Inhibitory Effect and Mechanism of Dancong Tea from Different Harvesting Season on the α-Glucosidase Inhibition In Vivo and In Vitro
<p>Effect of tea harvesting season on α-glucosidase inhibition (<b>A</b>); Contents of the catechin monomers in Dancong four season tea (<b>B</b>); HPLC analysis chromatogram of the catechin monomers in spring tea (<b>C</b>), summer tea (<b>D</b>), autumn tea (<b>E</b>), and winter tea (<b>F</b>).</p> "> Figure 2
<p>Effect of the catechin monomers on in vitro digestion of starch (<b>A</b>,<b>B</b>); in vivo postprandial blood glucose content (<b>C</b>) and α-glucosidase inhibition (<b>E</b>); the calculated area under the curve of glucose content (<b>D</b>) and IC50 values (<b>F</b>). Different letters (a–e) in <a href="#foods-13-04183-f002" class="html-fig">Figure 2</a>D,F indicate significant differences (<span class="html-italic">p</span> < 0.05).</p> "> Figure 3
<p>Fluorescence quenching effects on α-glucosidase by EGCG (<b>A</b>), ECG (<b>B</b>), EGC (<b>C</b>), EC (<b>D</b>).</p> "> Figure 4
<p>The CD spectra of α-glucosidase with various concentrations of EGCG (<b>A</b>), ECG (<b>B</b>), EGC (<b>C</b>), EC (<b>D</b>).</p> "> Figure 5
<p>The effect of EGCG (<b>A</b>), ECG (<b>B</b>), EGC (<b>C</b>), EC (<b>D</b>) on the synchronous fluorescence spectra of α-glucosidase at Δλ = 15 nm.</p> "> Figure 6
<p>The optimal 3D docking conformation of EGCG (<b>A</b>), ECG (<b>B</b>), EGC (<b>C</b>), EC (<b>D</b>) with α-glucosidase. The molecular dynamic results of RMSD (<b>E</b>), RMSF (<b>F</b>), Rg (<b>G</b>), Lennard–Jones potential (<b>H</b>), Coulomb interaction energy (<b>I</b>), hydrogen bond profile (<b>J</b>) of α-glucosidase–EGCG/ECG/EGC/EC complex.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Determination of Catechin Monomers
2.3. In Vitro Digestion Properties
2.4. Animal Experiments and Glucose Tolerance Test
2.5. α-Glucosidase Inhibitory Activity Assay
2.6. Analysis of α-Glucosidase Inhibition Kinetics
2.7. Fluorescence Quenching Experiments
2.8. Circular Dichroism (CD) Analysis
2.9. Synchronous Fluorescence Spectra Experiments
2.10. Molecular Docking
2.11. Molecular Dynamic (MD) Simulations
2.12. Statistical Analysis
3. Results and Discussion
3.1. Effect of Tea Harvesting Season on α-Glucosidase Inhibition
3.2. Effect of Catechin Monomers on the α-Glucosidase Inhibitory Activity In Vivo and In Vitro
3.3. Effect of Catechin Monomers Type on the Structure of α-Glucosidase
3.3.1. Fluorescence Quenching of α-Glucosidase by Catechin Monomers
3.3.2. Secondary Structural Changes of α-Glucosidase
3.3.3. Structural Changes of Amino Acid Residues of α-Glucosidase
3.4. Molecular Docking and Dynamics Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, Z.; Wang, J. Identification and Similarity Analysis of Aroma Substances in Main Types of Fenghuang Dancong Tea. PLoS ONE 2020, 15, e0244224. [Google Scholar] [CrossRef]
- Siroma, T.K.; Machate, D.J.; Zorgetto-Pinheiro, V.A.; Figueiredo, P.S.; Marcelino, G.; Hiane, P.A.; Bogo, D.; Pott, A.; Cury, E.R.J.; Guimarães, R.d.C.A.; et al. Polyphenols and ω-3 PUFAs: Beneficial Outcomes to Obesity and Its Related Metabolic Diseases. Front. Nutr. 2022, 8, 781622. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Saeedi, P.; Karuranga, S.; Pinkepank, M.; Ogurtsova, K.; Duncan, B.B.; Stein, C.; Basit, A.; Chan, J.C.N.; Mbanya, J.C.; et al. IDF Diabetes Atlas: Global, Regional and Country-Level Diabetes Prevalence Estimates for 2021 and Projections for 2045. Diabetes Res. Clin. Pract. 2022, 183, 109119. [Google Scholar] [CrossRef]
- Li, J.; Zhang, J.; Yu, W.; Gao, H.; Szeto, I.M.Y.; Feng, H.; Liu, X.; Wang, Y.; Sun, L. Soluble Dietary Fibres Decrease α-Glucosidase Inhibition of Epigallocatechin Gallate through Affecting Polyphenol-Enzyme Binding Interactions. Food Chem. 2023, 409, 135327. [Google Scholar] [CrossRef]
- Fei, Q.; Gao, Y.; Zhang, X.; Sun, Y.; Hu, B.; Zhou, L.; Jabbar, S.; Zeng, X. Effects of Oolong Tea Polyphenols, EGCG, and EGCG3″Me on Pancreatic α-Amylase Activity in Vitro. J. Agric. Food Chem. 2014, 62, 9507–9514. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Gidley, M.J.; Warren, F.J. Tea Polyphenols Enhance Binding of Porcine Pancreatic α-Amylase with Starch Granules but Reduce Catalytic Activity. Food Chem. 2018, 258, 164–173. [Google Scholar] [CrossRef]
- Wu, X.; Hu, M.; Hu, X.; Ding, H.; Gong, D.; Zhang, G. Inhibitory Mechanism of Epicatechin Gallate on α- Amylase and α- Glucosidase and Its Combinational Effect with Acarbose or Epigallocatechin Gallate. J. Mol. Liq. 2019, 290, 111202. [Google Scholar] [CrossRef]
- Zeng, F.; Gao, Q.; Han, Z.; Zeng, X.; Yu, S. Structural Properties and Digestibility of Pulsed Electric Field Treated Waxy Rice Starch. Food Chem. 2016, 194, 1313–1319. [Google Scholar] [CrossRef]
- Xie, X.; Chen, C.; Fu, X. Screening α-Glucosidase Inhibitors from Four Edible Brown Seaweed Extracts by Ultra-Filtration and Molecular Docking. LWT 2021, 138, 110654. [Google Scholar] [CrossRef]
- Du, X.; Wang, X.; Yan, X.; Yang, Y.; Li, Z.; Jiang, Z.; Ni, H. Hypoglycaemic Effect of All-Trans Astaxanthin through Inhibiting α-Glucosidase. J. Funct. Foods 2020, 74, 104168. [Google Scholar] [CrossRef]
- Ding, H.; Hu, X.; Xu, X.; Zhang, G.; Gong, D. Inhibitory Mechanism of Two Allosteric Inhibitors, Oleanolic Acid and Ursolic Acid on α-Glucosidase. Int. J. Biol. Macromol. 2018, 107, 1844–1855. [Google Scholar] [CrossRef]
- Zeng, L.; Ding, H.; Hu, X.; Zhang, G.; Gong, D. Galangin Inhibits α-Glucosidase Activity and Formation of Non-Enzymatic Glycation Products. Food Chem. 2019, 271, 70–79. [Google Scholar] [CrossRef]
- Liang, F.; Shi, Y.; Shi, J.; Cao, W. Exploring the Binding Mechanism of Pumpkin Seed Protein and Apigenin: Spectroscopic Analysis, Molecular Docking and Molecular Dynamics Simulation. Food Hydrocoll. 2023, 137, 108318. [Google Scholar] [CrossRef]
- Tang, H.; Ma, F.; Zhao, D.; Xue, Z. Exploring the Effect of Salvianolic Acid C on α-Glucosidase: Inhibition Kinetics, Interaction Mechanism and Molecular Modelling Methods. Process Biochem. 2019, 78, 178–188. [Google Scholar] [CrossRef]
- Peng, X.; Zhang, G.; Liao, Y.; Gong, D. Inhibitory Kinetics and Mechanism of Kaempferol on α-Glucosidase. Food Chem. 2016, 190, 207–215. [Google Scholar] [CrossRef] [PubMed]
- Şöhretoğlu, D.; Sari, S.; Šoral, M.; Barut, B.; Özel, A.; Liptaj, T. Potential of Potentilla Inclinata and Its Polyphenolic Compounds in α-Glucosidase Inhibition: Kinetics and Interaction Mechanism Merged with Docking Simulations. Int. J. Biol. Macromol. 2018, 108, 81–87. [Google Scholar] [CrossRef]
- Cao, J.; Yan, S.; Xiao, Y.; Han, L.; Sun, L.; Wang, M. Number of Galloyl Moiety and Intramolecular Bonds in Galloyl-Based Polyphenols Affect Their Interaction with Alpha-Glucosidase. Food Chem. 2022, 367, 129846. [Google Scholar] [CrossRef]
- Danesh, N.; Navaee Sedighi, Z.; Beigoli, S.; Sharifi-Rad, A.; Saberi, M.R.; Chamani, J. Determining the Binding Site and Binding Affinity of Estradiol to Human Serum Albumin and Holo-Transferrin: Fluorescence Spectroscopic, Isothermal Titration Calorimetry and Molecular Modeling Approaches. J. Biomol. Struct. Dyn. 2018, 36, 1747–1763. [Google Scholar] [CrossRef]
- Zhang, J.; Li, S.; Liu, X.; Sun, L. Inconsistency between Polyphenol-Enzyme Binding Interactions and Enzyme Inhibition: Galloyl Moiety Decreases Amyloglucosidase Inhibition of Catechins. Food Res. Int. 2023, 163, 112155. [Google Scholar] [CrossRef]
- Tang, H.; Huang, L.; Sun, C.; Zhao, D. Exploring the Structure–Activity Relationship and Interaction Mechanism of Flavonoids and α-Glucosidase Based on Experimental Analysis and Molecular Docking Studies. Food Funct. 2020, 11, 3332–3350. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Chen, W.; Meng, Y.; Yang, X.; Yuan, L.; Guo, Y.; Warren, F.J.; Gidley, M.J. Corrigendum to “Interactions between Polyphenols in Thinned Young Apples and Porcine Pancreatic α-Amylase: Inhibition, Detailed Kinetics and Fluorescence Quenching”. Food Chem. 2018, 243, 468. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Zhang, Y.; Han, L.; Zhang, S.; Duan, X.; Sun, L.; Wang, M. Number of Galloyl Moieties and Molecular Flexibility Are Both Important in Alpha-Amylase Inhibition by Galloyl-Based Polyphenols. Food Funct. 2020, 11, 3838–3850. [Google Scholar] [CrossRef] [PubMed]
EGCG | ECG | EGC | EC | |
---|---|---|---|---|
Km (mM) | 0.0680 | |||
Vmax (∆A405/min) | 0.0464 | |||
Vmax (∆A405/min) (0.16 mg/mL) | 0.0255 | 0.0287 | 0.0289 | 0.0252 |
Vmax (∆A405/min) (0.32 mg/mL) | 0.0116 | 0.0142 | 0.0163 | 0.0163 |
Vmax (∆A405/min) (0.80 mg/mL) | 0.0093 | 0.0123 | 0.0132 | 0.0136 |
Ki (mg/mL) | 1.2765 | 1.1052 | 1.5295 | 1.5793 |
Kis (mg/mL) | 1.7166 | 1.6051 | 1.0789 | 1.3258 |
T (K) | Ksv (10³L/mL) | Ka (10³L/mL) | n | logKa | ∆H (KJ/mL) | ∆G (KJ/mL) | ∆S (J/K/mL) | |
---|---|---|---|---|---|---|---|---|
EGCG | 331 | 1.58 | 1.36 | 1.18 | 0.13 | −44.76 | −846.32 | 2.42 |
335 | 1.17 | 1.12 | 1.05 | 0.05 | −856.01 | |||
ECG | 331 | 2.71 | 2.18 | 1.34 | 0.34 | −34.13 | −2145.02 | 6.38 |
335 | 2.66 | 1.88 | 1.20 | 0.27 | −2170.53 | |||
EGC | 331 | 2.37 | 2.21 | 1.38 | 0.34 | −7.42 | −2182.64 | 6.28 |
335 | 2.23 | 1.40 | 1.32 | 0.15 | −2208.93 | |||
EC | 331 | 2.75 | 1.25 | 1.12 | 0.10 | −42.4 | −614.18 | 1.73 |
335 | 2.08 | 1.04 | 1.02 | 0.02 | −621.09 |
Concentrations (mg/mL) | Helix/% | β-Sheet/% | Beta-Turn/% | Rndm. Coil/% | |
---|---|---|---|---|---|
EGCG | 0 | 39.10 ± 0.173 | 28.10 ± 0.200 | 16.63 ± 0.058 | 16.13 ± 0.321 |
0.04 | 31.47 ± 0.058 | 22.27 ± 0.153 | 16.97 ± 0.115 | 29.23 ± 0.321 | |
0.8 | 20.63 ± 0.153 | 18.37 ± 0.115 | 17.37 ± 0.153 | 43.60 ± 0.361 | |
Decrease rates (%) | 47.20 ± 0.264 | 34.63 ± 0.586 | |||
ECG | 0 | 39.10 ± 0.173 | 28.10 ± 0.200 | 16.63 ± 0.058 | 16.13 ± 0.321 |
0.04 | 34.43 ± 0.153 | 26.33 ± 0.252 | 16.53 ± 0.208 | 22.60 ± 0.200 | |
0.8 | 28.27 ± 0.153 | 24.40 ± 0.173 | 16.03 ± 0.306 | 31.37 ± 0.321 | |
Decrease rates (%) | 27.73 ± 0.115 | 13.16 ± 0.321 | |||
EGC | 0 | 39.10 ± 0.173 | 28.10 ± 0.200 | 16.63 ± 0.058 | 16.13 ± 0.321 |
0.04 | 33.43 ± 0.208 | 23.40 ± 0.265 | 12.33 ± 0.208 | 30.73 ± 0.208 | |
0.8 | 32.33 ± 0.415 | 22.97 ± 0.404 | 12.33 ± 0.153 | 32.40 ± 0.179 | |
Decrease rates (%) | 17.30 ± 0.815 | 18.26 ± 0.357 | |||
EC | 0 | 39.10 ± 0.173 | 28.10 ± 0.200 | 16.63 ± 0.058 | 16.13 ± 0.321 |
0.04 | 33.40 ± 0.173 | 21.07 ± 0.058 | 16.57 ± 0.058 | 28.97 ± 0.153 | |
0.8 | 33.17 ± 0.115 | 22.27 ± 0.153 | 11.67 ± 0.153 | 32.80 ± 0.265 | |
Decrease rates (%) | 15.20 ± 0.692 | 20.76 ± 0.929 |
Monomer | Binding Energy /(kcal/mol) | Amino Acid Residues Number | Active Site Residues | Total Hydrogen Bond Number | Hydrogen Bond Number (Active Site) |
---|---|---|---|---|---|
EGCG | −7.87 | 15 | 6 | 6 | 2 |
ECG | −7.98 | 16 | 6 | 7 | 1 |
EGC | −7.45 | 16 | 2 | 6 | 0 |
EC | −6.75 | 13 | 0 | 9 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wen, R.; Chai, X.; Wang, P.; Wu, K.; Duan, X.; Chen, J.; Zhang, T.; Zeng, L. Inhibitory Effect and Mechanism of Dancong Tea from Different Harvesting Season on the α-Glucosidase Inhibition In Vivo and In Vitro. Foods 2024, 13, 4183. https://doi.org/10.3390/foods13244183
Wen R, Chai X, Wang P, Wu K, Duan X, Chen J, Zhang T, Zeng L. Inhibitory Effect and Mechanism of Dancong Tea from Different Harvesting Season on the α-Glucosidase Inhibition In Vivo and In Vitro. Foods. 2024; 13(24):4183. https://doi.org/10.3390/foods13244183
Chicago/Turabian StyleWen, Rourou, Xianghua Chai, Pingping Wang, Kegang Wu, Xuejuan Duan, Jiasi Chen, Tong Zhang, and Liya Zeng. 2024. "Inhibitory Effect and Mechanism of Dancong Tea from Different Harvesting Season on the α-Glucosidase Inhibition In Vivo and In Vitro" Foods 13, no. 24: 4183. https://doi.org/10.3390/foods13244183
APA StyleWen, R., Chai, X., Wang, P., Wu, K., Duan, X., Chen, J., Zhang, T., & Zeng, L. (2024). Inhibitory Effect and Mechanism of Dancong Tea from Different Harvesting Season on the α-Glucosidase Inhibition In Vivo and In Vitro. Foods, 13(24), 4183. https://doi.org/10.3390/foods13244183