Enzymatic Oxidation of Aflatoxin M1 in Milk Using CotA Laccase
<p>Enzymatic properties and kinetics of CotA laccase-mediated AFM<sub>1</sub> oxidation. Effect of pH (<b>A</b>), temperature (<b>B</b>), and metal ions (<b>C</b>) on CotA laccase-mediated AFM<sub>1</sub> oxidation. (<b>D</b>) Michaelis–Menten plot of CotA laccase-catalyzed AFM<sub>1</sub> oxidation.</p> "> Figure 2
<p>Identification of CotA laccase-mediated AFM<sub>1</sub> oxidation products. (<b>A</b>) HPLC chromatograms of AFM<sub>1</sub> and CotA laccase-mediated AFM<sub>1</sub> oxidation products. (<b>B</b>) Mass spectra analysis of AFM<sub>1</sub> and CotA laccase-mediated AFM<sub>1</sub> oxidation products. (<b>C</b>) The reaction scheme for AFM<sub>1</sub> oxidation by CotA laccase.</p> "> Figure 3
<p>Molecular docking analysis of AFM<sub>1</sub> with CotA laccase. (<b>A</b>) The two-dimensional interaction model of AFM<sub>1</sub> with CotA laccase. (<b>B</b>) The three-dimensional interaction model of AFM<sub>1</sub> with CotA laccase.</p> "> Figure 4
<p>Evaluation of the cytotoxic effects of AFM<sub>1</sub> and its oxidation products. (<b>A</b>) Viability of L-02 cells following exposure to 100 μΜ of AFM<sub>1</sub> and CotA laccase-catalyzed AFM<sub>1</sub> oxidation products. (<b>B</b>) LDH activity. (<b>C</b>,<b>D</b>) Apoptosis rate of L-02 cells. Different letters denote statistically significant differences between groups (<span class="html-italic">p</span> < 0.05).</p> "> Figure 5
<p>Elimination of AFM<sub>1</sub> in milk by CotA laccase. Effect of CotA laccase amount (<b>A</b>) and incubation time (<b>B</b>) on AFM<sub>1</sub> degradation rate in skim milk and whole milk.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Enzymatic Characteristics of CotA Laccase for Oxidizing AFM1
2.3. AFM1 Concentration Determination by HPLC
2.4. UPLC-TOF/MS Analysis of CotA Laccase-Mediated AFM1 Oxidation Products
2.5. Homology Modeling and Molecular Docking
2.6. Cytotoxicity Evaluation of AFM1 Oxidation Products
2.7. Performance of CotA Laccase in Degrading AFM1 in Milk
3. Results and Discussion
3.1. Enzymatic Properties of CotA Laccase for Oxidizing AFM1
3.2. Identification of CotA Laccase-Mediated AFM1 Oxidation Products
3.3. Interaction of AFM1 with CotA Laccase by Molecular Docking
3.4. Hepatotoxicity Evaluation of AFM1 Oxidation Products
3.5. Performance of CotA Laccase to Degrade AFM1 in Milk
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Thorning, T.K.; Raben, A.; Tholstrup, T.; Soedamah-Muthu, S.S.; Givens, I.; Astrup, A. Milk and dairy products: Good or bad for human health? An assessment of the totality of scientific evidence. Food Nutr. Res. 2016, 60, 32527. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Zhang, Y.; Wei, C.; Ma, Q.; Ji, C.; Zhang, J.; Zhao, L. Efficacy of Bacillus subtilis ANSB060 biodegradation product for the reduction of the milk aflatoxin M1 content of dairy cows exposed to aflatoxin B1. Toxins 2019, 11, 161. [Google Scholar] [CrossRef] [PubMed]
- Ogunade, I.M.; Arriola, K.G.; Jiang, Y.; Driver, J.P.; Staples, C.R.; Adesogan, A.T. Effects of 3 sequestering agents on milk aflatoxin M1 concentration and the performance and immune status of dairy cows fed diets artificially contaminated with aflatoxin B1. J. Dairy Sci. 2016, 99, 6263–6273. [Google Scholar] [CrossRef]
- Veldman, A.; Meijs, J.A.C.; Borggreve, G.J.; Heeres-van der Tol, J.J. Carry-over of aflatoxin from cows’ food to milk. Anim. Sci. 1992, 55, 163–168. [Google Scholar] [CrossRef]
- Ismail, A.; Akhtar, S.; Levin, R.E.; Ismail, T.; Riaz, M.; Amir, M. Aflatoxin M1: Prevalence and decontamination strategies in milk and milk products. Crit. Rev. Microbiol. 2016, 42, 418–427. [Google Scholar] [CrossRef]
- Ostry, V.; Malir, F.; Toman, J.; Grosse, Y. Mycotoxins as human carcinogens-the IARC monographs classification. Mycotoxin Res. 2017, 33, 65–73. [Google Scholar] [CrossRef]
- Zhu, Y.; Hassan, Y.I.; Lepp, D.; Shao, S.; Zhou, T. Strategies and methodologies for developing microbial detoxification systems to mitigate mycotoxins. Toxins 2017, 9, 130. [Google Scholar] [CrossRef] [PubMed]
- Firmin, S.; Morgavi, D.P.; Yiannikouris, A.; Boudra, H. Effectiveness of modified yeast cell wall extracts to reduce aflatoxin B1 absorption in dairy ewes. J. Dairy Sci. 2011, 94, 5611–5619. [Google Scholar] [CrossRef]
- Maki, C.R.; Thomas, A.D.; Elmore, S.E.; Romoser, A.A.; Harvey, R.B.; Ramirez-Ramirez, H.A.; Phillips, T.D. Effects of calcium montmorillonite clay and aflatoxin exposure on dry matter intake, milk production, and milk composition. J. Dairy Sci. 2016, 99, 1039–1046. [Google Scholar] [CrossRef]
- Queiroz, O.C.M.; Han, J.H.; Staples, C.R.; Adesogan, A.T. Effect of adding a mycotoxin-sequestering agent on milk aflatoxin M1 concentration and the performance and immune response of dairy cattle fed an aflatoxin B1-contaminated diet. J. Dairy Sci. 2012, 95, 5901–5908. [Google Scholar] [CrossRef]
- Corassin, C.H.; Bovo, F.; Rosim, R.E.; Oliveira, C.A.F. Efficiency of Saccharomyces cerevisiae and lactic acid bacteria strains to bind aflatoxin M1 in UHT skim milk. Food Control 2013, 31, 80–83. [Google Scholar] [CrossRef]
- Elsanhoty, R.M.; Salam, S.A.; Ramadan, M.F.; Badr, F.H. Detoxification of aflatoxin M1 in yoghurt using probiotics and lactic acid bacteria. Food Control 2014, 43, 129–134. [Google Scholar] [CrossRef]
- Foroughi, M.; Sarabi Jamab, M.; Keramat, J.; Foroughi, M. Immobilization of Saccharomyces cerevisiae on perlite beads for the decontamination of aflatoxin M1 in Milk. J. Food Sci. 2018, 83, 2008–2013. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.; Flint, S.; Palmer, J. Control of aflatoxin M1 in milk by novel methods: A review. Food Chem. 2020, 311, 125984. [Google Scholar] [CrossRef]
- Brana, M.T.; Cimmarusti, M.T.; Haidukowski, M.; Logrieco, A.F.; Altomare, C. Bioremediation of aflatoxin B1-contaminated maize by king oyster mushroom (Pleurotus eryngii). PLoS ONE 2017, 12, e0182574. [Google Scholar] [CrossRef]
- Lou, H.; Yang, C.; Li, Y.; Li, Y.; Li, Y.; Zhao, R. Optimization of aflatoxin B1 degradation in corn by Ganoderma sinense through solid-state fermentation. LWT 2023, 183, 114959. [Google Scholar] [CrossRef]
- Mwakinyali, S.E.; Ming, Z.; Xie, H.; Zhang, Q.; Li, P. Investigation and characterization of Myroides odoratimimus strain 3J2MO aflatoxin B1 degradation. J. Agric. Food Chem. 2019, 67, 4595–4602. [Google Scholar] [CrossRef]
- Sangare, L.; Zhao, Y.; Folly, Y.M.; Chang, J.; Li, J.; Selvaraj, J.N.; Xing, F.; Zhou, L.; Wang, Y.; Liu, Y. Aflatoxin B1 degradation by a Pseudomonas strain. Toxins 2014, 6, 3028–3040. [Google Scholar] [CrossRef]
- Sun, L.H.; Zhang, N.Y.; Sun, R.R.; Gao, X.; Gu, C.; Krumm, C.S.; Qi, D.S. A novel strain of Cellulosimicrobium funkei can biologically detoxify aflatoxin B1 in ducklings. Microb. Biotechnol. 2015, 8, 490–498. [Google Scholar] [CrossRef]
- Zhang, F.-L.; Ma, H.-H.; Dong, P.-Y.; Yan, Y.-M.C.; Chen, Y.; Yang, G.-M.; Shen, W.; Zhang, X.-F. Bacillus licheniformis ameliorates aflatoxin B1-induced testicular damage by improving the gut-metabolism-testis axis. J. Hazard. Mater. 2024, 468, 133836. [Google Scholar] [CrossRef]
- Loi, M.; Fanelli, F.; Zucca, P.; Liuzzi, V.C.; Quintieri, L.; Cimmarusti, M.T.; Monaci, L.; Haidukowski, M.; Logrieco, A.F.; Sanjust, E.; et al. Aflatoxin B1 and M1 degradation by Lac2 from Pleurotus pulmonarius and Redox Mediators. Toxins 2016, 8, 245. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Qin, X.; Tang, Y.; Ma, Q.; Zhang, J.; Zhao, L. CotA laccase, a novel aflatoxin oxidase from Bacillus licheniformis, transforms aflatoxin B1 to aflatoxin Q1 and epi-aflatoxin Q1. Food Chem. 2020, 325, 126877. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.; Xu, C.; Lu, P.; Wu, M.; Chen, A.; Zhang, M.; Xie, Y.; Han, G. Widespread distribution of the DyP-carrying bacteria involved in the aflatoxin B1 biotransformation in Proteobacteria and Actinobacteria. J. Hazard. Mater. 2024, 478, 135493. [Google Scholar] [CrossRef] [PubMed]
- Adegoke, T.V.; Yang, B.; Tian, X.; Yang, S.; Gao, Y.; Ma, J.; Wang, G.; Si, P.; Li, R.; Xing, F. Simultaneous degradation of aflatoxin B1 and zearalenone by porin and peroxiredoxin enzymes cloned from Acinetobacter nosocomialis Y1. J. Hazard. Mater. 2023, 459, 132105. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Cui, L.; Xie, Y.; Li, X.; Zhao, R.; Yang, Y.; Sun, S.; Li, Q.; Ma, W.; Jia, H. Characterization, Mechanism, and application of dipeptidyl peptidase III: An aflatoxin B1-degrading enzyme from Aspergillus terreus HNGD-TM15. J. Agric. Food Chem. 2024, 72, 15998–16009. [Google Scholar] [CrossRef]
- Graham, D.E. A new role for coenzyme F420 in aflatoxin reduction by soil mycobacteria. Mol. Microbiol. 2010, 78, 533–536. [Google Scholar] [CrossRef]
- Enguita, F.J.; Martins, L.O.; Henriques, A.O.; Carrondo, M.A. Crystal structure of a bacterial endospore coat component. A laccase with enhanced thermostability properties. J. Biol. Chem. 2003, 278, 19416–19425. [Google Scholar] [CrossRef]
- Martins, L.O.; Durao, P.; Brissos, V.; Lindley, P.F. Laccases of prokaryotic origin: Enzymes at the interface of protein science and protein technology. Cell. Mol. Life Sci. 2015, 72, 911–922. [Google Scholar] [CrossRef]
- Mayolo-Deloisa, K.; Gonzalez-Gonzalez, M.; Rito-Palomares, M. Laccases in food industry: Bioprocessing, potential industrial and biotechnological applications. Front. Bioeng. Biotechnol. 2020, 8, 222. [Google Scholar] [CrossRef]
- Chauhan, P.S.; Goradia, B.; Saxena, A. Bacterial laccase: Recent update on production, properties and industrial applications. 3 Biotech 2017, 7, 323. [Google Scholar] [CrossRef]
- Sun, F.; Yu, D.; Zhou, H.; Lin, H.; Yan, Z.; Wu, A. CotA laccase from Bacillus licheniformis ZOM-1 effectively degrades zearalenone, aflatoxin B1 and alternariol. Food Control 2023, 145, 109472. [Google Scholar] [CrossRef]
- Li, T.; Huang, L.; Li, Y.; Xu, Z.; Ge, X.; Zhang, Y.; Wang, N.; Wang, S.; Yang, W.; Lu, F.; et al. The heterologous expression, characterization, and application of a novel laccase from Bacillus velezensis. Sci. Total Environ. 2020, 713, 136713. [Google Scholar] [CrossRef]
- Alberts, J.F.; Gelderblom, W.C.; Botha, A.; van Zyl, W.H. Degradation of aflatoxin B1 by fungal laccase enzymes. Int. J. Food Microbiol. 2009, 135, 47–52. [Google Scholar] [CrossRef]
- Liu, X.; Zhao, F.; Wang, X.; Sang, Y. Superoxide dismutase, a novel aflatoxin oxidase from Bacillus pumilus E-1-1-1: Study on the degradation mechanism of aflatoxin M1 and its application in milk and beer. Food Control 2024, 161, 110372. [Google Scholar] [CrossRef]
- Liu, Y.; Mao, H.; Hu, C.; Tron, T.; Lin, J.; Wang, J.; Sun, B. Molecular docking studies and in vitro degradation of four aflatoxins (AFB1, AFB2, AFG1, and AFG2) by a recombinant laccase from Saccharomyces cerevisiae. J. Food Sci. 2020, 85, 1353–1360. [Google Scholar] [CrossRef]
- Dellafiora, L.; Galaverna, G.; Reverberi, M.; Dall’Asta, C. Degradation of aflatoxins by means of laccases from Trametes versicolor: An in silico insight. Toxins 2017, 9, 17. [Google Scholar] [CrossRef]
- Gao, Y.-N.; Wu, C.-Q.; Wang, J.-Q.; Zheng, N. Metabolomic analysis reveals the mechanisms of hepatotoxicity induced by aflatoxin M1 and Ochratoxin A. Toxins 2022, 14, 141. [Google Scholar] [CrossRef]
- Marimón Sibaja, K.V.; de Oliveira Garcia, S.; Feltrin, A.C.P.; Diaz Remedi, R.; Cerqueira, M.B.R.; Badiale-Furlong, E.; Garda-Buffon, J. Aflatoxin biotransformation by commercial peroxidase and its application in contaminated food. J. Chem. Technol. Biotechnol. 2019, 94, 1187–1194. [Google Scholar] [CrossRef]
- Kerstner, F.; Cerqueira, M.B.R.; Treichel, H.; Santos, L.O.; Garda Buffon, J. Strategies for aflatoxins B1 and M1 degradation in milk: Enhancing peroxidase activity by physical treatments. Food Control 2024, 166, 110750. [Google Scholar] [CrossRef]
- Liu, X.; Zhao, F.; Wang, X.; Peng, K.; Kang, C.; Sang, Y. Degradation mechanism of aflatoxin M1 by recombinant catalase from Bacillus pumilus E-1-1-1: Food Applications in Milk and Beer. Foods 2024, 13, 888. [Google Scholar] [CrossRef]
- Liu, X.; Zhao, F.; Chitrakar, B.; Wei, G.; Wang, X.; Sang, Y. Three recombinant peroxidases as a degradation agent of aflatoxin M1 applied in milk and beer. Food Res. Int. 2023, 166, 112352. [Google Scholar] [CrossRef] [PubMed]
- Rezagholizade-shirvan, A.; Ghasemi, A.; Mazaheri, Y.; Shokri, S.; Fallahizadeh, S.; Alizadeh Sani, M.; Mohtashami, M.; Mahmoudzadeh, M.; Sarafraz, M.; Darroudi, M. Removal of aflatoxin M1 in milk using magnetic laccase/MoS2/chitosan nanocomposite as an efficient sorbent. Chemosphere 2024, 365, 143334. [Google Scholar] [CrossRef] [PubMed]
- Kolarič, L.; Minarovičová, L.; Lauková, M.; Kohajdová, Z.; Šimko, P. Elimination of aflatoxin M1 from milk: Current status, and potential outline of applicable mitigation procedures. Trends Food Sci. Technol. 2024, 150, 104603. [Google Scholar] [CrossRef]
Enzyme | Origin | Reaction Conditions | Elimination Rate | Reference |
---|---|---|---|---|
HRP | Amoracia rusticana | 0.015 U mL−1 HRP, 0.08% H2O2, 5 ng mL−1 AFM1, 30 °C for 8 h | 65.0% | [38] |
RBP | Rice bran | 0.015 U mL−1 HRP, 0.08% H2O2, 5 ng mL−1 AFM1, 4 °C for 24 h | 71.2% | [39] |
SOD | Bacillus pumilus | 1 U mL−1 SOD, 2 μg mL−1 AFM1, 40 °C for 24 h | 26.0% | [34] |
CAT | Bacillus pumilus | 1 U mL−1 CAT, 2 μg mL−1 AFM1, 40 °C for 12 h | 47.2% | [40] |
POD1 | Bacillus pumilus | 1 U mL−1 POD1, 2 μg mL−1 AFM1, 35 °C for 12 h | 22.4% | [41] |
POD2 | Bacillus pumilus | 1 U mL−1 POD2, 2 μg mL−1 AFM1, 35 °C for 12 h | 25.6% | |
POD3 | Bacillus pumilus | 1 U mL−1 POD3, 2 μg mL−1 AFM1, 35 °C for 24 h | 24.3% | |
Lac | Trametes versicolor | 20 mg mL−1 Lac, 0.5 ng mL−1 AFM1, 25 °C for 80 min | 32.0% | [42] |
CotA | Bacillus licheniformis | 2 U mL−1 CotA, 2 ng mL−1 AFM1, 37 °C for 12 h | 83.5% for skim milk; 65.1% for whole milk | This study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Y.; Lv, H.; Rao, Z.; Wang, Z.; Zhang, W.; Tang, Y.; Zhao, L. Enzymatic Oxidation of Aflatoxin M1 in Milk Using CotA Laccase. Foods 2024, 13, 3702. https://doi.org/10.3390/foods13223702
Guo Y, Lv H, Rao Z, Wang Z, Zhang W, Tang Y, Zhao L. Enzymatic Oxidation of Aflatoxin M1 in Milk Using CotA Laccase. Foods. 2024; 13(22):3702. https://doi.org/10.3390/foods13223702
Chicago/Turabian StyleGuo, Yongpeng, Hao Lv, Zhiyong Rao, Zhixiang Wang, Wei Zhang, Yu Tang, and Lihong Zhao. 2024. "Enzymatic Oxidation of Aflatoxin M1 in Milk Using CotA Laccase" Foods 13, no. 22: 3702. https://doi.org/10.3390/foods13223702
APA StyleGuo, Y., Lv, H., Rao, Z., Wang, Z., Zhang, W., Tang, Y., & Zhao, L. (2024). Enzymatic Oxidation of Aflatoxin M1 in Milk Using CotA Laccase. Foods, 13(22), 3702. https://doi.org/10.3390/foods13223702