Structural Characterization of, and Protective Effects Against, CoCl2-Induced Hypoxia Injury to a Novel Neutral Polysaccharide from Lycium barbarum L.
<p>(<b>A</b>) Profile of SEC-MALLS of polysaccharide LICP009-3F-1a, (<b>B</b>) IC trace of standard monosaccharides and IC trace of LICP009-3F-1a, (<b>C</b>) FT-IR spectrum of LICP009-3F-1a, (<b>D</b>–<b>F</b>) SEM spectra of LICP009-3F-1a with magnifications of 500× and 2000×.</p> "> Figure 2
<p>(<b>A</b>) <sup>1</sup>H NMR spectra, (<b>B</b>) <sup>13</sup>C NMR spectra, (<b>C</b>) HSQC spectra, (<b>D</b>) <sup>1</sup>H-<sup>1</sup>H-COSY spectra, (<b>E</b>) HMBC spectra, (<b>F</b>) NOESY spectra, and (<b>G</b>) the proposed structure of LICP009-3F-1a.</p> "> Figure 3
<p>(<b>A</b>) Effects of different concentrations of CoCl<sub>2</sub> (75, 150, 300, 450, 600, 750, and 900 μM) on PC12 cell proliferation. (<b>B</b>) Proliferation of PC12 cells treated with CoCl<sub>2</sub> in the presence of different concentrations of LICP009-3F-1a (10, 50, 100, 200, and 500 μg/mL). The results are expressed as the means ± SD, <span class="html-italic">n</span> = 5. <sup>##</sup> <span class="html-italic">p</span> < 0.01 vs. the control group, * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01 vs. the hypoxia group.</p> "> Figure 4
<p>Effects of different concentrations (10, 50, 100, 200, and 500 μg/mL) of LICP009-3F-1a on ROS levels in PC12 cells treated with CoCl<sub>2</sub>. (<b>a</b>) The control group, (<b>b</b>) the hypoxia group, (<b>c</b>) the 10 μg/mL LICP009-3F-1a treatment group, (<b>d</b>) the 50 μg/mL LICP009-3F-1a treatment group, (<b>e</b>) the 100 μg/mL LICP009-3F-1a treatment group, (<b>f</b>) the 200 μg/mL LICP009-3F-1a treatment group, (<b>g</b>) the 500 μg/mL LICP009-3F-1a treatment group. The results are expressed as the means ± SD, n = 3. <sup>##</sup> <span class="html-italic">p</span> < 0.01 vs. the control group, ** <span class="html-italic">p</span> < 0.01 vs. the hypoxia group.</p> "> Figure 5
<p>Fluorescence images of CoCl<sub>2</sub>-induced ROS detected in PC12 cells treated with LICP009-3F-1a (0, 50, 100, 200, and 500 μg/mL).</p> "> Figure 6
<p>Effects of different concentrations of LICP009-3F-1a (10, 50, 100, 200, and 500 μg/mL) on the mRNA levels of CAT, SOD1, Gpx1, HIF-1α, and VEGF in PC12 cells induced by CoCl<sub>2</sub>. The results are expressed as the means ± SD, n = 3, <sup>##</sup> <span class="html-italic">p</span> < 0.01 vs. the control group, * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01 vs. the hypoxia group.</p> "> Figure 7
<p>Effects of different concentrations (10, 50, 100, 200, and 500 μg/mL) of LICP009-3F-1a on CoCl<sub>2</sub>-induced apoptosis in PC12 cells. (<b>a</b>) The control group, (<b>b</b>) the model group, (<b>c</b>) the 10 μg/mL LICP009-3F-1a treatment group, (<b>d</b>) the 50 μg/mL LICP009-3F-1a treatment group, (<b>e</b>) the 100 μg/mL LICP009-3F-1a treatment group, (<b>f</b>) the 200 μg/mL LICP009-3F-1a treatment group, (<b>g</b>) the 500 μg/mL LICP009-3F-1a treatment group. The results are expressed as the means ± SD, n = 3. <sup>##</sup> <span class="html-italic">p</span> < 0.01 vs. the control group, * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01 vs. the hypoxia group.</p> "> Figure 8
<p>Effects of different concentrations (10, 50, 100, 200, and 500 μg/mL) of LICP009-3F-1a on the mRNA levels of Bax, Bcl2, and Casp3 in PC12 cells treated with CoCl<sub>2</sub>. The results are expressed as the means ± SD, n = 3. <sup>##</sup> <span class="html-italic">p</span> < 0.01 vs. the control group, ** <span class="html-italic">p</span> < 0.01 vs. the hypoxia group.</p> "> Figure 9
<p>Effects of different concentrations (10, 50, 100, 200, and 500 μg/mL) of LICP009-3F-1a on the levels of mitochondria and ATP in PC12 cells treated with CoCl<sub>2</sub>. The results are expressed as the means ± SD, n = 3. <sup>##</sup> <span class="html-italic">p</span> < 0.01 vs. the control group, ** <span class="html-italic">p</span> < 0.01 vs. the hypoxia group.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Preparation of LICP009-3F-1a
2.3. Molecular Weight Analysis
2.4. Monosaccharide Composition Analysis
2.5. FT-IR Spectroscopy
2.6. X-Ray Diffraction (XRD)
2.7. Thermogravimetric Analysis (TGA)
2.8. Congo Red Test
2.9. Scanning Electron Microscopy (SEM)
2.10. Linkage Pattern Analysis
2.11. Nuclear Magnetic Resonance (NMR) Analysis
2.12. CoCl2-Induced Hypoxia Injury
2.13. Cell Proliferation Assay Following LICP009-3F-1a Treatment
2.14. ROS Content
2.15. Cell Apoptosis
2.16. RT–PCR
2.17. Data Analysis
3. Results
3.1. Purification and Mw Analysis
3.2. FT-IR Spectroscopy
3.3. X-Ray Diffractometry (XRD)
3.4. Thermal Property Analysis
3.5. SEM Analysis
3.6. Congo Red Analysis
3.7. Methylation Analysis
3.8. NMR Spectroscopy
3.9. PC12 Cells Are Injured by CoCl2-Induced Hypoxia
3.10. LICP009-3F-1a Protects PC12 Cells Against CoCl2-Induced Hypoxic Injury
3.11. LICP009-3F-1a Reduces ROS Levels in CoCl2-Induced Hypoxic Injury in PC12 Cells
3.12. LICP009-3F-1a Inhibits CoCl2-Induced Hypoxic Oxidative Stress in PC12 Cells
3.13. LICP009-3F-1a Inhibits HIF-1α and VEGF mRNA Levels in CoCl2-Induced Hypoxic Injury in PC12 Cells
3.14. LICP009-3F-1a Inhibits CoCl2-Induced Hypoxia Apoptosis in PC12 Cells
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, S.; He, W.-B.; Chen, N.-H. Causes of Death among persons who survive an acute ischemic stroke. Curr. Neurol. Neurosci. Rep. 2014, 14, 467. [Google Scholar] [CrossRef] [PubMed]
- Broussalis, E.; Killer, M.; McCoy, M.; Harrer, A.; Trinka, E.; Kraus, J. Current therapies in ischemic stroke. Part A. Recent developments in acute stroke treatment and in stroke prevention. Drug Discov. Today 2012, 17, 296–309. [Google Scholar] [CrossRef]
- Rodrigo, R.; Fernandez-Gajardo, R.; Gutierrez, R.; Matamala, J.M.; Carrasco, R.; Miranda-Merchak, A.; Feuerhake, W. Oxidative stress and pathophysiology of ischemic stroke: Novel therapeutic opportunities. CNS Neurol. Disord. Drug Targets 2013, 12, 698–714. [Google Scholar] [CrossRef] [PubMed]
- Martí-Fàbregas, J.; Romaguera-Ros, M.; Gómez-Pinedo, U.; Martínez-Ramírez, S.; Jiménez-Xarrié, E.; Marín, R.; Martí-Vilalta, J.-L.; García-Verdugo, J.-M. Proliferation in the human ipsilateral subventricular zone after ischemic stroke. Neurology 2010, 74, 357–365. [Google Scholar] [CrossRef]
- Manzanero, S.; Santro, T.; Arumugam, T.V. Neuronal oxidative stress in acute ischemic stroke: Sources and contribution to cell injury. Neurochem. Int. 2013, 62, 712–718. [Google Scholar] [CrossRef]
- Jin, R.; Yang, G.; Li, G. Inflammatory mechanisms in ischemic stroke: Role of inflammatory cells. J. Leukoc. Biol. 2010, 87, 779–789. [Google Scholar] [CrossRef]
- Wang, P.; Shao, B.-Z.; Deng, Z.; Chen, S.; Yue, Z.; Miao, C.-Y. Autophagy in ischemic stroke. Prog. Neurobiol. 2018, 163, 98–117. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Hawkins, K.E.; Doré, S.; Candelario-Jalil, E. Neuroinflammatory mechanisms of blood-brain barrier damage in ischemic stroke. Am. J. Physiol. Cell Physiol. 2019, 316, C135–C153. [Google Scholar] [CrossRef] [PubMed]
- Radak, D.; Katsiki, N.; Resanovic, I.; Jovanovic, A.; Sudar-Milovanovic, E.; Zafirovic, S.; Mousad, S.A.; Isenovic, E.R. Apoptosis and acute brain ischemia in ischemic stroke. Curr. Vasc. Pharmacol. 2017, 15, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Cai, W.; Zhang, K.; Li, P.; Zhu, L.; Xu, J.; Yang, B.; Hu, X.; Lu, Z.; Chen, J. Dysfunction of the neurovascular unit in ischemic stroke and neurodegenerative diseases: An aging effect. Ageing Res. Rev. 2017, 34, 77–87. [Google Scholar] [CrossRef] [PubMed]
- Ozkul, A.; Akyol, A.; Yenisey, C.; Arpaci, E.; Kiylioglu, N.; Tataroglu, C. Oxidative stress in acute ischemic stroke. J. Clin. Neurosci. 2007, 14, 1062–1066. [Google Scholar] [CrossRef] [PubMed]
- Allen, C.L.; Bayraktutan, U. Oxidative stress and its role in the pathogenesis of ischaemic stroke. Int. J. Stroke 2009, 4, 461–470. [Google Scholar] [CrossRef]
- Melillo, G. Hypoxia and Cancer; Springer: New York, NY, USA, 2014. [Google Scholar]
- Wang, X.; Li, J.; Wu, D.; Bu, X.; Qiao, Y. Hypoxia promotes apoptosis of neuronal cells through hypoxia-inducible factor-1α-microRNA-204-B-cell lymphoma-2 pathway. Exp. Biol. Med. 2016, 241, 177–183. [Google Scholar] [CrossRef]
- Zorov, D.B.; Juhaszova, M.; Sollott, S.J. Mitochondrial ROS-induced ROS release: An update and review. Biochim. Biophys. Acta (BBA) Bioenerg. 2006, 1757, 509–517. [Google Scholar] [CrossRef] [PubMed]
- Elmore, S. Apoptosis: A review of programmed cell death. Toxicol. Pathol. 2007, 35, 495–516. [Google Scholar] [CrossRef] [PubMed]
- Saelens, X.; Festjens, N.; Vande Walle, L.; Van Gurp, M.; Van Loo, G.; Vandenabeele, P. Toxic proteins released from mitochondria in cell death. Oncogene 2004, 23, 2861–2874. [Google Scholar] [CrossRef] [PubMed]
- Qiu, S.; Chen, J.; Chen, X.; Fan, Q.; Zhang, C.; Wang, D.; Li, X.; Chen, X.; Chen, X.; Liu, C.; et al. Optimization of selenylation conditions for Lycium barbarum polysaccharide based on antioxidant activity. Carbohydr. Polym. 2014, 103, 148–153. [Google Scholar] [CrossRef]
- Li, X.; Zhou, A. Evaluation of antioxidant activity of the polysaccharides extracted from Lycium barbarum fruits in vitro. Eur. Polym. J. 2007, 43, 488–497. [Google Scholar] [CrossRef]
- Gan, L.; Zhang, S.H.; Yang, X.L.; Xu, H.B. Immunomodulation and antitumor activity by a polysaccharide–protein complex from Lycium barbarum. Int. Immunopharmacol. 2004, 4, 563–569. [Google Scholar] [CrossRef]
- Liu, J.; Li, Y.; Pu, Q.; Qiu, H.; Di, D.; Cao, Y. A polysaccharide from Lycium barbarum L.: Structure and protective effects against oxidative stress and high-glucose-induced apoptosis in ARPE-19 cells. Int. J. Biol. Macromol. 2022, 201, 111–120. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Fang, C.; Zhao, F.; Zhang, Q.; Zhao, D. Mechanism by which Lycium barbarum polysaccharides inhibit keratinocyte apoptosis in burn wounds via autophagy. Chin. J. Tissue Eng. Res. 2024, 28, 3686. [Google Scholar]
- Wang, Q.; Li, M.; Lu, Q.; Tao, R.; Liao, J.; Zhao, J. Lycium barbarum- Derived Polysaccharides Alleviate DNA Damage and Oxidative Stress Caused by Ultraviolet Radiation in Corneal Epithelial Cells. Curr. Eye Res. 2024, 49, 1123–1130. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Pu, Q.; Qiu, H.; Di, D. Polysaccharides isolated from Lycium barbarum L. by integrated tandem hybrid membrane technology exert antioxidant activities in mitochondria. Ind. Crop. Prod. 2021, 168, 113547. [Google Scholar] [CrossRef]
- Zheng, C.; Dong, Q.; Du, Z.; Wang, P.; Ding, K. Structural elucidation of a polysaccharide from Chrysanthemum morifolium flowers with anti-angiogenic activity. Int. J. Biol. Macromol. 2015, 79, 674–680. [Google Scholar] [CrossRef]
- Wang, B.H.; Cao, J.J.; Zhang, B.; Chen, H.Q. Structural characterization, physicochemical properties and α-glucosidase inhibitory activity of polysaccharide from the fruits of wax apple. Carbohydr. Polym. 2019, 211, 227–236. [Google Scholar] [CrossRef]
- Pfaffl, M.W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001, 29, e45. [Google Scholar] [CrossRef]
- Eder, S.; Zueblin, P.; Diener, M.; Peydayesh, M.; Boulos, S.; Mezzenga, R.; Nyström, L. Effect of Polysaccharide Conformation on Ultrafiltration Separation Performance. Carbohydr. Polym. 2021, 260, 117830. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Li, L. Structural characterization and antioxidant activity of polysaccharide from four auriculariales. Carbohydr. Polym. 2020, 229, 115407. [Google Scholar] [CrossRef]
- Gao, J.; Lin, L.; Sun, B.; Zhao, M. A comparison study on polysaccharides extracted from Laminaria japonica using different methods: Structural characterization and bile acid-binding capacity. Food Funct. 2017, 8, 3043–3052. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Z.H.; Miao, S.; Zhang, Y.; Lin, S.; Jian, Y.Y.; Tian, Y.; Zheng, B. Isolation, preliminary structural characterization and hypolipidemic effect of polysaccharide fractions from Fortunella margarita (Lour.) Swingle. Food Hydrocoll. 2016, 52, 126–136. [Google Scholar] [CrossRef]
- Yang, W.; Wang, Y.; Li, X.; Yu, P. Purification and structural characterization of Chinese yam polysaccharide and its activities. Carbohydr. Polym. 2015, 117, 1021–1027. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Cui, S.; Cheung, P.; Wang, Q. Antitumor polysaccharides from mushrooms: A review on their isolation process, structural characteristics and antitumor activity. Trends Food Sci. Technol. 2007, 18, 4–19. [Google Scholar] [CrossRef]
- Gan, J.; Huang, Z.; Yu, Q.; Peng, G.; Chen, Y.; Xie, J.; Nie, S.; Xie, M. Microwave assisted extraction with three modifications on structural and functional properties of soluble dietary fibers from grapefruit peel. Food Hydrocoll. 2020, 101, 105549. [Google Scholar] [CrossRef]
- Mikkonen, K.S.; Rita, H.; Helén, H.; Talja, R.A.; Hyvönen, L.; Tenkanen, M. Effect of polysaccharide structure on mechanical and thermal properties of galactomannan-based films. Biomacromolecules 2007, 8, 3198–3205. [Google Scholar] [CrossRef]
- Brassesco, M.E.; Valetti, N.W.; Picó, G.A. Control of the adsorption properties of alginate—Guar gum matrix functionalized with epichlorohydrin through the addition of different flexible chain polymers as toll for the chymotrypsinogen isolation. Int. J. Biol. Macromol. 2018, 115, 494–500. [Google Scholar] [CrossRef] [PubMed]
- Ballesteros, L.F.; Cerqueira, M.A.; Teixeira, J.A.; Mussatto, S.I. Characterization of polysaccharides extracted from spent coffee grounds by alkali pretreatment. Carbohydr. Polym. 2015, 127, 347–354. [Google Scholar] [CrossRef]
- Nagae, M.; Yamaguchi, Y. Three-dimensional structural aspects of protein–polysaccharide interactions. Int. J. Mol. Sci. 2014, 15, 3768–3783. [Google Scholar] [CrossRef]
- Martin, A.H.; Goff, H.D.; Smith, A.; Dalgleish, D.G. Immobilization of casein micelles for probing their structure and interactions with polysaccharides using scanning electron microscopy (SEM). Food Hydrocoll. 2006, 20, 817–824. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Z.; Wang, F.; Wang, Y.; Song, Q.; Xu, J. Lignosulfonate-based heterogeneous sulfonic acid catalyst for hydrolyzing glycosidic bonds of polysaccharides. J. Mol. Catal. A Chem. 2013, 377, 102–107. [Google Scholar] [CrossRef]
- Lee, H.H.; Lee, J.S.; Cho, J.Y.; Kim, Y.E.; Hong, E.K. Structural characteristics of immunostimulating polysaccharides from Lentinus edodes. J. Microbiol. Biotechnol. 2009, 19, 455–461. [Google Scholar] [CrossRef] [PubMed]
- Dong, Q.; Jia, L.-M.; Fang, J.-N. A β-d-glucan isolated from the fruiting bodies of Hericium erinaceus and its aqueous conformation. Carbohydr. Res. 2006, 341, 791–795. [Google Scholar] [CrossRef]
- Sims, I.M.; Carnachan, S.M.; Bell, T.J.; Hinkley, S.F. Methylation analysis of polysaccharides: Technical advice. Carbohydr. Polym. 2018, 188, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Harris, P.J.; Henry, R.J.; Blakeney, A.B.; Stone, B.A. An improved procedure for the methylation analysis of oligosaccharides and polysaccharides. Carbohydr. Res. 1984, 127, 59–73. [Google Scholar] [CrossRef] [PubMed]
- Gorin, P.A. Carbon-13 nuclear magnetic resonance spectroscopy of polysaccharides. Adv. Carbohydr. Chem. Biochem. 1981, 38, 13–104. [Google Scholar]
- Li, Y.-M.; Zhong, R.-F.; Chen, J.; Luo, Z.-G. Structural characterization, anticancer, hypoglycemia and immune activities of polysaccharides from Russula virescens. Int. J. Biol. Macromol. 2021, 184, 380–392. [Google Scholar] [CrossRef]
- Cheng, H.N.; Neiss, T.G. Solution NMR spectroscopy of food polysaccharides. Polym. Rev. 2012, 52, 81–114. [Google Scholar] [CrossRef]
- Zhou, L.S.; Liao, W.F.; Zeng, H.; Yao, Y.L.; Chen, X.; Ding, K. A pectin from fruits of Lycium barbarum L. decreases β-amyloid peptide production through modulating APP processing. Carbohydr. Polym. 2018, 201, 65–74. [Google Scholar] [CrossRef]
- Yao, H.-Y.-Y.; Wang, J.-Q.; Yin, J.-Y.; Nie, S.-P.; Xie, M.-Y. A review of NMR analysis in polysaccharide structure and conformation: Progress, challenge and perspective. Food Res. Int. 2021, 143, 110290. [Google Scholar] [CrossRef]
- Zhou, L.; Liao, W.; Chen, X.; Yue, H.; Li, S.; Ding, K. An arabinogalactan from fruits of Lycium barbarum L. inhibits production and aggregation of Aβ42. Carbohydr. Polym. 2018, 195, 643–651. [Google Scholar] [CrossRef] [PubMed]
- Levi, A.; Biocca, S.; Cattaneo, A.; Calissano, P. The mode of action of nerve growth factor in PC12 cells. Mol. Neurobiol. 1988, 1989, 201–226. [Google Scholar] [CrossRef] [PubMed]
- Koizumi, S.; Contreras, M.; Matsuda, Y.; Hama, T.; Lazarovici, P.; Guroff, G. K-252a: A specific inhibitor of the action of nerve growth factor on PC 12 cells. J. Neurosci. 1988, 8, 715–721. [Google Scholar] [CrossRef] [PubMed]
- Wiatrak, B.; Kubis-Kubiak, A.; Piwowar, A.; Barg, E. PC12 cell line: Cell types, coating of culture vessels, differentiation and other culture conditions. Cells 2020, 9, 958. [Google Scholar] [CrossRef] [PubMed]
- Zeng, H.-L.; Zhong, Q.; Qin, Y.-L.; Bu, Q.-Q.; Han, X.-A.; Jia, H.-T.; Liu, H.-W. Hypoxia-mimetic agents inhibit proliferation and alter the morphology of human umbilical cord-derived mesenchymal stem cells. BMC Cell Biol. 2011, 12, 32. [Google Scholar] [CrossRef]
- Jing, L.; Gao, R.; Zhang, J.; Zhang, D.; Shao, J.; Jia, Z.; Ma, H. Norwogonin attenuates hypoxia-induced oxidative stress and apoptosis in PC12 cells. BMC Complement. Med. Ther. 2021, 21, 18. [Google Scholar] [CrossRef] [PubMed]
- Magdaleno, C.; Dixon, L.; Rajasekaran, N.; Varadaraj, A. HIFα independent mechanisms in renal carcinoma cells modulate divergent outcomes in fibronectin assembly mediated by hypoxia and CoCl2. Sci. Rep. 2020, 10, 18560. [Google Scholar] [CrossRef] [PubMed]
- Caltana, L.; Merelli, A.; Lazarowski, A.; Brusco, A. Neuronal and glial alterations due to focal cortical hypoxia induced by direct cobalt chloride (CoCl2) brain injection. Neurotox. Res. 2009, 15, 348–358. [Google Scholar] [CrossRef]
- Rana, N.K.; Singh, P.; Koch, B. CoCl2 simulated hypoxia induce cell proliferation and alter the expression pattern of hypoxia associated genes involved in angiogenesis and apoptosis. Biol. Res. 2019, 52, 12. [Google Scholar] [CrossRef]
- Fu, O.-Y.; Hou, M.-F.; Yang, S.-F.; Huang, S.-C.; Lee, W.-Y. Cobalt chloride-induced hypoxia modulates the invasive potential and matrix metalloproteinases of primary and metastatic breast cancer cells. Anticancer Res. 2009, 29, 3131–3138. [Google Scholar] [PubMed]
- Li, Q.; Zhang, Z.; Li, H.; Pan, X.; Chen, S.; Cui, Z.; Ma, J.; Zhou, Z.; Xing, B. Lycium barbarum polysaccharides protects H9c2 cells from hypoxia-induced injury by down-regulation of miR-122. Biomed. Pharmacother. 2019, 110, 20–28. [Google Scholar] [CrossRef] [PubMed]
- Guzy, R.D.; Hoyos, B.; Robin, E.; Chen, H.; Liu, L.; Mansfield, K.D.; Simon, M.C.; Hammerling, U.; Schumacker, P.T. Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing. Cell Metab. 2005, 1, 401–408. [Google Scholar] [CrossRef] [PubMed]
- Clanton, T.L. Hypoxia-induced reactive oxygen species formation in skeletal muscle. J. Appl. Physiol. 2007, 102, 2379–2388. [Google Scholar] [CrossRef]
- Radak, Z.; Zhao, Z.; Koltai, E.; Ohno, H.; Atalay, M. Oxygen consumption and usage during physical exercise: The balance between oxidative stress and ROS-dependent adaptive signaling. Antioxid. Redox Signal. 2013, 18, 1208–1246. [Google Scholar] [CrossRef] [PubMed]
- Görlach, A.; Dimova, E.Y.; Petry, A.; Martínez-Ruiz, A.; Hernansanz-Agustín, P.; Rolo, A.P.; Kietzmann, T. Reactive oxygen species, nutrition, hypoxia and diseases: Problems solved? Redox Biol. 2015, 6, 372–385. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Guo, H.; Zhao, R. Effect of Lycium barbarum polysaccharide on the improvement of antioxidant ability and DNA damage in NIDDM rats. Yakugaku Zasshi 2006, 126, 365–371. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Zhang, X.; Liang, X.; Wu, K.; Cao, Y.; Ma, T.; Guo, S.; Chen, P.; Yu, S.; Ruan, Q.; et al. Defensing against oxidative stress in Caenorhabditis elegans of a polysaccharide LFP-05S from Lycii fructus. Carbohydr. Polym. 2022, 289, 119433. [Google Scholar] [CrossRef] [PubMed]
- Maier, C.M.; Chan, P.H. Book review: Role of superoxide dismutases in oxidative damage and neurodegenerative disorders. Neuroscientist 2002, 8, 323–334. [Google Scholar] [CrossRef] [PubMed]
- Chelikani, P.; Fita, I.; Loewen, P.C. Diversity of structures and properties among catalases. Cell Mol. Life Sci. 2004, 61, 192–208. [Google Scholar] [CrossRef]
- Muller, F.L.; Lustgarten, M.S.; Jang, Y.; Richardson, A.; Van Remmen, H. Trends in oxidative aging theories. Free Radic. Biol. Med. 2007, 43, 477–503. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Ma, Y.; Liu, X. Effect of the Lycium barbarum polysaccharides on age-related oxidative stress in aged mice. J. Ethnopharmacol. 2007, 111, 504–511. [Google Scholar] [CrossRef] [PubMed]
- Masci, A.; Carradori, S.; Casadei, M.A.; Paolicelli, P.; Petralito, S.; Ragno, R.; Cesa, S. Lycium barbarum polysaccharides: Extraction, purification, structural characterisation and evidence about hypoglycaemic and hypolipidaemic effects. A review. Food Chem. 2018, 254, 377–389. [Google Scholar] [CrossRef]
- Semenza, G.L. Hypoxia-inducible factor 1 and cardiovascular disease. Annu. Rev. Physiol. 2014, 76, 39–56. [Google Scholar] [CrossRef] [PubMed]
- Maxwell, P.H.; Wiesener, M.S.; Chang, G.-W.; Clifford, S.C.; Vaux, E.C.; Cockman, M.E.; Wykoff, C.C.; Pugh, C.W.; Maher, E.R.; Ratcliffe, P.J. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 1999, 399, 271–275. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Zhang, Q.-Y.; Jiang, Q.-Y.; Kang, X.-M.; Zhao, L. Polysaccharides derived from Lycium barbarum suppress IGF-1-induced angiogenesis via PI3K/HIF-1α/VEGF signalling pathways in MCF-7 cells. Food Chem. 2012, 131, 1479–1484. [Google Scholar] [CrossRef]
- Lei, X.; Huo, P.; Wang, Y.; Xie, Y.; Shi, Q.; Tu, H.; Yao, J.; Mo, Z.; Zhang, S. Lycium barbarum polysaccharides improve testicular spermatogenic function in streptozotocin-induced diabetic rats. Front. Endocrinol. 2020, 11, 164. [Google Scholar] [CrossRef]
- Banasiak, K.J.; Xia, Y.; Haddad, G.G. Mechanisms underlying hypoxia-induced neuronal apoptosis. Prog. Neurobiol. 2000, 62, 215–249. [Google Scholar] [CrossRef] [PubMed]
- Luo, Q.; Li, Z.; Yan, J.; Zhu, F.; Xu, R.-J.; Cai, Y.-Z. Lycium barbarum polysaccharides induce apoptosis in human prostate cancer cells and inhibits prostate cancer growth in a xenograft mouse model of human prostate cancer. J. Med. Food 2009, 12, 695–703. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Chen, H.; Huang, J.; Li, Z.; Zhu, C.; Zhang, S. Effect of Lycium barbarum polysaccharide on human hepatoma QGY7703 cells: Inhibition of proliferation and induction of apoptosis. Life Sci. 2005, 76, 2115–2124. [Google Scholar] [CrossRef]
- Zhang, Q.; Lv, X.; Wu, T.; Ma, Q.; Teng, A.; Zhang, Y.; Zhang, M. Composition of Lycium barbarum polysaccharides and their apoptosis-inducing effect on human hepatoma SMMC-7721 cells. Food Nutr. Res. 2015, 59, 28696. [Google Scholar] [CrossRef]
Glycosyl Residues | H1/C1 | H2/C2 | H3/C3 | H4/C4 | H5/C5 | H6a, H5b/C6 | H6b |
---|---|---|---|---|---|---|---|
(A) α-L-Araf-(1→ | 5.17 | 4.13 | 3.87 | 4.06 | 3.76 | 3.64 | |
110.62 | 82.62 | 77.97 | 85.22 | 62.64 | |||
(B) →3)-β-D-Galp-(1→ | 4.63 | 3.70 | 3.80 | 3.86 | 3.57 | 3.63 | 3.74 |
105.3 | 71.42 | 83.1 | 69.96 | 74.14 | 62.45 | ||
(C) →6)-β-D-Galp-(1→ | 4.37 | 3.44 | 3.58 | 3.86 | 3.88 | 3.95 | 3.83 |
104.9 | 72.16 | 73.93 | 74.96 | 69.87 | 70.50 | ||
(D) →3,6)-β-D-Galp-(1→ | 4.45 | 3.57 | 3.63 | 4.16 | 3.84 | 3.96 | 3.86 |
104.69 | 71.31 | 81.5 | 69.82 | 74.81 | 70.76 | ||
(E) →4)-β-D-Glcp-(1→ | 4.46 | 3.28 | 3.43 | 3.64 | 3.47 | 3.95 | 3.79 |
103.84 | 74.17 | 71.58 | 77.80 | 76.69 | 61.67 | ||
(F) →6)-α-D-Glcp-(1→ | 4.90 | 3.50 | 3.65 | 3.45 | 3.84 | 3.90 | |
99.09 | 72.73 | 74.63 | 70.87 | 71.47 | 66.97 | ||
(G) β-D-Galp-(1→ | 4.67 | 3.70 | 3.90 | 3.75 | 3.63 | 3.74 | 3.62 |
102.5 | 71.5 | 70.05 | 71.71 | 76.4 | 62.45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Liu, J.; Pei, D.; Di, D. Structural Characterization of, and Protective Effects Against, CoCl2-Induced Hypoxia Injury to a Novel Neutral Polysaccharide from Lycium barbarum L. Foods 2025, 14, 339. https://doi.org/10.3390/foods14030339
Li Y, Liu J, Pei D, Di D. Structural Characterization of, and Protective Effects Against, CoCl2-Induced Hypoxia Injury to a Novel Neutral Polysaccharide from Lycium barbarum L. Foods. 2025; 14(3):339. https://doi.org/10.3390/foods14030339
Chicago/Turabian StyleLi, Yunchun, Jianfei Liu, Dong Pei, and Duolong Di. 2025. "Structural Characterization of, and Protective Effects Against, CoCl2-Induced Hypoxia Injury to a Novel Neutral Polysaccharide from Lycium barbarum L." Foods 14, no. 3: 339. https://doi.org/10.3390/foods14030339
APA StyleLi, Y., Liu, J., Pei, D., & Di, D. (2025). Structural Characterization of, and Protective Effects Against, CoCl2-Induced Hypoxia Injury to a Novel Neutral Polysaccharide from Lycium barbarum L. Foods, 14(3), 339. https://doi.org/10.3390/foods14030339