 ab | 0.37 ± 1.05 b | 1.60 ± 2.78 a | 0.67 ± 2.21 b |
Undecane | 1100 | a | 15.55 ± 33.13 | 10.64 ± 7.54 | 11.31 ± 16.12 | 15.65 ± 30.61 | 12.32 ± 23.57 | 7.56 ± 7.30 b | 7.28 ± 7.13 b | 14.80 ± 10.53 ab | 22.75 ± 44.57 a |
Dodecane | 1200 | a | 2.96 ± 10.55 a | 0.38 ± 0.89 b | 1.92 ± 5.68 | 0.75 ± 1.46 | 2.34 ± 11.78 | 4.30 ± 14.60 | 0.41 ± 0.56 | 1.20 ± 2.39 | 0.77 ± 2.25 |
Tridecane | 1300 | a | 0.47 ± 0.66 a | 0.14 ± 0.36 b | 0.26 ± 0.52 | 0.31 ± 0.62 | 0.35 ± 0.53 | 0.55 ± 0.67 a | 0.20 ± 0.43 bc | 0.39 ± 0.57 ab | 0.07 ± 0.42 c |
Tetradecane | 1400 | a | 0.55 ± 1.55 a | 0.06 ± 0.19 b | 0.32 ± 1.43 | 0.37 ± 1.25 | 0.22 ± 0.49 | 0.30 ± 0.71 | 0.11 ± 0.38 | 0.21 ± 0.33 | 0.60 ± 2.07 |
3.6. Alcohols
3.7. Sulfide Compounds
3.8. Esters
Compounds | KI | RI | Ripening Rate | Fat Type | Starter Culture | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Slow | Fast | BF | STF | BF+STF | Control | Lp | Sx | Lp+Sx | |||
Alcohols | |||||||||||
Ethanol | 539 | a | 75.14 ± 137.49 a | 35.92 ± 33.10 b | 50.67 ± 67.32 | 54.89 ± 79.77 | 61.04 ± 142.97 | 41.45 ± 44.56 b | 22.69 ± 27.19 b | 25.47 ± 6.63 b | 132.51 ± 176.20 a |
Isoamyl alcohol | 781 | b | 0.34 ± 1.55 | 0.13 ± 0.57 | 0.37 ± 1.86 | 0.20 ± 0.73 | 0.14 ± 0.40 | 0.60 ± 2.16 | 0.00 ± 0.00 | 0.35 ± 0.81 | 0.00 ± 0.00 |
1-hexacosanol | 1097 | c | 0.00 ± 0.00 b | 0.34 ± 0.81 a | 0.25 ± 0.63 | 0.10 ± 0.50 | 0.17 ± 0.65 | 0.11 ± 0.50 | 0.36 ± 0.95 | 0.11 ± 0.37 | 0.10 ± 0.36 |
2-ethyl-1-dodecanol | 1102 | c | 0.00 ± 0.00 b | 0.26 ± 0.59 a | 0.15 ± 0.48 | 0.19 ± 0.49 | 0.05 ± 0.31 | 0.05 ± 0.21 b | 0.19 ± 0.52 ab | 0.02 ± 0.13 b | 0.25 ± 0.64 a |
α–methylbenzyl alcohol | 1342 | b | 1.00 ± 2.60 | 0.71 ± 0.70 | 0.61 ± 0.90 | 1.20 ± 2.75 | 0.74 ± 1.59 | 0.50 ± 0.68 b | 0.32 ± 0.61 b | 0.49 ± 0.56 b | 2.09 ± 3.40 a |
α–propylbenzene methanol | 1357 | b | 0.00 ± 0.00 b | 0.45 ± 1.86 a | 0.10 ± 0.47 | 0.39 ± 2.19 | 0.19 ± 0.57 | 0.00 ± 0.00 | 0.69 ± 2.55 | 0.06 ± 0.29 | 0.16 ± 0.58 |
Sulfide compounds | |||||||||||
Carbon disulfide | 552 | b | 0.00 ± 0.00 b | 0.31 ± 0.44 a | 0.13 ± 0.28 | 0.19 ± 0.39 | 0.14 ± 0.35 | 0.11 ± 0.28 | 0.12 ± 0.28 | 0.22 ± 0.41 | 0.17 ± 0.40 |
Methyl thiirane | 598 | b | 237.96 ± 532.07 a | 22.80 ± 1.76 b | 95.89 ± 311.36 b | 215.73 ± 526.70 a | 79.53 ± 279.60 b | 6.12 ± 5.56 b | 33.15 ± 19.09 b | 6.99 ± 2.29 b | 475.28 ± 677.38 a |
Allyl methyl sulfide | 730 | b | 54.23 ± 75.58 a | 13.27 ± 11.23 b | 36.82 ± 60.94 a | 39.64 ± 68.87 a | 24.79 ± 39.02 b | 24.00 ± 23.45 b | 15.16 ± 9.32 b | 16.05 ± 8.79 b | 79.78 ± 99.50 a |
1-(methylthio)-1-propene | 753 | b | 0.00 ± 0.00 b | 0.37 ± 1.42 a | 0.33 ± 1.60 | 0.13 ± 0.63 | 0.09 ± 0.37 | 0.39 ± 1.83 | 0.30 ± 0.83 | 0.05 ± 0.30 | 0.00 ± 0.00 |
Dimethyl disulfide | 764 | b | 0.30 ± 0.84 | 0.51 ± 0.88 | 0.23 ± 0.89 | 0.42 ± 0.95 | 0.55 ± 0.71 | 0.71 ± 1.13 a | 0.01 ± 0.07 b | 0.89 ± 1.05 a | 0.00 ± 0.00 b |
3,3-thiobis-1-propene | 888 | b | 44.30 ± 63.63 a | 8.03 ± 8.04 b | 28.38 ± 50.65 | 29.92 ± 56.27 | 20.18 ± 37.87 | 16.76 ± 15.10 b | 11.44 ± 7.32 b | 8.94 ± 6.24 b | 67.51 ± 83.67 a |
Methly-2-propenyl disulfide | 946 | b | 13.88 ± 13.83 a | 9.48 ± 8.82 b | 10.84 ± 13.57 | 12.48 ± 11.16 | 11.72 ± 1.54 | 16.25 ± 14.75 a | 6.31 ± 4.26 c | 13.56 ± 9.13 ab | 10.58 ± 13.80 b |
Methyl trans-propenyl disulfide | 955 | b | 0.15 ± 0.34 b | 0.47 ± 0.58 a | 0.23 ± 0.43 b | 0.28 ± 0.40 b | 0.42 ± 0.63 a | 0.61 ± 0.70 a | 0.04 ± 0.14 b | 0.57 ± 0.42 a | 0.02 ± 0.07 b |
Di-2-propenyl disulfide | 1126 | b | 33.25 ± 54.50 | 20.96 ± 17.98 | 26.34 ± 40.95 | 26.18 ± 43.28 | 28.79 ± 39.20 | 28.86 ± 26.11 | 21.10 ± 13.84 | 19.89 ± 7.92 | 38.55 ± 75.31 |
Esters | |||||||||||
Ethyl acetate | 648 | a | 17.43 ± 24.36 a | 8.68 ± 6.97 b | 9.33 ± 11.45 b | 17.91 ± 25.02 a | 11.93 ± 15.21 b | 11.44 ± 8.56 b | 5.55 ± 6.07 c | 9.44 ± 5.47 bc | 25.79 ± 31.62 a |
Ethyl butanoate | 791 | b | 0.17 ± 0.49 b | 0.52 ± 0.79 a | 0.08 ± 0.20 b | 0.40 ± 0.74 a | 0.55 ± 0.84 a | 0.48 ± 0.68 a | 0.10 ± 0.42 b | 0.59 ± 0.85 a | 0.21 ± 0.62 b |
Ethyl lactate | 843 | b | 0.14 ± 0.55 | 0.22 ± 0.46 | 0.17 ± 0.64 | 0.20 ± 0.45 | 0.17 ± 0.40 | 0.03 ± 0.16 | 0.26 ± 0.48 | 0.21 ± 0.47 | 0.21 ± 0.73 |
Ethyl 3-methyl butyrate | 869 | b | 0.15 ± 0.44 b | 0.49 ± 1.41 a | 0.07 ± 0.41 b | 0.55 ± 1.59 a | 0.33 ± 0.76 ab | 0.20 ± 0.57 b | 0.01 ± 0.03 b | 1.06 ± 1.85 a | 0.01 ± 0.03 b |
Ethyl 2,4-hexadienoate | 1130 | c | 7.20 ± 15.74 a | 0.31 ± 0.84 b | 0.94 ± 2.14 b | 5.83 ± 12.10 a | 4.51 ± 15.73 ab | 2.16 ± 2.30 b | 0.96 ± 1.19 b | 2.00 ± 3.03 b | 9.92 ± 22.00 a |
Ethyl octanoate | 1209 | b | 0.00 ± 0.00 b | 0.42 ± 0.47 a | 0.06 ± 0.19 c | 0.22 ± 0.33 b | 0.34 ± 0.53 a | 0.37 ± 0.45 a | 0.17 ± 0.35 b | 0.11 ± 0.23 b | 0.18 ± 0.45 b |
Ethyl decanoate | 1415 | c | 0.00 ± 0.00 b | 0.07 ± 0.17 a | 0.00 ± 0.00 b | 0.10 ± 0.19 a | 0.01 ± 0.04 b | 0.06 ± 0.16 ab | 0.01 ± 0.06 c | 0.02 ± 0.07 bc | 0.07 ± 0.16 a |
3.9. Terpenes
Compounds | KI | RI | Ripening Rate | Fat Type | Starter Culture | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Slow | Fast | BF | STF | BF+STF | Control | Lp | Sx | Lp+Sx | |||
Terpenes | |||||||||||
α–thujene | 934 | b | 2.78 ± 4.11 a | 1.61 ± 1.83 b | 2.07 ± 3.20 | 2.42 ± 3.55 | 2.09 ± 2.97 | 1.79 ± 2.07 b | 1.78 ± 1.99 b | 1.70 ± 1.99 b | 3.50 ± 5.29 a |
α-pinene | 939 | b | 16.65 ± 25.78 a | 5.43 ± 3.96 b | 13.60 ± 25.80 | 11.53 ± 17.45 | 7.98 ± 11.73 | 6.93 ± 10.36 b | 5.06 ± 2.95 b | 5.98 ± 4.31 b | 26.18 ± 32.54 a |
Camphene | 958 | b | 0.42 ± 1.06 | 0.25 ± 0.29 | 0.26 ± 0.45 | 0.51 ± 1.23 | 0.23 ± 0.28 | 0.28 ± 0.51 | 0.26 ± 0.32 | 0.26 ± 0.32 | 0.53 ± 1.39 |
Sabinene | 971 | b | 4.03 ± 5.76 a | 1.62 ± 2.43 b | 2.93 ± 5.25 | 3.67 ± 5.15 | 1.88 ± 2.79 | 3.11 ± 5.66 | 1.65 ± 1.73 | 2.56 ± 3.26 | 3.97 ± 6.04 |
β-pinene | 987 | b | 15.97 ± 28.77 | 10.65 ± 8.29 | 16.63 ± 24.69 | 14.62 ± 25.99 | 8.68 ± 7.41 | 14.72 ± 22.79 ab | 7.84 ± 8.05 b | 10.41 ± 7.16 b | 20.25 ± 33.47 a |
β-myrcene | 1005 | b | 84.04 ± 146.97 a | 16.86 ± 15.77 b | 56.65 ± 123.77 | 56.36 ± 101.34 | 38.34 ± 103.20 | 16.05 ± 14.31 b | 24.17 ± 18.01 b | 19.59 ± 13.59 b | 141.99 ± 191.64 a |
α-phellandrene | 1022 | b | 26.36 ± 44.95 a | 8.33 ± 8.89 b | 21.37 ± 48.75 | 19.27 ± 27.15 | 11.40 ± 15.84 | 9.15 ± 8.54 b | 10.04 ± 6.45 b | 9.91 ± 8.85 b | 40.29 ± 60.65 a |
3-carene | 1026 | b | 48.82 ± 76.37 a | 13.81 ± 12.66 b | 42.45 ± 80.09 a | 34.19 ± 52.53 a | 17.30 ± 21.97 b | 23.09 ± 2.90 b | 15.63 ± 12.24 b | 19.09 ± 13.89 b | 67.44 ± 102.63 a |
α-terpinene | 1030 | b | 5.00 ± 9.42 a | 2.28 ± 3.68 b | 3.50 ± 7.13 | 5.01 ± 9.37 | 2.41 ± 4.24 | 3.08 ± 7.22 b | 2.69 ± 3.73 b | 1.80 ± 2.13 b | 6.99 ± 11.31 a |
D-Limonene | 1043 | b | 119.92 ± 183.63 a | 28.50 ± 28.32 b | 86.89 ± 166.40 a | 87.20 ± 146.23 a | 48.54 ± 92.04 b | 38.53 ± 28.03 b | 36.22 ± 33.31 b | 35.68 ± 28.87 b | 186.41 ± 242.14 a |
β-phellandrene | 1065 | b | 13.13 ± 22.57 a | 2.96 ± 3.14 b | 6.37 ± 12.71 | 10.69 ± 21.05 | 7.08 ± 15.75 | 2.34 ± 2.88 b | 4.15 ± 4.15 b | 3.48 ± 3.77 b | 22.21 ± 29.03 a |
β-ocimene | 1068 | b | 0.30 ± 0.55 b | 0.85 ± 1.16 a | 0.51 ± 0.94 | 0.63 ± 0.98 | 0.58 ± 0.93 | 0.45 ± 0.98 ab | 0.80 ± 1.10 a | 0.33 ± 0.61 b | 0.71 ± 0.98 a |
Eucalyptol | 1070 | b | 0.93 ± 2.77 | 1.21 ± 1.46 | 1.20 ± 3.16 | 1.25 ± 1.79 | 0.77 ± 1.24 | 1.01 ± 1.41 | 1.41 ± 3.63 | 1.43 ± 1.88 | 0.44 ± 0.74 |
γ-terpinene | 1072 | b | 93.55 ± 131.07 a | 30.13 ± 24.56 b | 63.03 ± 84.18 ab | 76.09 ± 124.52 a | 46.41 ± 83.07 b | 35.90 ± 32.55 b | 34.73 ± 27.76 b | 32.63 ± 21.16 b | 144.09 ± 169.26 a |
α-terpinolene | 1095 | b | 1.87 ± 4.75 | 1.57 ± 1.62 | 1.62 ± 2.60 | 2.09 ± 5.40 | 1.45 ± 1.37 | 1.05 ± 1.28 | 2.06 ± 2.65 | 1.32 ± 1.41 | 2.45 ± 6.25 |
Linalool | 1142 | a | 29.09 ± 47.39 a | 8.46 ± 6.83 b | 19.96 ± 35.62 | 21.47 ± 39.08 | 14.89 ± 31.13 | 10.79 ± 8.20 b | 9.43 ± 7.43 b | 9.09 ± 5.28 b | 45.79 ± 62.73 a |
4-terpinenol | 1220 | b | 2.75 ± 10.52 | 1.06 ± 1.36 | 1.00 ± 1.83 | 1.71 ± 3.70 | 3.00 ± 12.38 | 3.28 ± 13.91 | 0.86 ± 0.66 | 0.78 ± 0.81 | 2.70 ± 5.63 |
α–terpineol | 1252 | b | 2.13 ± 4.35 a | 0.55 ± 0.68 b | 1.04 ± 2.13 | 1.78 ± 4.20 | 1.20 ± 2.94 | 0.37 ± 0.51 b | 0.61 ± 0.51 b | 0.47 ± 0.51 b | 3.91 ± 5.65 a |
4-carene | 1356 | b | 0.00 ± 0.00 b | 0.17 ± 0.41 a | 0.06 ± 0.29 | 0.09 ± 0.33 | 0.11 ± 0.30 | 0.07 ± 0.31 ab | 0.16 ± 0.43 a | 0.11 ± 0.00 ab | 0.00 ± 0.00 b |
Cumic alcohol | 1371 | b | 11.11 ± 17.73 a | 4.32 ± 4.54 b | 6.34 ± 12.72 | 9.52 ± 15.64 | 7.28 ± 11.39 | 0.60 ± 1.13 c | 5.27 ± 3.18 b | 3.00 ± 3.16 bc | 21.97 ± 20.39 a |
Eugenol | 1436 | b | 0.05 ± 0.13 b | 0.51 ± 0.42 a | 0.31 ± 0.41 | 0.26 ± 0.36 | 0.27 ± 0.40 | 0.21 ± 0.33 b | 0.32 ± 0.47 ab | 0.22 ± 0.27 b | 0.37 ± 0.43 a |
Copaene | 1447 | b | 3.55 ± 5.14 a | 1.31 ± 0.67 b | 2.41 ± 3.37 | 2.96 ± 4.84 | 1.92 ± 3.00 | 1.10 ± 0.86 b | 1.52 ± 0.76 b | 1.27 ± 0.58 b | 5.83 ± 6.48 a |
β–elemene | 1453 | b | 0.04 ± 0.14 b | 0.12 ± 0.21 a | 0.07 ± 0.18 | 0.11 ± 0.20 | 0.07 ± 0.17 | 0.10 ± 0.21 | 0.04 ± 0.14 | 0.07 ± 0.19 | 0.11 ± 0.20 |
Iso-caryophyllene | 1447 | c | 4.30 ± 6.88 a | 1.44 ± 1.24 b | 2.65 ± 5.09 | 3.43 ± 6.40 | 2.54 ± 3.57 | 1.52 ± 1.06 b | 1.67 ± 1.36 b | 1.38 ± 0.91 b | 6.92 ± 0.01 a |
Caryophyllene | 1490 | b | 29.58 ± 45.23 a | 11.70 ± 5.27 b | 24.64 ± 36.25 a | 23.69 ± 39.99 a | 13.59 ± 19.69 b | 12.87 ± 8.23 b | 12.78 ± 5.03 b | 10.33 ± 4.89 b | 46.59 ± 59.08 a |
α-caryophyllene | 1504 | b | 0.55 ± 1.08 | 0.43 ± 0.26 | 0.33 ± 0.36 b | 0.70 ± 1.08 a | 0.46 ± 0.71 b | 0.17 ± 0.22 b | 0.34 ± 0.31 b | 0.34 ± 0.15 b | 1.13 ± 1.33 a |
3.10. Results of Heat Map
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Starowicz, M. Analysis of volatiles in food products. Seperations 2021, 8, 157. [Google Scholar] [CrossRef]
- Tylewicz, U.; Inchingolo, R.; Rodriguez-Estrada, M.T. Food aroma compounds. In Nutraceutical and Functional Food Components; Galanakis, C.M., Ed.; Elsevier: London, UK, 2017; p. 297. ISBN 978-0-12-805257-0. [Google Scholar]
- Mottram, D.S. Meat. In Volatile Compounds in Foods and Beverages; Maarse, H., Ed.; Marcel Dekker Inc.: New York, NY, USA, 1991; ISBN 0-8247-8390-5. [Google Scholar]
- Sohail, A.; Al-Dalali, S.; Wang, J.; Xie, J.; Shakoor, A.; Asimi, S.; Shah, H.; Patil, P. Aroma compounds identified in cooked meat: A review. Food Res. Int. 2022, 157, 111385. [Google Scholar] [CrossRef] [PubMed]
- Ordóñez, J.A.; Hierro, E.M.; Bruna, J.M.; Hoz, L.D.L. Changes in the components of dry-fermented sausages during ripening. Crit. Rev. Food Sci. Nutr. 1999, 39, 329–367. [Google Scholar] [CrossRef]
- Shan, K.; Yao, Y.; Wang, J.; Zhou, T.; Zeng, X.; Zhang, M.; Weixin, K.; He, H.; Li, C. Effect of probiotic Bacillus cereus DM423 on the flavor formation of fermented sausage. Food Res. Int. 2023, 172, 113210. [Google Scholar] [CrossRef]
- Petäjä-Kanninen, E.; Puolanne, E. Principles of meat fermentation. In Handbook of Fermented Meat and Poultry; Toldrá, F., Ed.; Blackwell Publishing Professional: Ames, IA, USA, 2007; p. 31. ISBN 978-0-8138-1477-3. [Google Scholar]
- Ercoşkun, H.; Özkal, S.G. Kinetics of traditional Turkish sausage quality aspects during fermentation. Food Control 2011, 22, 165–172. [Google Scholar] [CrossRef]
- Yilmaz Topcam, M.M.; Arslan, B.; Soyer, A. Sucuk, Turkish-style fermented sausage: Evaluation of the effect of bioprotective starter cultures on its microbiological, physicochemical, and chemical properties. Appl. Microbiol. 2024, 4, 1215–1231. [Google Scholar] [CrossRef]
- Kaban, G.; Kaya, M. Effects of Staphylococcus carnosus on quality characteristics of sucuk (Turkish dry-fermented sausage) during ripening. Food Sci. Biotechnol. 2009, 18, 150–156. [Google Scholar]
- Kaban, G.; Kaya, M. Effects of Lactobacillus plantarum and Staphylococcus xylosus on the quality characteristics of dry fermented sausage “sucuk”. J. Food Sci. 2009, 74, S58–S63. [Google Scholar] [CrossRef]
- Kaban, G.; Sallan, S.; Çinar Topçu, K.; Sayın Börekçi, B.; Kaya, M. Assessment of technological attributes of autochthonous starter cultures in Turkish dry fermented sausage (sucuk). Int. J. Food Sci. Technol. 2022, 57, 4392–4399. [Google Scholar] [CrossRef]
- Akköse, A.; Oğraş, Ş.Ş.; Kaya, M.; Kaban, G. Microbiological, physicochemical and sensorial changes during the ripening of sucuk, a traditional Turkish dry-fermented sausage: Effects of autochthonous strains, sheep tail fat and ripening rate. Fermentation 2023, 9, 558. [Google Scholar] [CrossRef]
- Olesen, P.T.; Meyer, A.S.; Stahnke, L.H. Generation of flavour compounds in fermented sausages—The influence of curing ingredients, Staphylococcus starter culture and ripening time. Meat Sci. 2004, 66, 675–687. [Google Scholar] [CrossRef] [PubMed]
- Olivares, A.; Navarro, J.L.; Flores, M. Establishment of the contribution of volatile compounds to the aroma of fermented sausages at different stages of processing and storage. Food Chem. 2009, 115, 1464–1472. [Google Scholar] [CrossRef]
- Soyer, A.; Ertaş, A.H.; Üzümcüoğlu, U. Effect of processing conditions on the qualityof naturally fermented Turkish sausages (sucuks). Meat Sci. 2005, 69, 135–141. [Google Scholar] [CrossRef]
- Olivares, A.; Navarro, J.L.; Salvador, A.; Flores, M. Sensory acceptability of slow fermented sausages based on fat content and ripening time. Meat Sci. 2010, 86, 251–257. [Google Scholar] [CrossRef]
- Olivares, A.; Navarro, J.L.; Flores, M. Effect of fat content on aroma generation during processing of dry fermented sausages. Meat Sci. 2011, 87, 264–273. [Google Scholar] [CrossRef]
- Mora-Gallego, H.; Serra, X.; Guàrdia, M.D.; Miklos, R.; Lametsch, R.; Arnau, J. Effect of the type of fat on the physicochemical, instrumental and sensory characteristics of reduced fat non-acid fermented sausages. Meat Sci. 2013, 93, 668–674. [Google Scholar] [CrossRef]
- Vural, H.; Özvural, E. Fermented sausages from other meats. In Handbook of Fermented Meat and Poultry; Toldrá, F., Ed.; Blackwell Publishing: Oxford, UK, 2007; pp. 369–373. ISBN 978-0-8138-1477-3. [Google Scholar]
- Stahnke, L.H. Dried sausages fermented with Staphylococcus xylosus at different temperatures and with different ingredient levels-Part II.Volatile components. Meat Sci. 1995, 41, 193–209. [Google Scholar] [CrossRef]
- Spanier, A.M.; Vinyard, B.T.; Bett, K.L.; Angelo, A.J.S.T. Sensory and statistical anaylses in meat flavour research. In Flavor of Meat, Meat Products and Seafoods; Shahidi, F., Ed.; Blackie Academic & Professional, Thomson Science: London, UK, 1998; pp. 395–419. ISBN 0751404845. [Google Scholar]
- Yılmaz Oral, Z.F.; Kaban, G. The effect of black garlic on the volatile compounds in heat-treated sucuk. Foods 2023, 12, 3876. [Google Scholar] [CrossRef]
- Spaziani, M.; Del Torre, M.; Stecchini, M.L. Changes of physicochemical, microbiological, and textural properties during ripening of Italian low-acid sausages. proteolysis, sensory and volatile profiles. Meat Sci. 2009, 81, 77–85. [Google Scholar] [CrossRef]
- Zheng, S.S.; Wang, C.Y.; Hu, Y.Y.; Yang, L.; Xu, B.C. Enhancement of fermented sausage quality driven by mixed starter cultures: Elucidating the perspective of flavor profile and microbial communities. Food Res. Int. 2024, 178, 113951. [Google Scholar] [CrossRef]
- Ferrocino, I.; Bellio, A.; Giordano, M.; Macori, G.; Romano, A.; Rantsiou, K.; Decastelli, L.; Cocolin, L. Shotgun metagenomics and volatilome profile of the microbiota of fermented sausages. Appl. Environ. Microbiol. 2018, 84, e02120-17. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Zhou, C.; Ning, J.; Wang, S.; Nie, Q.; Wang, W.; Zhang, J.; Ji, L. Effect of fermentation by Pediococcus pentosaceus and Staphylococcus carnosus on the metabolite profile of sausages. Food Res. Int. 2022, 162, 112096. [Google Scholar] [CrossRef] [PubMed]
- Toldra, F.; Sanz, Y.; Flores, M. Meat fermentation technology. In Meat Science and Applications; Hui, Y.H., Nip, W.K., Rogers, R.W., Young, O.A., Eds.; Marcel Dekker Inc.: New York, USA, 2001; pp. 537–561. [Google Scholar]
- Barbieri, F.; Tabanelli, G.; Montanari, C.; Dall’Osso, N.; Šimat, V.; Smole Možina, S.; Banos, A.; Özoğul, F.; Bassi, D.; Fontana, C.; et al. Mediterranean spontaneously fermented sausages: Spotlight on microbiological and quality features to exploit their bacterial biodiversity. Foods 2021, 10, 2691. [Google Scholar] [CrossRef] [PubMed]
- Flores, M. Understanding the implications of current health trends on the aroma of wet and dry cured meat products. Meat Sci. 2018, 144, 53–61. [Google Scholar] [CrossRef]
- Zamora, R.; Hidalgo, F.J. The Maillard reaction and lipid oxidation. Lipid Technol. 2011, 23, 59–62. [Google Scholar] [CrossRef]
- Berdague, J.L.; Monteil, P.; Montel, M.C.; Talon, R. Effects of starter cultures on the formation of flavour compounds in dry sausage. Meat Sci. 1993, 35, 275–287. [Google Scholar] [CrossRef]
- Meynier, A.; Novelli, E.; Chizzolini, R.; Zanardi, E.; Gandemer, G. Volatile compounds of commercial Milano salami. Meat Sci. 1999, 51, 175–183. [Google Scholar] [CrossRef]
- Yılmaz Oral, Z.F.; Kaban, G. Effects of autochthonous strains on volatile compounds and technological properties of heat-treated sucuk. Food Biosci. 2021, 43, 101140. [Google Scholar] [CrossRef]
- Sallan, S.; Kaban, G.; Kaya, M. The effects of nitrite, sodium ascorbate and starter culture on volatile compounds of a semi-dry fermented sausage. LWT-Food Sci. Technol. 2022, 153, 112540. [Google Scholar] [CrossRef]
- Chen, H.; Kang, X.; Wang, X.; Chen, X.; Nie, X.; Xiang, L.; Liu, D.; Zhao, Z. Potential correlation between microbial diversity and volatile flavor substances in a novel Chinese-style sausage during storage. Foods 2023, 12, 3190. [Google Scholar] [CrossRef]
- Wang, J.; Hou, J.; Zhang, X.; Hu, J.; Yu, Z.; Zhu, Y. Improving the flavor of fermented sausage by increasing its bacterial quality via inoculation with Lactobacillus plantarum MSZ2 and Staphylococcus xylosus YCC3. Foods 2022, 11, 736. [Google Scholar] [CrossRef] [PubMed]
- Kargozari, M.; Moini, S.; Basti, A.A.; Emam-Djomeh, Z.; Gandomi, H.; Martin, I.R.; Ghasemlou, M.; Carbonell-Barrachina, Á.A. Effect of autochthonous starter cultures isolated from Siahmazgi cheese on physicochemical, microbiological and volatile compound profiles and sensorial attributes of sucuk, a Turkish dry-fermented sausage. Meat Sci. 2014, 97, 104–114. [Google Scholar] [CrossRef] [PubMed]
- Tjener, K.; Stahnke, L.H.; Andersen, L.; Martinussen, J. Growth and production of volatiles by Staphylococcus carnosus in dry sausages: Influence of inoculation level and ripening time. Meat Sci. 2004, 67, 447–452. [Google Scholar] [CrossRef]
- Fonseca, S.; Cachaldora, A.; Gὀmez, M.; Franco, I.; Carballo, J. Effect of different autochthonous starter cultures on the volatile compounds profile and sensory properties of Galician chorizo, a traditional Spanish dry fermented sausage. Food Control 2013, 33, 6–14. [Google Scholar] [CrossRef]
- Wang, M.; Wang, C.; Yang, C.; Peng, L.; Xie, Q.; Zheng, R.; Dai, Y.; Liu, S.; Peng, X. Effects of Lactobacillus plantarum C7 and Staphylococcus warneri S6 on flavor quality and bacterial diversity of fermented meat rice, a traditional Chinese food. Food Res. Int. 2021, 150, 110745. [Google Scholar] [CrossRef]
- Rotsatchakul, P.; Visesanguan, W.; Smitinont, T.; Chaiseri, S. Changes in volatile compounds during fermentation of Nham (Thai fermented sausage). Int. Food Res. J. 2009, 16, 391–414. [Google Scholar]
- Xing, B.; Zhou, T.; Gao, H.; Wu, L.; Zhao, D.; Wu, J.; Li, C. Flavor evolution of normal-and low-fat Chinese sausage during natural fermentation. Food Res. Int. 2023, 169, 112937. [Google Scholar] [CrossRef]
- Wang, J.; Aziz, T.; Bai, R.; Zhang, X.; Shahzad, M.; Sameeh, M.Y.; Khan, A.A.; Dablool, A.S.; Zhu, Y. Dynamic change of bacterial diversity, metabolic pathways, and flavor during ripening of the Chinese fermented sausage. Front. Microbiol. 2022, 13, 990606. [Google Scholar] [CrossRef]
- Li, Y.; Cao, Z.; Yu, Z.; Zhu, Y.; Zhao, K. Effect of inoculating mixed starter cultures of Lactobacillus and Staphylococcus on bacterial communities and volatile flavor in fermented sausages. Food Sci. Hum. Wellness 2023, 12, 200–211. [Google Scholar] [CrossRef]
- Mei, L.; Pan, D.; Guo, T.; Ren, H.; Wang, L. Role of Lactobacillus plantarum with antioxidation properties on Chinese sausages. LWT 2022, 162, 113427. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; Montes, R.; Purriños, L.; Franco, D. Effect of pork fat addition on the volatile compounds of foal dry-cured sausage. Meat Sci. 2012, 91, 506–512. [Google Scholar] [CrossRef] [PubMed]
- Borrajo, P.; Karwowska, M.; Lorenzo, J.M. The effect of Salvia hispanica and Nigella sativa seed on the volatile profile and sensory parameters related to volatile compounds of dry fermented sausage. Molecules 2022, 27, 652. [Google Scholar] [CrossRef] [PubMed]
- D’Arrigo, M.; Petrón, M.J.; Delgado-Adámez, J.; García-Parra, J.J.; Martín-Mateos, M.J.; Ramírez-Bernabé, M.R. Dry-cured sausages “Salchichón” manufactured with a valorized ingredient from red grape pomace (Var. Tempranillo). Foods 2024, 13, 3133. [Google Scholar] [CrossRef]
- Rivas-Canedo, A.; Nunez, M.; Fernandez-Garcia, F. Volatile compounds in Spanish dry-fermented sausage ‘salchichon’ sub jected to high pressure processing: Effect of the packaging material. Meat Sci. 2009, 83, 620–626. [Google Scholar] [CrossRef]
- Sionek, B.; Tambor, K.; Okoń, A.; Szymański, P.; Zielińska, D.; Neffe-Skocińska, K.; Kołożyn-Krajewska, D. Effects of Lacticaseibacillus rhamnosus LOCK900 on development of volatile compounds and sensory quality of dry fermented sausages. Molecules 2021, 26, 6454. [Google Scholar] [CrossRef]
Slow Ripening | Fast Ripening | ||||||
---|---|---|---|---|---|---|---|
Starter Culture | Type of Fat | Starter Culture | Type of Fat | ||||
Control | BF | STF | BF+STF | Control | BF | STF | BF+STF |
L. plantarum GM77 | BF | STF | BF+STF | L. plantarum GM77 | BF | STF | BF+STF |
S. xylosus GM92 | BF | STF | BF+STF | S. xylosus GM92 | BF | STF | BF+STF |
L. plantarum GM77 S. xylosus GM92 | BF | STF | BF+STF | L. plantarum GM77 S. xylosus GM92 | BF | STF | BF+STF |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaya, M.; Kaban, G. Volatile Compounds of Sucuk, a Dry Fermented Sausage: The Effects of Ripening Rate, Autochthonous Starter Cultures and Fat Type. Foods 2024, 13, 3839. https://doi.org/10.3390/foods13233839
Kaya M, Kaban G. Volatile Compounds of Sucuk, a Dry Fermented Sausage: The Effects of Ripening Rate, Autochthonous Starter Cultures and Fat Type. Foods. 2024; 13(23):3839. https://doi.org/10.3390/foods13233839
Chicago/Turabian StyleKaya, Mükerrem, and Güzin Kaban. 2024. "Volatile Compounds of Sucuk, a Dry Fermented Sausage: The Effects of Ripening Rate, Autochthonous Starter Cultures and Fat Type" Foods 13, no. 23: 3839. https://doi.org/10.3390/foods13233839
APA StyleKaya, M., & Kaban, G. (2024). Volatile Compounds of Sucuk, a Dry Fermented Sausage: The Effects of Ripening Rate, Autochthonous Starter Cultures and Fat Type. Foods, 13(23), 3839. https://doi.org/10.3390/foods13233839