Lactobacilli and Bifidobacteria: A Parapostbiotic Approach to Study and Explain Their Mutual Bioactive Influence
<p>Decomposition of the statistical hypothesis for the individual effect of the predictor “target microorganism” on the assay <span class="html-italic">Bifidobacterium</span> spp. and CFS of <span class="html-italic">L. plantarum</span> on the reduction in t-7 log (that is, the reduction in time to attain a viable count of 7 log CFU/mL by the target strain). Bars denote 95% confidence interval, while letters indicate significant differences (Tukey’s test, <span class="html-italic">p</span> < 0.05). The picture shows the cumulative results for the aforementioned extracts.</p> "> Figure 2
<p>Decomposition of the statistical hypothesis for the individual effect of the predictor “kind of CFS” on the assay <span class="html-italic">Bifidobacterium</span> spp. and CFS of <span class="html-italic">L. plantarum</span> (CFS<sub>1</sub>, <span class="html-italic">L. plantarum</span> c3; CFS<sub>2</sub>, <span class="html-italic">L. plantarum</span> c4; CFS<sub>3</sub>, <span class="html-italic">L. plantarum</span> c15) on the reduction in t-7 log (that is, the reduction in the time taken to attain a viable count of 7 log CFU/mL by the target strain). Bars denote 95% confidence interval, while letters indicate significant differences (Tukey’s test, <span class="html-italic">p</span> < 0.05). This figure shows the cumulative effects of the different extracts on all bifidobacteria.</p> "> Figure 3
<p>Decomposition of the statistical hypothesis for the individual effect of the predictor “target microorganism” on the assay <span class="html-italic">L. plantarum</span> and CFS of <span class="html-italic">Bifidobacterium</span> spp. on the reduction in t-7 log (that is, the reduction in the time taken to attain a viable count of 7 log CFU/mL by the target strain). Bars denote 95% confidence interval, while letters indicate significant differences (Tukey’s test, <span class="html-italic">p</span> < 0.05). The picture shows the cumulative results for the aforementioned extracts.</p> "> Figure 4
<p>Decomposition of the statistical hypothesis for the individual effect of the predictor “target microorganism” on the assay <span class="html-italic">L. plantarum</span> and CFS of <span class="html-italic">Bifidobacterium</span> spp. on the increase in the stability time (that is, the time when the viable count of the target strain was at least 7 log CFU/mL). Bars denote 95% confidence interval, while letters indicate significant differences (Tukey’s test, <span class="html-italic">p</span> < 0.05). The picture shows the cumulative results for the aforementioned extracts.</p> "> Figure 5
<p>Decomposition of the statistical hypothesis for the individual effect of the predictor “kind of CFS” on the assay <span class="html-italic">L. plantarum</span> and CFE of <span class="html-italic">Bifidobacterium</span> spp. (CFS<sub>4</sub>, <span class="html-italic">B. animalis</span> subsp. <span class="html-italic">lactis</span>; CFS<sub>5</sub>, <span class="html-italic">B. subtile</span> DSM 20096; CFS<sub>6</sub>, <span class="html-italic">B. breve</span> DSM 20213) on the increase in the stability time (that is, the time when the viable count of the target strain was at least 7 log CFU/mL). Bars denote 95% confidence interval, while letters indicate significant differences (Tukey’s test, <span class="html-italic">p</span> < 0.05). The figure shows the cumulative effects of the different extracts on all bifidobacteria.</p> "> Figure 6
<p>Decomposition of the statistical hypothesis for the interactive effect “kind of CFS × target strain” on the assay <span class="html-italic">L. plantarum</span> and CFS of <span class="html-italic">Bifidobacterium</span> spp. on the increase in the stability time (that is, the time when the viable count of the target strain was at least 7 log CFU/mL). Bars denote 95% confidence interval, while letters indicate significant differences (Tukey’s test, <span class="html-italic">p</span> < 0.05). CFS<sub>4</sub>, <span class="html-italic">B. animalis</span> subsp. <span class="html-italic">lactis</span>; CFS<sub>5</sub>, <span class="html-italic">B. subtile</span> DSM 20096; CFS<sub>6</sub>, <span class="html-italic">B. breve</span> DSM 20213.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microorganisms
2.2. Preparation of Cell-Free Supernatants
2.3. Assays
2.4. Modelling
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; et al. The international Scientifc Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [Google Scholar] [CrossRef] [PubMed]
- Kisan, B.S.; Kumar, R.; Ashok, S.P.; Sangita, G. Probiotic foods for human health A review. J. Pharmacogn. Phytochem. 2019, 8, 967–971. [Google Scholar]
- Kwoji, I.D.; Aiyegoro, O.A.; Okpeku, M.; Adeleke, M.A. Multi-Strain Probiotics: Synergy among Isolates Enhances Biological Activities. Biology 2021, 10, 322. [Google Scholar] [CrossRef] [PubMed]
- Salminen, S.; Collado, M.C.; Endo, A.; Hill, C.; Lebeer, S.; Quigley, E.M.M.; Sanders, M.E.; Shamir, R.; Swann, J.R.; Szajewska, H.; et al. The International Scientific Association of Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics. Nate. Rev. Gastroenterol. Hepatol. 2021, 18, 649–667. [Google Scholar] [CrossRef]
- Zendeboodi, F.; Khorshidian, N.; Mortazavian, A.M.; da Cruz, A.G. Probiotic Conceptualization from a new approach. Curr. Op. Food Sci. 2020, 32, 103–123. [Google Scholar] [CrossRef]
- Teame, T.; Wang, A.; Xie, M.; Zhang, Z.; Yang, Y.; Ding, Q.; Gao, C.; Olsen, R.E.; Ran, C.; Zhou, Z. Paraprobiotics and Postbiotics of Probiotic Lactobacilli, Their Positive Effects on the Host and Action Mechanisms A Review. Front. Nutr. 2020, 7, 570344. [Google Scholar] [CrossRef]
- Vinderola, G.; Sanders, M.E.; Salminen, S.; Szajewska, H. Postbiotics: The concept and their use in healthy populations. Front. Nutr. 2022, 9, 1002213. [Google Scholar] [CrossRef]
- Wei, L.; Wang, B.; Bai, J.; Zhang, Y.; Liu, C.; Suo, H.; Wang, C. Postbiotics are a candidate for new functional foods. Food Chem. X 2024, 23, 101650. [Google Scholar] [CrossRef] [PubMed]
- Piqué, N.; Berlanga, M.; Miñana-Galbis, D. Health benefits of heat-killed (Tyndallized) probiotics an overview. Int. J. Mol. Sci. 2019, 20, 2534. [Google Scholar] [CrossRef]
- Nataraj, B.H.; Ali, S.A.; Behare, P.V.; Yadav, H. Postbiotics-parabiotics the new horizon in microbial biotherapy and functional foods. Microb. Cell Fact. 2020, 19, 168. [Google Scholar] [CrossRef]
- EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP); Bampidis, V.; Azimonti, G.; Bastos, M.D.L.; Christensen, H.; Dusemund, B.; Fasmon Durjava, M.; Kouba, M.; Lopez-AAlonso, M.; Lopez Puente, S.; et al. Assessment of the feed additive consisting of Lactiplantibacillus plantarum (previously Lactobacillus plantarum) DSM 19457 for all animal species for the renewal of its authorisation (Biomin GmbH). EFSA J. 2023, 21, 07697. [Google Scholar] [CrossRef]
- EFSA Panel on Biological Hazards (BIOHAZ); Koutsoumanis, K.; Allende, A.; Alvarez-Ordóñez, A.; Bolton, D.; Bover-Cid, S.; Chemaly, M.; Davies, R.; De Cesare, A.; Hilbert, F.; et al. Update of the list of QPS-recommended biological agents intentionally added to food or feed as notified to EFSA 15 Suitability of taxonomic units notified to EFSA until September 2021. EFSA J. 2022, 20, e07045. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.F.; Hsia, K.C.; Kuo, Y.W.; Chen, S.H.; Huang, Y.Y.; Li, C.M.; Hsu, Y.C.; Tsai, S.Y.; Ho, H.H. Safety Assessment and Probiotic Potential Comparison of Bifidobacterium longum subsp. infantis BLI.02, Lactobacillus plantarum LPL28, Lactobacillus acidophilus TYCA06, and Lactobacillus paracasei ET-66. Nutrients 2024, 16, 126. [Google Scholar] [CrossRef]
- Kanawjia, S.K.; Nageswara Rao, K.; Singh, S.; Sabikhi, L. Role of Lactobacilli in cheese. Ind. J. Dairy. Sci. 1993, 46, 187–197. [Google Scholar]
- Beresford, T.P.; Fitzimons, N.A.; Brennan, N.L.; Cogan, T.M. Recent advances in cheese microbiology. Int. Dairy. J. 2001, 11, 259–274. [Google Scholar] [CrossRef]
- Wouters, J.T.M.; Ayad, E.H.E.; Hugenholtz, J.; Smit, G. Microbes from raw milk for fermented dairy products. Int. Dairy J. 2002, 12, 91–109. [Google Scholar] [CrossRef]
- Kieronczyk, A.; Skeie, S.; Langsrud, T.; Yvon, M. Cooperation between Lactococcus lactis and non-starter lactobacilli in the formation of cheese aroma from amino acids. Appl. Environ. Microbiol. 2003, 69, 734–739. [Google Scholar] [CrossRef]
- Ballongue, J. Bifidobacteria and probiotic action. In Probiotics the Scientific Basis; Fuller, R., Ed.; Chapman & Hall: London, UK, 1992; pp. 357–413. [Google Scholar]
- Fondén, R.; Mongensen, G.; Tanaka, R.; Salminen, S. Effect of culture–containing dairy products on intestinal microflora, human nutrition and health–Current knowledge and future perspectives. Bull. IDF 2000, 352, 5–30. [Google Scholar]
- Xiao, M.; Zhang, C.; Duan, H.; Narbad, A.; Zhao, J.; Chen, W.; Zhai, Q.; Yu, L.; Tian, F. Cross-feeding of bifidobacteria promotes intestinal homeostasis A lifelong perspective on the host health. Npj Biofilms Microbes 2024, 10, 47. [Google Scholar] [CrossRef]
- Kaneko, T.; Mori, H.; Iwata, M.; Meguro, S. Growth stimulator for bifidobacteria produced by Propionibacterium freudenreichii and several intestinal bacteria. J. Dairy Sci. 1994, 77, 393–404. [Google Scholar] [CrossRef]
- Mori, H.; Sato, Y.; Taketomo, N.; Kamiyama, T.; Yoshiyama, Y.; Meguro, S.; Sato, H.; Kaneko, T. Isolation and structural identification of bifidogenic growth stimulator produced by Propionibacterium freudenreichii. J. Dairy Sci. 1997, 80, 1959–1964. [Google Scholar] [CrossRef] [PubMed]
- Furuichi, K.; Hojo, K.; Katakura, Y.; Ninomiya, K.; Shioya, S. Aerobic culture of Propionibacterium freudenreichii ET-3 can increase producton ratio of 1,4-dihydroxy-2-naphthoic acid to menaquinone. J. Biosci. Bioeng. 2006, 101, 464–470. [Google Scholar] [CrossRef] [PubMed]
- Filippone, A.; Sinigaglia, M.; Altieri, C. Study on bioactivity of cell-free filtrates from dairy propionibacteria. Anaerobe 2014, 30, 137–145. [Google Scholar] [CrossRef] [PubMed]
- De Almada, C.N.; de Almada, C.N.; de Sant’Ana, A.S. Paraprobiotics as potential agents for improving animal health. In Probiotics and Prebiotics in Animal Health and Food Safety; Springer International Publishing: Berlin/Heidelberg, Germany, 2018; pp. 247–268. [Google Scholar]
- Cheng, C.C.; Nagasawa, T. Associative relationships between bifidobacteria and lactobacilli in milk. Jpn. J. Zootech. Sci. 1983, 54, 740–747. [Google Scholar]
- Campaniello, D.; Bevilacqua, A.; D’Amato, D.; Corbo, M.R.; Altieri, C.; Sinigaglia, M. Microbial characterization of table olives processed accordino to spanish and natural style. Food Technol. Biotechnol. 2005, 43, 289–294. [Google Scholar]
- Bevilacqua, A.; Altieri, C.; Corbo, M.R.; Sinigaglia, M.; Ouoba, L.I.I. Characterization of Lactic Acid Bacteria Isolated from Italian Bella di Cerignola Table Olives: Selection of Potential Multifunctional Starter Cultures. J. Food Sci. 2010, 75, M536–M544. [Google Scholar] [CrossRef]
- Corbo, M.R.; Del Nobile, M.A.; Sinigaglia, M. A novel approach for calculating shelf life of minimally processed vegetables. In. J. Food Microb. 2006, 106, 69–73. [Google Scholar] [CrossRef]
- Zwietering, M.H.; Jongenburger, I.; Rombouts, F.M.; van′t Riet, K. Modeling of the bacterial growth curve. Appl. Environ. Microbiol. 1990, 56, 1875–1881. [Google Scholar] [CrossRef]
- Gibson, D.L.; Vallance, B.A. Intestinal microbiota are transiently altered during Salmonella-induced gastroenteritis. Expert. Rev. Gastroenterol. Hepatol. 2008, 2, 525–529. [Google Scholar] [CrossRef]
- Kelly, J.R.; Kennedy, P.J.; Cryan, J.F.; Dinan, T.G.; Clarke, G.; Hyland, N.P. Breaking down the barriers The gut microbiome, intestinal permeability and stress-related psychiatric disorders. Front. Cell Neurosci. 2015, 9, 392. [Google Scholar] [CrossRef]
- Ussar, S.; Griffin, N.W.; Bezy, O.; Fujisaka, S.; Vienberg, S.; Softic, S.; Deng, L.; Bry, L.; Gordon, J.I.; Kahn, C.R. Interactions between gut microbiota, host genetics and diet modulate the predisposition to obesity and metabolic syndrome. Cell Metab. 2015, 22, 516–530. [Google Scholar] [CrossRef] [PubMed]
- Walters, W.A.; Xu, Z.; Knight, R. Meta-analyses of human gut microbes associated with obesity and IBD. FEBS Lett. 2014, 588, 4223–4233. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.J.; Marsland, B.J.; Bunyavanich, S.; O′Mahony, L.; Leung, D.Y.; Muraro, A.; Fleisher, T.A. The microbiome in allergic disease Current understanding and future opportunities-2017 PRACTALL document of the American Academy of Allergy, Asthma & Immunology and the European Academy of Allergy and Clinical Immunology. J. Allergy Clin. Immunol. 2017, 139, 1099–1110. [Google Scholar] [CrossRef] [PubMed]
- De Angelis, M.; Piccolo, M.; Vannini, L.; Siragusa, S.; De Giacomo, A.; Serrazzanetti, D.I.; Cristofori, F.; Guerzoni, M.E.; Gobbetti, M.; Francavilla, R. Fecal microbiota and metabolome of children with autism and pervasive developmental disorder not otherwise specified. PLoS ONE. 2013, 8, e76993. [Google Scholar] [CrossRef]
- Thakur, P.; Baraskar, P.; Shrivastava, V.K.; Medhi, B. Crosstalk between adipose tissue and microbiota-gut-brain-axis in brain development and neurological disorder. Brain Res. 2024, 1844, 149176. [Google Scholar] [CrossRef]
- Caspani, G.; Kennedy, S.; Foster, J.A.; Swann, J. Gut microbial metabolites in depression Understanding the biochemical mechanisms. Microb. Cell. 2019, 6, 454–481. [Google Scholar] [CrossRef]
- Postler, T.S.; Ghosh, S. Understanding the holobiont How microbial metabolites affect human health and shape the immune system. Cell. Metab. 2017, 26, 110–130. [Google Scholar] [CrossRef] [PubMed]
- Martyniak, A.; Medynska-Przeczek, A.; Wedrychowicz, A.; Skoczen, S.; Tomasik, P.J. Prebiotics, Probiotics, Synbiotics, Paraprobiotics and Postbiotic Compounds in IBD. Biomolecules 2021, 11, 1903. [Google Scholar] [CrossRef]
- Floch, M.H. Probiotic Safety and Risk Factors. J. Clin. Gastroenterol. 2013, 47, 375–376. [Google Scholar] [CrossRef]
- Vahabnezhad, E.; Mochon, A.B.; Wozniak, L.J.; Ziring, D.A. Lactobacillus Bacteremia Associated with Probiotic Use in a Pediatric Patient with Ulcerative Colitis. J. Clin. Gastroenterol. 2013, 47, 437–439. [Google Scholar] [CrossRef]
- Oleskin, A.V.; Shenderov, B.A. Microbial Communication and Microbiota-Host Interactivity Neurophysiological, Biotechnological, and Biopolitical Implications; Nova Science Publishers: Hauppauge, NY, USA, 2020. [Google Scholar]
- Pompilio, A.; Kaya, E.; Lupetti, V.; Catelli, E.; Bianchi, M.; Maisetta, G.; Esin, S.; Di Bonaventura, G.; Batoni, G. Cell-free supernatants from Lactobacillus strains exert antibacterial, antibiofilm, and antivirulence activity against Pseudomonas aeruginosa from cystic fibrosis patients. Microbes Infect. 2024, 26, 105301. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Fan, D.C.; Wang, R.S.; Chang, Y.; Ji, X.M.; Li, X.Y.; Zhang, Y.; Liu, J.M.; Wang, S.; Wang, J. Inhibitory Potential of Bifidobacterium longum FB1-1 Cell-Free Supernatant against Carbapenem-Resistant Klebsiella pneumoniae Drug Resistance Spread. Microorganisms 2024, 12, 1203. [Google Scholar] [CrossRef]
- Kumar, S.A.S.; Krishnan, D.; Jothipandiyan, S.; Durai, R.; Hari, B.N.V.; Nithyanand, P. Cell-free supernatants of probiotic consortia impede hyphal formation and disperse biofilms of vulvovaginal candidiasis causing Candida in an ex-vivo model. Antonie Van Leeuwenhoek 2024, 117, 37. [Google Scholar] [CrossRef] [PubMed]
- Sornsenee, P.; Surachat, K.; Wong, T.; Kaewdech, A.; Saki, M.; Romyasamit, C. Lyophilized cell-free supernatants of Limosilactobacillus fermentum T0701 exhibited antibacterial activity against Helicobacter pylori. Sci. Rep. 2024, 14, 13632. [Google Scholar] [CrossRef]
- Rivière, A.; Selak, M.; Geirnaert, A.; Van den Abbeele, P.; De Vuyst, L. Complementary Mechanisms for Degradation of Inulin-Type Fructant and Arabinoxylan Oligosaccharides among Bifidobacterial Strains Suggest Bacterial Cooperation. Appl. Environ. Microbiol. 2018, 84, e02893-17. [Google Scholar] [CrossRef]
- Turroni, F.; Milani, C.; Duranti, S.; Mancabelli, L.; Mangifesta, M.; Vippiani, A.; Lugli, G.A.; Ferrario, C.; Gioiosa, L.; Ferrarini, A.; et al. Deciphering bifidobacterial-mediated metabolic interactions and their impact on gut microbiota by a multi-omics approach. ISME J. 2016, 10, 1656–1668. [Google Scholar] [CrossRef] [PubMed]
- Tan, X.; Zhang, S.; Liu, J.; Xiang, W.; Zhang, Q.; Tang, J. Effect of Lactiplantibacillus plantarum cell-free supernatant on the physiology, quorum sensing, transcription, and enhanced GABA production of Enterococcus faecium. LWT 2024, 198, 115986. [Google Scholar] [CrossRef]
- Matera, M. Bifidobacteria, Lactobacilli when, how and why to use them. Glob. Pediatr. 2024, 8, 100139. [Google Scholar] [CrossRef]
- Bevilacqua, A.; Costabile, A.; Bergillos-Meca, T.; Gonzalez, I.; Landriscina, L.; Ciuffreda, E.; D’Agnello, P.; Corbo, M.R.; Sinigaglia, M.; Lamacchia, C. Impact of gluten-friendly bread on the metabolism and function of in vitro gut microbiota in healthy humans and coeliac subjects. PLoS ONE 2016, 11, e0162770. [Google Scholar] [CrossRef]
- Gu, X.; Wang, H.; Wang, L.; Zhang, K.; Tian, Y.; Wang, X.; Xu, G.; Guo, Z.; Ahmad, S.; Egide, H.; et al. The antioxidant activity and metabolomic analysis of the supernatant of Streptococcus alactolyticus strain FGM. Sci. Rep. 2024, 14, 8413. [Google Scholar] [CrossRef]
SS * | Df | MS | F-Test | |
---|---|---|---|---|
t-log reduction, Bifidobacterium ssp. and CFS from L. plantarum | ||||
Microorganism | 31.09 | 2 | 15.54 | 85.90 |
CFS | 133.49 | 2 | 66.75 | 368.87 |
Interaction | /** | / | / | / |
t-7 log reduction, L. plantarum and CFS from Bifidobacterium spp. | ||||
Microorganism | 14.73 | 2 | 7.36323 | 122.99 |
CFS | / | / | / | / |
Interaction | 1.83 | 4 | 0.46 | 7.67 |
ST increase, L. plantarum and CFS from Bifidobacterium spp. | ||||
Microorganism | 232.25 | 2 | 116.13 | 19.18 |
CFS | 258.20 | 2 | 129.10 | 21.32 |
Interaction | 114.93 | 4 | 28.73 | 4.75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Altieri, C.; Filippone, A.; Bevilacqua, A.; Corbo, M.R.; Sinigaglia, M. Lactobacilli and Bifidobacteria: A Parapostbiotic Approach to Study and Explain Their Mutual Bioactive Influence. Foods 2024, 13, 2966. https://doi.org/10.3390/foods13182966
Altieri C, Filippone A, Bevilacqua A, Corbo MR, Sinigaglia M. Lactobacilli and Bifidobacteria: A Parapostbiotic Approach to Study and Explain Their Mutual Bioactive Influence. Foods. 2024; 13(18):2966. https://doi.org/10.3390/foods13182966
Chicago/Turabian StyleAltieri, Clelia, Alfonso Filippone, Antonio Bevilacqua, Maria Rosaria Corbo, and Milena Sinigaglia. 2024. "Lactobacilli and Bifidobacteria: A Parapostbiotic Approach to Study and Explain Their Mutual Bioactive Influence" Foods 13, no. 18: 2966. https://doi.org/10.3390/foods13182966
APA StyleAltieri, C., Filippone, A., Bevilacqua, A., Corbo, M. R., & Sinigaglia, M. (2024). Lactobacilli and Bifidobacteria: A Parapostbiotic Approach to Study and Explain Their Mutual Bioactive Influence. Foods, 13(18), 2966. https://doi.org/10.3390/foods13182966