A Quantitative Risk Assessment Model for Listeria monocytogenes in Non-Ready-to-Eat Frozen Vegetables
<p>Heat resistance data of stationary-phase or starved <span class="html-italic">L. monocytogenes</span> inoculated in various vegetables, taken from Mazzotta [<a href="#B29-foods-13-03610" class="html-bibr">29</a>], used to fit the Bigelow model for blanching.</p> "> Figure 2
<p>Effect of mean concentration of <span class="html-italic">L. monocytogenes</span> in pre-blanched vegetables and home cooking status on the mean risk of listeriosis in a serving per lot.</p> "> Figure 3
<p>Effect of blanching temperature and home cooking status on the mean risk of listeriosis in a serving per lot.</p> "> Figure 4
<p>Effect of microbial load on equipment processing vegetables after blanching and home cooking status on the mean risk of listeriosis in a serving per lot.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Exposure Assessment
2.1.1. Contaminated Lots of Vegetables Pre-Blanching
- Data and assumptions:
Module | Stage | Microbial Process | Assumptions | References | Function in R |
---|---|---|---|---|---|
Processing | Generation of contaminated lots pre-blanching | None | LM prevalence in pre-blanched vegetables is assumed to be comparable to the prevalence found in minimally processed vegetables and fresh whole vegetables sampled at the packinghouse or at retail. LM concentration in pre-blanched vegetables is assumed to be comparable to the concentrations found in freshly harvested vegetables and vegetables sold at retail. | Badosa et al. [13], Cardamone et al. [14], Carp-Carare et al. [15], Cetinkaya et al. [16], De Giusti et al. [17], Gianfranceschi et al. [18], Kokkinakis et al. [19], Lika et al. [20], Losio et al. [21], Magdovitz et al. [22], Moreno et al. [23], Pianetti et al. [24], Vojkovska et al. [25], Wagner et al. [26] Jeyaletchumi et al. [27], Kuan et al. [28] | Lot2LotGen() |
Blanching | Inactivation | LM during blanching is assumed to follow the kinetics of a cocktail of N-7004 (Scott A, serotype 4b), N-7285 (serotype 1/2a), N-7298 (serotype 1/2b), and N-7017 (Murray B, serotype 4b) LM inoculated in broccoli, mushroom, onions, peas, and pepper. | Mazzotta [29] | fvBlanching() | |
Freezing and packaging | Cross-contamination and partitioning | LM can contaminate the bulk of vegetables post-blanching from equipment such as feeders, slicing machines, transporters, conveyor belts, and freezing tunnels. If the contamination event takes place, LM cells are transferred to the bulk according to a transfer coefficient from stainless steel to vegetables. LM is assumed to be moderately clustered in the bulk of frozen vegetables from a lot. | Truchado et al. [3] Hoelzer et al. [30] Nauta [31] | fvPartitioningCC() | |
Post-packaging treatment | Reduction | Generic inactivation step post-packaging. Assumption of independent, equal probability of inactivation. | Nauta [32] | fvReductionPostpack() | |
Within-lot testing | None | At a given probability, a lot of frozen vegetables can be subjected to sampling and testing according to a two-class or three-class microbiological sampling plan. | - | fvTesting() | |
Consumer’s preparation | Portioning | Partitioning | The consumer is assumed to take a portion of frozen vegetables from the pack. LM cells present in a contaminated pack are assumed to be moderately clustered within the package. | Nauta [31] | fvPortioning() |
Defrosting | Growth | The consumer may defrost the frozen vegetables in the fridge, microwave, or at room temperature before cooking or consumption. LM is assumed to grow according to a log-linear model without a lag phase, based on an exponential growth rate at 5 °C for heat-treated vegetables that distribute as a lognormal distribution. | Zoellner et al. [8] EFSA [7] | fvDefrost() | |
Cooking | Reduction | There is a probability that the consumer uses the non-RTE frozen vegetables in a non-intended manner, such as through direct (uncooked) consumption in salads, smoothies, etc. For cooked vegetables, different heat treatment intensities can be applied by consumers, varying from very strong heat treatments (i.e., fully cooking) to light heat treatments (i.e., microwave heating). Therefore, there is a variability in the effect of cooking. | Willis et al. [33], FSAI [34] EFSA [7] | fvCooking() |
- The R function:
2.1.2. Blanching of Vegetables
- Data and assumptions:
- The R function:
2.1.3. Freezing and Packaging
- Data and assumptions:
- The R function:
2.1.4. Post-Packaging Treatment
- Data and assumptions:
- The R function:
2.1.5. Within-Lot Testing
- Data and assumptions:
- The R function:
2.1.6. Portioning
- Data and assumptions:
- The R function:
2.1.7. Defrosting
- Data and assumptions:
- The R function:
2.1.8. Cooking
- Data and assumptions:
- The R function:
2.2. Risk Characterization
2.3. QRA Model’s Ouputs
2.4. QRA Model’s Functionality: Reference and What-If Scenarios
- (a)
- Reference, which is the baseline scenario constituted of parameters whose values represent as much as possible the current situation supported by actual data and, in their absence, reasonable assumptions.
- (b)
- Initial contamination, assessed by scenarios representing mean initial L. monocytogenes concentrations in pre-blanched vegetables that are lower (μC0 − 1 log10 CFU/g) or higher (μC0 + 1 log10 CFU/g) than the reference scenario (μC0 = 1.038 log10 CFU/g).
- (c)
- Blanching temperature, assessed by scenarios with temperatures lower than the reference scenario (TempBlanch = 71 and 77 °C).
- (d)
- Recontamination after blanching, evaluated by scenarios representing total loads of L. monocytogenes on equipment surfaces after blanching in a lot, lower (Nequip/100) and higher (Nequip*100) than the reference scenario (Nequip = 10000 CFU).
2.5. QRA Model’s Implementation
3. Results and Discussion
3.1. Reference Scenario and Comparison with Other QRA Models
3.2. What-If Scenarios
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- CDC. Multistate Outbreak of Listeriosis Linked to Frozen Vegetables (Final Update); Centers for Disease Control and Prevention: Atlanta, GA, USA, 2016. Available online: https://archive.cdc.gov/#/details?url=https://www.cdc.gov/listeria/outbreaks/frozen-vegetables-05-16/index.html (accessed on 25 July 2022).
- EFSA (European Food Safety Authority); ECDC (European Centre for Disease Prevention and Control). Multi-Country Outbreak of Listeria monocytogenes Serogroup IVb, Multi-Locus Sequence Type 6, Infections Linked to Frozen Corn and Possibly to Other Frozen Vegetables—First Update; EFSA Supporting Publication: Oxford, UK, 2018; Volume 15, p. 1448E. [Google Scholar] [CrossRef]
- Truchado, P.; Gil, M.I.; Querido-Ferreira, A.P.; López Capón, C.; Álvarez-Ordoñez, A.; Allende, A. Frozen vegetable processing plants can harbour diverse Listeria monocytogenes populations: Identification of critical operations by WGS. Foods 2022, 11, 1546. [Google Scholar] [CrossRef] [PubMed]
- EFSA (European Food Safety Authority). Urgent Scientific and Technical Assistance to Provide Recommendations for Sampling and Testing in the Processing Plants of Frozen Vegetables Aiming at Detecting Listeria monocytogenes; EFSA Supporting Publication: Oxford, UK, 2018; Volume 15, p. 1445E. [Google Scholar] [CrossRef]
- Commission Regulation (EC). No 2073/2005 of 15 November 2005 on microbiological criteria for foodstuffs. Off. J. Eur. Union. 2005, 338, 1–26. [Google Scholar]
- Codex Alimentarius Commission. Guidelines on the Application of General Principles of Food Hygiene to the Control of Listeria monocytogenes in Ready-to-Eat Foods; CAC/GL 61-2007; Codex Alimentarius Commission: Rome, Italy, 2007. [Google Scholar]
- Panel, E.B. The public health risk posed by Listeria monocytogenes in frozen fruit and vegetables including herbs, blanched during processing. EFSA Panel of Biological Hazards (BIOHAZ). EFSA J. 2020, 8, e06092. [Google Scholar] [CrossRef]
- Zoellner, C.; Wiedmann, M.; Ivanek, R. An assessment of listeriosis risk associated with a contaminated production lot of frozen vegetables consumed under alternative consumer handling scenarios. J. Food Prot. 2019, 82, 2174–2193. [Google Scholar] [CrossRef] [PubMed]
- McLauchlin, J.; Aird, H.; Amar, C.; Barker, C.; Dallman, T.; Lai, S.; Painset, A.; Willis, C. An outbreak of human listeriosis associated with frozen sweet corn consumption: Investigations in the UK. Int. J. Food Microbiol. 2021, 338, 108994. [Google Scholar] [CrossRef]
- FAO/WHO. Joint FAO/WHO Expert Meeting on Microbiological Risk Assessment of Listeria monocytogenes in Foods: Summary and Conclusions; WHO: Geneva, Switzerland, 2023.
- Nauta, M.J. Modelling bacterial growth in quantitative microbiological risk assessment: Is it possible? Int. J. Food Microbiol. 2002, 73, 297–304. [Google Scholar] [CrossRef]
- Gonzales-Barron, U.; Cadavez, V.; Thebault, A.; Kooh, P. The Pathogens-in-Foods Database (PIF) (Version 1). 2021. Available online: https://pif.esa.ipb.pt/ (accessed on 18 April 2023). [CrossRef]
- Badosa, E.; Trias, R.; Pares, D.; Pla, M.; Montesinos, E. Microbiological quality of fresh fruit and vegetable products in Catalonia (Spain) using normalised plate-counting methods and real time polymerase chain reaction (QPCR). J. Sci. Food Agric. 2008, 88, 605–611. [Google Scholar] [CrossRef]
- Cardamone, C.; Aleo, A.; Mammina, C.; Oliveri, G.; Di Noto, A.M. Assessment of the microbiological quality of fresh produce on sale in Sicily, Italy: Preliminary results. J. Biol. Res. 2015, 22, 3. [Google Scholar] [CrossRef]
- Carp-Carare, C.; Vlad-Sabie, A.; Floristean, V.-C. Detection and serotyping of Listeria monocytogenes in some food products from North-East of Romania. Rev. Romana Med. Lab. 2013, 21, 285–292. [Google Scholar] [CrossRef]
- Cetinkaya, F.; Mus, T.E.; Yibar, A.; Guclu, N.; Tavsanli, H.; Cibik, R. Prevalence, serotype identification by multiplex polymerase chain reaction and antimicrobial resistance patterns of Listeria monocytogenes isolated from retail foods. J. Food Safety 2014, 34, 42–49. [Google Scholar] [CrossRef]
- De Giusti, M.; Aurigemma, C.; Marinelli, L.; Tufi, D.; De Medici, D.; Di Pasquale, S.; De Vito, C.; Boccia, A. The evaluation of the microbial safety of fresh ready-to-eat vegetables produced by different technologies in Italy. J. Appl. Microbiol. 2010, 109, 996–1006. [Google Scholar] [CrossRef] [PubMed]
- Gianfranceschi, M.; Gattuso, A.; Tartaro, S.; Aureli, P.B. Incidence of Listeria monocytogenes in food and environmental samples in Italy between 1990 and 1999: Serotype distribution in food, environmental and clinical samples. Eur. J. Epidemiol. 2003, 18, 1001–1006. [Google Scholar] [CrossRef] [PubMed]
- Kokkinakis, E.; Boskou, G.; Fragkiadakis, G.A.; Kokkinaki, A.; Lapidakis, N. Microbiological quality of tomatoes and peppers produced under the good agricultural practices protocol AGRO 2-1 & 2-2 in Crete, Greece. Food Control 2007, 18, 1538–1546. [Google Scholar]
- Lika, M.; Malollari, I.; Lajqi, V. Microbiological contamination of vegetable food as risk factor for human population. J. Environ. Prot. Ecol. 2014, 15, 764–770. [Google Scholar]
- Losio, M.; Pavoni, E.; Bilei, S.; Bertasi, B.; Bove, D.; Capuano, F.; Farneti, S.; Blasi, G.; Comin, D.; Cardamone, C.; et al. Microbiological survey of raw and ready-to-eat leafy green vegetables marketed in Italy. Int. J. Food Microbiol. 2015, 210, 88–91. [Google Scholar] [CrossRef]
- Magdovitz, B.F.; Gummalla, S.; Garren, D.; Thippareddi, H.; Berrang, M.E.; Harrison, M.A. Prevalence of Listeria species and Listeria monocytogenes on raw produce arriving at frozen food manufacturing facilities. J. Food Prot. 2021, 84, 1898–1903. [Google Scholar] [CrossRef]
- Moreno, Y.; Sanchez-Contreras, J.; Montes, R.M.; Garcia-Hernandez, J.; Ballesteros, L.; Antonia Ferrus, M. Detection and enumeration of viable Listeria monocytogenes cells from ready-to-eat and processed vegetable foods by culture and DVC-FISH. Food Control 2012, 27, 374–379. [Google Scholar] [CrossRef]
- Pianetti, A.; Sabatini, L.; Citterio, B.; Pierfelici, L.; Ninfali, P.; Bruscolini, E. Changes in microbial populations in ready-to-eat vegetable salads during shelf-life. Ital. J. Food Sci. 2008, 20, 245–254. [Google Scholar]
- Vojkovská, H.; Myšková, P.; Gelbíčová, T.; Skočková, A.; Koláčková, I.; Karpíšková, R. Occurrence and characterization of food-borne pathogens isolated from fruit, vegetables and sprouts retailed in the Czech Republic. Food Microbiol. 2017, 63, 147–152. [Google Scholar] [CrossRef]
- Wagner, M.; Auer, B.; Trittremmel, C.; Hein, I.; Schoder, D. Survey on the Listeria contamination of ready-to-eat food products and household environments in Vienna, Austria. Zoonoses Public Health 2007, 54, 16–22. [Google Scholar] [CrossRef]
- Jeyaletchumi, P.; Tunung, R.; Selina, P.M.; Chai, L.C.; Radu, S.; Farinazleen, M.G.; Cheah, Y.K.; Mitsuaki, N.; Yoshitsugu, N.; Kumar, M.P. Evaluation of Listeria spp. and Listeria monocytogenes in selected vegetable farms. J. Trop. Agric. Food Sci. 2011, 39, 255–266. [Google Scholar]
- Kuan, C.-H.; Rukayadi, Y.; Ahmad, S.H.; Wan, C.; Radzi, M.; Thung, T.-Y.; Premarathne, J.; Chang, W.-S.; Loo, Y.-Y.; Tan, C.-W.; et al. Comparison of the microbiological quality and safety between conventional and organic vegetables sold in Malaysia. Front. Microbiol. 2017, 8, 1433. [Google Scholar] [CrossRef] [PubMed]
- Mazzota, A.S. Heat resistance of Listeria monocytogenes in vegetables: Evaluation of blanching process. J. Food Prot. 2001, 64, 385–387. [Google Scholar] [CrossRef] [PubMed]
- Hoelzer, K.; Pouillot, R.; Gallagher, D.; Silverman, M.B.; Kause, J.; Dennis, S. Estimation of Listeria monocytogenes transfer coefficients and efficacy of bacterial removal through cleaning and sanitation. Int. J. Food Microbiol. 2012, 157, 267–277. [Google Scholar] [CrossRef] [PubMed]
- Nauta, M. Microbiological risk assessment models for partitioning and mixing during food handling. Int. J. Food Microbiol. 2005, 100, 311–322. [Google Scholar] [CrossRef]
- Nauta, M. The modular process risk model (MPRM): A structural approach to food chain exposure assessment. In Microbial Risk Analysis of Foods; Schaffner, D.W., Doyle, M.P., Eds.; ASM Press: Washington, DC, USA, 2008; pp. 99–136. [Google Scholar]
- Willis, C.; McLauchlin, J.; Aird, H.; Amar, C.; Barker, C.; Dallman, T.; Elviss, N.; Lai, S.; Sadler-Reeves, L. Occurrence of Listeria and Escherichia coli in frozen fruit and vegetables collected from retail and catering premises in England 2018–2019. Int. J. Food Microbiol. 2020, 334, 108849. [Google Scholar] [CrossRef]
- FSAI. National Microbiological Survey and Consumer Habits in Relation to Frozen Vegetables, Fruits and Herbs (19NS6); Monitoring & Surveillance Series; Food Safety Authority of Ireland: Dublin, Ireland, 2022; 62p, ISBN 978-1-910348-54-3. [Google Scholar]
- PROFEL. Hygiene Guidelines for the Control of Listeria monocytogenes in the Production of Quick Frozen Vegetables; European Association of Fruit and Vegetable Processors: Brussels, Belgium, 2020; 58p. [Google Scholar]
- Ceylan, E.; McMahon, W.; Garren, D. Thermal inactivation of Listeria monocytogenes during water and steam blanching of vegetables. J. Food Prot. 2017, 80, 1550–1556. [Google Scholar] [CrossRef]
- Bigelow, W. The logarithmic nature of thermal death time curves. J. Infect. Dis. 1921, 29, 528–536. [Google Scholar] [CrossRef]
- Pappelbaum, K.; Grif, K.; Heller, I.; Wüirzner, R.; Hein, I.; Ellerbroek, L.; Wagner, M. Monitoring hygiene on- and at-line is critical for controlling Listeria monocytogenes during produce processing. J. Food Prot. 2008, 71, 735–741. [Google Scholar] [CrossRef]
- Fagerlund, A.; Moretro, T.; Heir, E.; Briandet, R.; Langsrud, S. Cleaning and disinfection of biofilms composed of Listeria monocytogenes and background microbiota from meat processing surfaces. Appl. Environ. Microbiol. 2017, 83, e01046-17. [Google Scholar] [CrossRef]
- FDA. FDA-iRISK 4.2 Food Safety Modeling Tool: Technical Document; U.S. Food and Drug Administration. U.S. Department of Agriculture: Rockwell, MD, USA, 2021.
- van der Sman, R.G.M. Impact of Processing Factors on Quality of Frozen Vegetables and Fruits. Food Eng. Rev. 2020, 12, 399–420. [Google Scholar] [CrossRef]
- Gómez-Galindo, M.; Truchado, P.; Allende, A.; Gil, M.I. Optimization of the use of a commercial phage-based product as a control strategy of Listeria monocytogenes in the fresh-cut Industry. Foods 2023, 12, 3171. [Google Scholar] [CrossRef] [PubMed]
- Pouillot, R.; Chen, Y.; Van Doren, J.M. Elucidating the influence of the lower and upper microbiological limits: When is a 3-class sampling plan useful to test for pathogens in food? Food Control 2024, 163, 110544. [Google Scholar] [CrossRef]
- WHO. Statistical Aspects of Microbiological Criteria Related to Foods: A Risk Managers Guide; Microbiological Risk Assessment Series 24; World Health Organization & Food and Agriculture Organization of the United Nations: Geneva, Switzerland, 2016; 120p. Available online: https://iris.who.int/bitstream/handle/10665/249531/9789241565318–eng.pdf?sequence=1 (accessed on 10 April 2024).
- Kataoka, A.; Wang, H.; Elliot, P.H.; Whiting, R.C.; Hayman, M. Growth of Listeria monocytogenes in thawed frozen foods. J. Food Prot. 2017, 80, 447–453. [Google Scholar] [CrossRef] [PubMed]
- FDA-FSIS. Quantitative Assessment of Relative Risk to Public Health from Foodborne Listeria monocytogenes Among Selected Categories of Ready-to-Eat Foods; FDA-FSIS: Washington, DC, USA, 2003; pp. 1–541.
- Pouillot, R.; Kiermeier, A.; Guillier, L.; Cadavez, V.; Sanaa, M. Updated Parameters for Listeria monocytogenes Dose–Response Model Considering Pathogen Virulence and Age and Sex of Consumer. Foods 2024, 13, 751. [Google Scholar] [CrossRef]
- FAO-WHO. Risk Assessment of Listeria monocytogenes in Ready-to-Eat Foods: Technical Report; World Health Organization and Food and Agriculture Organization of the United Nations: Geneva, Switzerland, 2004; pp. 1–269.
- R Foundation for Statistical Computing. R Core Team R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: https://www.R-project.org/ (accessed on 1 July 2024).
- AFFI. How to Validate Your Blancher; American Frozen Food Institute: Arlington, VA, USA, 2018; Available online: https://affi.org/listeria/how-to-validate-your-blancher/ (accessed on 15 September 2023).
- Mena, C.; Almeda, G.; Carneiro, L.; Teixeira, P.; Hogg, T.; Gibbs, P.A. Incidence of Listeria monocytogenes in different food products commercialized in Portugal. Food Microbiol. 2004, 21, 213–216. [Google Scholar] [CrossRef]
- Lee, S.; Cetinkaya, F.; Soyutemiz, G.E. Occurrence of Listeria species in the processing stages of frozen pepper. J. Food Saf. 2007, 27, 134–147. [Google Scholar] [CrossRef]
- Moravkova, M.; Verbikova, V.; Michna, V.; Babak, V.; Cahlikova, H.; Karpiskova, R.; Kralik, P. Detection and quantification of Listeria monocytogenes in ready-to-eat vegetables, frozen vegetables and sprouts examined by culture methods and real-time PCR. J. Food. Nutr. Res. 2017, 5, 832–837. [Google Scholar] [CrossRef]
- Aguado, V.; Vitas, A.; Garcia-Jalon, I. Characterization of Listeria monocytogenes and Listeria innocua from a vegetable processing plant by RAPD and REA. Int. J. Food Microbiol. 2004, 90, 341–347. [Google Scholar] [CrossRef]
- Skowron, K.; Grudlewska, K.; Lewandowski, D.; Gajewski, P.; Reśliński, A.; Gospodarek-Komkowska, E. Antibiotic susceptibility and ability to form biofilm of Listeria monocytogenes strains isolated from frozen vegetables. Acta Aliment. 2019, 48, 65–75. [Google Scholar] [CrossRef]
- Vitas, A.; Aguado, V.; Garcia-Jalon, I. Occurrence of Listeria monocytogenes in fresh and processed foods in Navarra (Spain). Int. J. Food Microbiol. 2004, 90, 349–356. [Google Scholar] [CrossRef] [PubMed]
- Pouillot, R.; Gallagher, D.; Tang, J.; Hoelzer, K.; Kause, J.; Dennis, S.B. Listeria monocytogenes in retail delicatessens: An interagency risk assessment-model and baseline results. J. Food Prot. 2015, 78, 134–145. [Google Scholar] [CrossRef] [PubMed]
- Perchec, A.-M.; Esgurra, C. Microbiological Risks Associated with Frozen Raw Produce Used in Uncooked Food Preparations; New Zealand Food Safety Technical Paper No: 2023/14; New Zealand Food Safety, Ministry for Primary Industries: Wellington, New Zealand, 2023; 33p. Available online: https://www.mpi.govt.nz/dmsdocument/57904–Microbiological-risks-associated-with-frozen-produce-used-in-uncooked-food-preparations (accessed on 26 June 2024).
- Pouillot, R.; Hoelzer, K.; Chen, Y.; Dennis, S.B. Listeria monocytogenes dose response revisited—Incorporating adjustments for variability in strain virulence and host susceptibility. Risk Anal. 2015, 35, 90–108. [Google Scholar] [CrossRef] [PubMed]
Country | Product | Sample Size, n | Positive Enrichment, s | Prevalence (%) | Source 1 |
---|---|---|---|---|---|
Minimally processed | |||||
Austria | RTE produce 3 | 143 | 0 | 0.00 | Wagner et al. [26] |
Italy | RTE vegetables salads 3 | 56 | 0 | 0.00 | Pianetti et al. [24] |
Italy | RTE vegetables 2 | 699 | 2 | 0.28 | De Giusti et al. [17] |
Spain | Brocolli fresh-cut 3 | 16 | 1 | 6.25 | Moreno et al. [23] |
Italy | Minimally processed pumpkins 3 | 33 | 1 | 3.03 | Cardamone et al. [14] |
Italy | RTE packed vegetables 3 | 1160 | 4 | 0.34 | Losio et al. [21] |
Fresh whole vegetables | |||||
Italy | Vegetables 3 | 738 | 33 | 4.47 | Gianfranceschi et al. [18] |
Greece | Peppers 2 | 60 | 8 | 13.3 | Kokkinakis et al. [19] |
Peppers 2 | 60 | 12 | 20 | ||
Spain | Raw whole vegetables 3 | 141 | 2 | 1.41 | Badosa et al. [13] |
Italy | Whole vegetables 2 | 265 | 3 | 1.13 | De Giusti et al. [17] |
Spain | Fresh broccoli 3 | 17 | 2 | 11.7 | Moreno et al. [23] |
Romania | Fresh onion 2 | 10 | 0 | 0 | Carp-Carare et al. [15] |
Turkey | Raw vegetables 3 | 44 | 6 | 13.6 | Cetinkaya et al. [16] |
Albania | Onion 3 | 16 | 0 | 0 | Lika et al. [20] |
Broccoli 3 | 21 | 0 | 0.00 | ||
Czech Republic | Vegetables 3 | 249 | 16 | 6.42 | Vojkovska et al. [25] |
Vegetables arriving at frozen food facility | |||||
USA | Corn | 59 | 8 | 13.6 | Magdovitz et al. [22] |
Carrots | 54 | 0 | 0.00 | ||
Green beans | 72 | 3 | 4.17 | ||
Peas | 96 | 6 | 6.25 |
Scenario | Mean Counts (CFU/g) in Contaminated Lots (Mean; Median; [95% CI]) | Prevalence of Contaminated Packs | P(N > 10 CFU/g in a Contaminated Pack) | P(N > 100 CFU/g in a Contaminated Pack) |
---|---|---|---|---|
Reference (μC0 = 1.038 log10 CFU/g; TempBlanch = 83 °C; Nequip = 104 CFU) | 0.0003; 5.72 × 10−5 [8.00 × 10−7–0.0025] | 0.094 | 0 | 0 |
Initial mean contamination | ||||
Lower (μC0 = 0.038 log10 CFU/g) | 2.12 × 10−4; 6.80 × 10−6 [4.00 × 10−7–0.0024] | 0.050 | 0 | 0 |
Higher (μC0 = 2.038 log10 CFU/g) | 0.0017; 0.0005 [3.20 × 10−6–0.0120] | 0.267 | 0 | 0 |
Blanching temperature | ||||
Very low (TempBlanch = 71 °C) | 0.0148; 0.0038 [2.76 × 10−5–0.1129] | 0.560 | 0 | 0 |
Low (TempBlanch = 77 °C) | 0.0016; 0.0005 [3.20 × 10−6–0.0117] | 0.264 | 0 | 0 |
Recontamination | ||||
Lower (Nequip = 102 CFU) | 1.60 × 10−4; 4.14 × 10−5 [8.00 × 10−7–0.0012] | 0.054 | 0 | 0 |
Higher (Nequip = 106 CFU) | 0.0178; 5.72 × 10−5 [8.00 × 10−7–0.2345] | 0.158 | 0 | 0 |
Worst-case (μC0 = 2.038 log10 CFU/g; TempBlanch = 71 °C; Nequip = 106 CFU) | 0.1641; 0.0513 [0.0003–1.1550] | 0.818 | 0.0004 | 0 |
Country | Product | Sample Size | Positive Enrichment | Prevalence (%) | Source 1 |
---|---|---|---|---|---|
End of processing | |||||
Spain | Frozen vegetables | 906 | 11 | 1.21 | Aguado et al. [54] |
Poland | Frozen mixed vegetables | 248 | 113 | 45.6 | Pappelbaum et al. [38] |
Frozen leeks | 29 | 0 | 0.00 | ||
Frozen onions | 45 | 0 | 0.00 | ||
Frozen vegetables | 73 | 17 | 23.3 | ||
Frozen corn | 12 | 1 | 8.33 | ||
Frozen green peas | 110 | 22 | 20.0 | ||
Retail | |||||
Turkey | Frozen pepper | 216 | 0 | 0.00 | Lee et al. [52] |
Poland | Frozen vegetable mix (broccoli, carrot, green beans, peas, corn, red beans, onions, pepper, potatoes) | 9100 | 504 | 5.54 | Skowron et al. [55] |
Spain | Frozen vegetables | 1750 | 31 | 1.77 | Vitas et al. [56] |
Portugal | Frozen sliced green peppers | 31 | 7 | 22.6 | Mena et al. [51] |
Frozen sliced red peppers | 33 | 0 | 0.00 | ||
Frozen peas | 27 | 4 | 14.8 | ||
Czech Republic | Frozen vegetables (carrots, broccoli, peas, mix, sprout) | 66 | 0 | 0.00 | Vojkovska et al. [25] |
Multiple | Frozen vegetables (peas, carrots, corn) | 43 | 9 | 20.9 | Moravkova et al. [53] |
Frozen vegetables | 673 | 69 | 10.3 | Willis et al. [33] | |
Ireland | Frozen vegetables | 366 | 21 | 5.73 | FSAI [34] |
Scenario | Cooking | Counts (CFU/g) in Any Serving (Mean; Median; [95% CI]) | Prevalence of Contaminated Servings | P(N > 10 CFU/g in a Contaminated Serving) | P(N > 100 CFU/g in a Contaminated Serving) |
---|---|---|---|---|---|
Reference (μC0 = 1.038 log10 CFU/g; TempBlanch = 83 °C; Nequip = 104 CFU) | No | 0.0006; 6.59 × 10−5 [2.41 × 10−7–0.0030] | 0.0137 | 4.59 × 10−5 | 0 |
Yes | 5.21 × 10−7; 9.80 × 10−8 [3.91 × 10−10–3.95 × 10−6] | 2.61 × 10−5 | 0 | 0 | |
Initial contamination | |||||
Lower (μC0 = 0.038 log10 CFU/g) | No | 3.15 × 10−4; 8.79 × 10−6 [1.24 × 10−7–0.0021] | 0.0080 | 4.67 × 10−5 | 0 |
Yes | 2.96 × 10−7; 1.16 × 10−8 [1.95 × 10−10–3.44 × 10−6] | 1.48 × 10−5 | 0 | 0 | |
Higher (μC0 = 2.038 log10 CFU/g) | No | 0.0027; 0.0005 [1.30 × 10−6–0.0139] | 0.0545 | 0.0001 | 0 |
Yes | 2.54 × 10−6; 8.41 × 10−7 [2.00 × 10−9–175 × 10−5] | 0.0001 | 0 | 0 | |
Blanching temperature | |||||
Very low (TempBlanch = 71 °C) | No | 0.0228; 0.0035 [1.32 × 10−5–0.1244] | 0.2011 | 0.0005 | 2.98 × 10−5 |
Yes | 1.75 × 10−5; 5.57 × 10−6 [2.14 × 10−8–0.0001] | 0.0008 | 0 | 0 | |
Low (TempBlanch = 77 °C) | No | 0.0027; 0.0005 [1.30 × 10−6–0.0136] | 0.0537 | 0.0001 | 0 |
Yes | 2.46 × 10−6; 8.24 × 10−7 [2.00 × 10−9–1.67 × 10−5] | 0.0001 | 0 | 0 | |
Recontamination | |||||
Lower (Nequip = 102 CFU) | No | 2.63 × 10−4; 4.12 × 10−5 [2.41 × 10−7–0.0015] | 0.0060 | 9.50 × 10−6 | 0 |
Yes | 2.52 × 10−7; 6.15 × 10−8 [3.92 × 10−10–1.91 × 10−6] | 1.26 × 10−5 | 0 | 0 | |
Higher (Nequip = 106 CFU) | No | 0.0267; 6.70 × 10−5 [2.41 × 10−7–0.1882] | 0.0876 | 0.0017 | 0.0001 |
Yes | 1.72 × 10−5; 9.79 × 10−8 [3.91 × 10−10–0.0002] | 0.0008 | 0 | 0 | |
Worst-case (μC0 = 2.038 log10 CFU/g; TempBlanch = 71 °C; Nequip = 106 CFU) | No | 0.2712; 0.0212 [0.0001–1.5584] | 0.5110 | 0.0050 | 0.0002 |
Yes | 0.0001; 5.62 × 10−5 [2.04 × 10−7–0.0007] | 0.0062 | 0 | 0 |
Scenario | Cooking | Mean | Median | 2.5 pct | 97.5 pct | log10 RR |
---|---|---|---|---|---|---|
Reference (μC0 = 1.038 log10 CFU/g; TempBlanch = 83 °C; Nequip = 104 CFU) | No | 2.935 × 10−14 | 5.446 × 10−15 | 2.183 × 10−17 | 2.187 × 10−13 | |
Yes | 2.765 × 10−17 | 5.184 × 10−18 | 2.077 × 10−20 | 2.086 × 10−16 | 3.03 | |
Initial contamination | ||||||
Lower (μC0 = 0.038 log10 CFU/g) | No | 1.673 × 10−14 | 6.497 × 10−16 | 1.088 × 10−17 | 1.882 × 10−13 | |
Yes | 1.569 × 10−17 | 6.183 × 10−19 | 1.035 × 10−20 | 1.803 × 10−16 | 3.03 | |
Higher (μC0 = 2.038 log10 CFU/g) | No | 1.452 × 10−13 | 4.625 × 10−14 | 1.114 × 10−16 | 1.032 × 10−12 | |
Yes | 1.347 × 10−16 | 4.444 × 10−17 | 1.059 × 10−19 | 9.267× 10−16 | 3.03 | |
Blanching temperature | ||||||
Very low (TempBlanch = 71 °C) | No | 1.209 × 10−12 | 3.171 × 10−13 | 1.195 × 10−15 | 9.023 × 10−12 | |
Yes | 9.275 × 10−16 | 2.950 × 10−16 | 1.137 × 10−18 | 6.263 × 10−15 | 3.12 | |
Low (TempBlanch = 77 °C) | No | 1.426 × 10−13 | 4.556 × 10−14 | 1.112 × 10−16 | 9.503 × 10−13 | |
Yes | 1.304 × 10−16 | 4.363 × 10−17 | 1.058 × 10−19 | 8.818 × 10−16 | 3.04 | |
Recontamination | ||||||
Lower (Nequip = 102 CFU) | No | 1.400 × 10−14 | 3.422 × 10−15 | 2.183 × 10−17 | 1.035 × 10−13 | |
Yes | 1.334 × 10−17 | 3.257 × 10−18 | 2.077 × 10−20 | 9.769 × 10−17 | 3.02 | |
Higher (Nequip = 106 CFU) | No | 1.418 × 10−12 | 5.466 × 10−15 | 2.183 × 10−17 | 1.809 × 10−11 | |
Yes | 9.106 × 10−16 | 5.194 × 10−18 | 2.076 × 10−20 | 1.148 × 10−14 | 3.19 | |
Worst-case (μC0 = 2.038 log10 CFU/g; TempBlanch = 71 °C; Nequip = 106 CFU) | No | 1.437 × 10−11 | 3.725 × 10−12 | 1.143 × 10−14 | 1.077 × 10−10 | |
Yes | 6.866 × 10−15 | 2.957 × 10−15 | 1.080 × 10−17 | 3.883 × 10−14 | 3.32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gonzales-Barron, U.; Pouillot, R.; De Oliveira Mota, J.; Hasegawa, A.; Allende, A.; Dong, Q.; Stasiewicz, M.J.; Kovacevic, J.; Cadavez, V.; Guillier, L.; et al. A Quantitative Risk Assessment Model for Listeria monocytogenes in Non-Ready-to-Eat Frozen Vegetables. Foods 2024, 13, 3610. https://doi.org/10.3390/foods13223610
Gonzales-Barron U, Pouillot R, De Oliveira Mota J, Hasegawa A, Allende A, Dong Q, Stasiewicz MJ, Kovacevic J, Cadavez V, Guillier L, et al. A Quantitative Risk Assessment Model for Listeria monocytogenes in Non-Ready-to-Eat Frozen Vegetables. Foods. 2024; 13(22):3610. https://doi.org/10.3390/foods13223610
Chicago/Turabian StyleGonzales-Barron, Ursula, Régis Pouillot, Juliana De Oliveira Mota, Akio Hasegawa, Ana Allende, Qingli Dong, Matthew J. Stasiewicz, Jovana Kovacevic, Vasco Cadavez, Laurent Guillier, and et al. 2024. "A Quantitative Risk Assessment Model for Listeria monocytogenes in Non-Ready-to-Eat Frozen Vegetables" Foods 13, no. 22: 3610. https://doi.org/10.3390/foods13223610
APA StyleGonzales-Barron, U., Pouillot, R., De Oliveira Mota, J., Hasegawa, A., Allende, A., Dong, Q., Stasiewicz, M. J., Kovacevic, J., Cadavez, V., Guillier, L., & Sanaa, M. (2024). A Quantitative Risk Assessment Model for Listeria monocytogenes in Non-Ready-to-Eat Frozen Vegetables. Foods, 13(22), 3610. https://doi.org/10.3390/foods13223610