The Effect of the Glucosinolate Sinigrin on Alterations in Molecular Biomarkers of the Myocardium in Swiss Mice
"> Figure 1
<p>The effect of sinigrin on the concentrations of (<b>a</b>) adropin, (<b>b</b>) irisin, (<b>c</b>) atrial natriuretic peptide (ANP), and (<b>d</b>) peroxisomal acyl-CoA oxidase I (ACOX1) in cardiac tissue homogenates. Mice (N = 6) in both female and male control groups were treated intragastrically (<span class="html-italic">ig</span>) with 0.3 mL of physiological saline, while in the experimental groups, females and males were treated <span class="html-italic">ig</span> with 0.3 mL of an aqueous solution of sinigrin at a dose of 10 mg/kg once daily for 28 days. #: statistically significantly different from the Cont.F group (<span class="html-italic">p</span> ≤ 0.05); *: statistically significantly different from the Sinig.<sub>M</sub> group (<span class="html-italic">p</span> ≤ 0.05); **: statistically significantly different from the Cont.<sub>M</sub> group (<span class="html-italic">p</span> ≤ 0.05). The results are presented as the mean ± standard error. Abbreviations: Cont.<sub>M</sub>—male control group; Cont.<sub>F</sub>—female control group; Sinig.<sub>M</sub>—group of males treated with an aqueous solution of sinigrin; Sinig.<sub>F</sub>—group of females treated with an aqueous solution of sinigrin.</p> "> Figure 2
<p>The effect of sinigrin on the concentration of high-sensitivity cardiac troponin I (hs-cTnI) in cardiac tissue homogenates. Mice (N = 6) in both the female and male control groups were treated intragastrically (<span class="html-italic">ig</span>) with 0.3 mL of physiological saline, while in the experimental groups, females and males were treated <span class="html-italic">ig</span> with 0.3 mL of an aqueous solution of sinigrin at a dose of 10 mg/kg once daily for 28 days. The results are presented as the mean ± standard error. Abbreviations: Cont.<sub>M</sub>—male control group; Cont.<sub>F</sub>—female control group; Sinig.<sub>M</sub>—experimental group of males treated with an aqueous solution of sinigrin; Sinig.<sub>F</sub>—experimental group of females treated with an aqueous solution of sinigrin.</p> "> Figure 3
<p>The effect of sinigrin on the concentrations of (<b>a</b>) matrix metalloproteinase 2 (MMP-2), (<b>b</b>) matrix metalloproteinase 9 (MMP-9), (<b>c</b>) pentraxin 3 (PTX3), and (<b>d</b>) nitric oxide (NO) in cardiac tissue homogenates. Mice (N = 6) in both the female and male control groups were treated intragastrically (<span class="html-italic">ig</span>) with 0.3 mL of physiological saline, while in the experimental groups, females and males were treated <span class="html-italic">ig</span> with 0.3 mL of an aqueous solution of sinigrin at a dose of 10 mg/kg once daily for 28 days. #: statistically significantly different from the Cont.<sub>F</sub> group (<span class="html-italic">p</span> ≤ 0.05). The results are presented as the mean ± standard error. Abbreviations: Cont.<sub>M</sub>—male control group; Cont.<sub>F</sub>—female control group; Sinig.<sub>M</sub>—experimental group of males treated with an aqueous solution of sinigrin; Sinig.<sub>F</sub>—experimental group of females treated with an aqueous solution of sinigrin.</p> "> Figure 4
<p>The effect of sinigrin on (<b>a</b>) superoxide dismutase (SOD) activity, (<b>b</b>) catalase (CAT) activity, (<b>c</b>) malondialdehyde (MDA) concentration, and (<b>d</b>) total glutathione (tGSH) concentration in cardiac tissue homogenates. Mice (N = 6) in both the female and male control groups were treated intragastrically (<span class="html-italic">ig</span>) with 0.3 mL of physiological saline, while in the experimental groups, females and males were treated <span class="html-italic">ig</span> with 0.3 mL of an aqueous solution of sinigrin at a dose of 10 mg/kg once daily for 28 days. #: statistically significantly different from the Cont.F group (<span class="html-italic">p</span> ≤ 0.05); *: statistically significantly different from the Sinig.<sub>M</sub> group (<span class="html-italic">p</span> ≤ 0.05). The results are presented as the mean ± standard error. Abbreviations: Cont.<sub>M</sub>—male control group; Cont.<sub>F</sub>—female control group; Sinig.<sub>M</sub>—experimental group of males treated with an aqueous solution of sinigrin; Sinig.<sub>F</sub>—experimental group of females treated with an aqueous solution of sinigrin.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Sinigrin Solution
2.3. Animals and Ethics Statement
2.4. Experimental Design
- Cont.F—female control group (0.3 mL of physiological saline);
- Cont.M—male control group (0.3 mL of physiological saline);
- Sinig.F—females treated with an aqueous solution of sinigrin (0.3 mL, 10 mg/kg of body weight per day);
- Sinig.M—males treated with an aqueous solution of sinigrin (0.3 mL, 10 mg/kg of body weight per day).
2.5. Preparation of Cardiac Tissue Homogenate for Biomarker Measurements
2.6. Determination of Protein Concentration
2.7. Determination of Metabolic Parameters of the Myocardium by Measuring the Concentration of Adropin, Irisin, Atrial Natriuretic Peptide (ANP), and Peroxisomal Acyl-CoA Oxidase 1 (ACOX1)
2.8. Determination of Structural Parameters of the Myocardium by Measuring the Concetrations of High-Sensitivity Cardiac Troponin hs-cTnI)
2.9. Determination of Inflammatory Parameters in Myocardial Tissue by Measuring the Concentration of Matrix Metalloproteinases 2 and 9 (MMP-2, MMP-9), Pentraxin 3 (PTX-3), and Nitric Oxide (NO)
2.10. Determination of Oxidative Stress Biomarkers in Myocardial Tissue by Measuring Total Superoxide Dismutase (SOD) Activity, Catalase (CAT) Activity, Lipid Peroxidation, and Total Glutathione (tGSH)
2.11. Statistical Analysis
3. Results
3.1. Metabolic Parameters
3.2. Structural Parameters—High-Sensitivity Cardiac Troponin I (hs-cTnI)
3.3. Inflammatory Parameters
3.4. Oxidative Stress Biomarkers
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Connolly, E.; Sim, M.; Travica, N.; Wolfgang, M.; Beasy, G.; Slynch, G.; Bondonno, C.P.; Lewis, J.R.; Hodgson, J.M.; Blekkenhorst, L.C. Glucosinolates from Cruciferous Vegetables and Their Potential Role in Chronic Disease: Investigating the Preclinical and Clinical Evidence. Front. Pharmacol. 2021, 12, 767975. [Google Scholar] [CrossRef]
- Kamal, R.M.; Abdull Razis, A.F.; Mohd Sukri, N.S.; Perimal, E.K.; Ahmad, H.; Patrick, R.; Djedaini-Pilard, F.; Mazzon, E.; Rigaud, S. Beneficial health effects of glucosinolates derived isothiocyanates on cardiovascular and neurodegenerative diseases. Molecules 2022, 27, 624. [Google Scholar] [CrossRef]
- Đulović, A.; Tomaš, J.; Blažević, I. Glucosinolates in Wild-Growing Reseda spp. from Croatia. Molecules 2023, 28, 1753. [Google Scholar] [CrossRef]
- Šola, I.; Gmižić, D.; Pinterić, M.; Tot, A.; Ludwig-Müller, J. Adjustments of the Phytochemical Profile of Broccoli to Low and High Growing Temperatures: Implications for the Bioactivity of Its Extracts. Int. J. Mol. Sci. 2024, 25, 3677. [Google Scholar] [CrossRef]
- Nguyen, V.P.T.; Stewart, J.; Lopez, M.; Ioannou, I.; Allais, F. Glucosinolates: Natural occurrence, biosynthesis, accessibility, isolation, structures, and biological activities. Molecules 2020, 25, 4537. [Google Scholar] [CrossRef] [PubMed]
- Melrose, J. The Glucosinolates: A Sulphur Glucoside Family of Mustard Anti-Tumour and Antimicrobial Phytochemicals of Potential Therapeutic Application. Biomedicines 2019, 7, 62. [Google Scholar] [CrossRef] [PubMed]
- Steinbrecher, A.; Linseisen, J. Dietary Intake of Individual Glucosinolates in Participants of the EPIC-Heidelberg Cohort Study. Ann. Nutr. Metab. 2009, 54, 87–96. [Google Scholar] [CrossRef] [PubMed]
- Johnson, I.T. Glucosinolates: Bioavailability and importance to health. Int. J. Vitam. Nutr. Res. 2002, 72, 26–31. [Google Scholar] [CrossRef] [PubMed]
- Mazumder, A.; Dwivedi, A.; Du Plessis, J. Sinigrin and Its Therapeutic Benefits. Molecules 2016, 21, 416. [Google Scholar] [CrossRef] [PubMed]
- Okulicz, M. Multidirectional time-dependent effect of sinigrin and allyl isothiocyanate on metabolic parameters in rats. Plant Foods Hum. Nutr. 2010, 65, 217–224. [Google Scholar] [CrossRef]
- Narbad, A.; Rossiter, J.T. Gut Glucosinolate Metabolism and Isothiocyanate Production. Mol. Nutr. Food Res. 2018, 62, e1700991. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tarar, A.; Peng, S.; Cheema, S.; Peng, C.A. Anticancer Activity, Mechanism, and Delivery of Allyl Isothiocyanate. Bioengineering 2022, 9, 470. [Google Scholar] [CrossRef]
- Hsieh, C.-C.; Yang, C.-Y.; Peng, B.; Ho, S.-L.; Tsao, C.-H.; Lin, C.-K.; Lin, C.-S.; Lin, G.-J.; Lin, H.-Y.; Huang, H.-C.; et al. Allyl Isothiocyanate Suppresses the Proliferation in Oral Squamous Cell Carcinoma via Mediating the KDM8/CCNA1 Axis. Biomedicines 2023, 11, 2669. [Google Scholar] [CrossRef]
- Felker, P.; Bunch, R.; Leung, A.M. Concentrations of thiocyanate and goitrin in human plasma, their precursor concentrations in brassica vegetables, and associated potential risk for hypothyroidism. Nutr. Rev. 2016, 74, 248–258. [Google Scholar] [CrossRef] [PubMed]
- Di Gioia, F.; Pinela, J.; Bailón, A.D.H.; Fereira, I.C.F.R.; Petropoulos, S.A. The dilemma of “good ” and “bad” glucosinolates and the potential to regulate their content. In Glucosinolates: Properties, Recovery, and Applications; Elsevier: Amsterdam, The Netherlands, 2020; pp. 1–31. [Google Scholar] [CrossRef]
- Kopjar, M.; Šubarić, D.; Piližota, V. Glucosinolates: Bioavailability and Influence on Human Health. Funct. Foods Health Dis. 2012, 1, 22–35. [Google Scholar]
- Tanaka, T.; Mori, Y.; Morishita, Y.; Hara, A.; Ohno, T.; Kojima, T.; Mori, H. Inhibitory effect of sinigrin and indole-3-carbinol on diethylnitrosamine-induced hepatocarcinogenesis in male ACI/N rats. Carcinogenesis 1990, 11, 1403–1406. [Google Scholar] [CrossRef]
- Smith, T.K.; Lund, E.K.; Johnson, I.T. Inhibition of dimethylhydrazine-induced aberrant crypt foci and induction of apoptosis in rat colon following oral administration of the glucosinolate sinigrin. Carcinogenesis 1998, 19, 267–273. [Google Scholar] [CrossRef] [PubMed]
- Awasthi, S.; Saraswathi, N.T. Sinigrin, a major glucosinolate from cruciferous vegetables restrains non-enzymatic glycation of albumin. Int. J. Biol. Macromol. 2016, 83, 410–415. [Google Scholar] [CrossRef] [PubMed]
- Truong, T.T.P.; Koyama, T. Glucosinolate Sinigrin Improves Insulin Resistance to Suppress Glutathione Consumption in Type 2 Diabetic Mice. J. Diab. Metab. 2020, 11, 859. [Google Scholar]
- Narodne, N. Zakon o Zaštiti Životinja (Law on Animal Welfare); Narodne Novine: Zagreb, Croatia, 2017; p. 102/17. [Google Scholar]
- Narodne, N. Zakon o Izmjenama i Dopunama Zakona o Zaštiti Životinja (Law on Amendments to the Law on Animal Welfare); Narodne Novine: Zagreb, Croatia, 2013; p. 37/13. [Google Scholar]
- Narodne, N. Pravilnik o Zaštiti Životinja Koje se Koriste u Znanstvene Svrhe (Regulation on the Protection of Animals Used for Scientific Purposes); Narodne Novine: Zagreb, Croatia, 2013; p. 55/13. [Google Scholar]
- National Research Council. Guide for the Care and Use of Laboratory Animals, 8th ed.; National Academies Press: Washington, DC, USA, 2011. [Google Scholar]
- Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the folin phenol reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef] [PubMed]
- Griess, P. Bemerkungen zu der abhandlung der H.H. Weselsky und Benedikt “Ueber einige azoverbindungen”. Chem. Ber. 1879, 12, 426–428. [Google Scholar] [CrossRef]
- Aebi, H. Catalase in vitro. Meth. Enzymol. 1984, 105, 121–126. [Google Scholar] [CrossRef]
- Ohkawa, H.; Ohishi, N.; Yagi, K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 1979, 95, 351–358. [Google Scholar] [CrossRef] [PubMed]
- Tietze, F. Enzyme method for quantitative determination of nanogram amounts of total and oxidized glutathione. Anal. Biochem. 1969, 27, 502–522. [Google Scholar] [CrossRef]
- IBM SPSS Statistics, v. 17.0; SPSS Inc.: Chicago, IL, USA, 2008; Available online: https://www.ibm.com/products/spss-statistics (accessed on 25 September 2024).
- GraphPad Prism v. 9.0.0; GraphPad Software: San Diego, CA, USA, 2020; Available online: https://www.graphpad.com/guides/prism/latest/user-guide/index.htm (accessed on 14 October 2024).
- Miękus, N.; Marszałek, K.; Podlacha, M.; Iqbal, A.; Puchalski, C.; Świergiel, A.H. Health Benefits of Plant-Derived Sulfur Compounds, Glucosinolates, and Organosulfur Compounds. Molecules 2020, 25, 3804. [Google Scholar] [CrossRef] [PubMed]
- Prieto, M.A.; López, C.J.; Simal-gandara, J. Glucosinolates: Molecular structure, breakdown, genetic, bioavailability, properties and healthy and adverse effects. Adv. Food Nutr. Res. 2019, 90, 305–350. [Google Scholar] [CrossRef]
- Kala, C.; Ali, S.S.; Ahmad, N.; Gilani, S.J.; Khan, N.A. Isothiocyanates: A review. Res. J. Pharmacogn. 2018, 5, 71–89. [Google Scholar] [CrossRef]
- Stohs, S.J.; Hartman, M.J. Review of the Safety and Efficacy of Moringa oleifera. Phytother. Res. 2015, 29, 796–804. [Google Scholar] [CrossRef] [PubMed]
- Saha, S.; Hollands, W.; Teucher, B.; Needs, P.W.; Narbad, A.; Ortori, C.A.; Barrett, D.; Rossiter, J.T.; Mithen, R.; Kroon, P.A. Isothiocyanate concentrations and interconversion of sulforaphane to erucin in human subjects after consumption of commercial frozen broccoli compared. Mol. Nutr. Food Res. 2012, 56, 1906–1916. [Google Scholar] [CrossRef]
- Citi, V.; Piragine, E.; Pagnotta, E.; Ugolini, L.; Mannelli, L.D.C.; Testai, L.; Ghelardini, C.; Lazzeri, L.; Calderone, V.; Martelli, A. Anticancer properties of erucin, an H2S-Releasing isothiocyanate, on human pancreatic adenocarcinoma cells (AsPC-1). Phyther. Res. 2019, 33, 845–855. [Google Scholar] [CrossRef] [PubMed]
- Bricker, G.V.; Riedl, K.M.; Ralston, R.A.; Tober, K.L.; Oberyszyn, T.M.; Schwartz, S.J. Isothiocyanate metabolism, distribution, and interconversion in mice following consumption of thermally processed broccoli sprouts or purified sulforaphane. Mol. Nutr. Food Res. 2014, 58, 1991–2000. [Google Scholar] [CrossRef] [PubMed]
- Kołodziejski, D.; Piekarska, A.; Hanschen, F.S.; Pilipczuk, T.; Tietz, F.; Kusznierewicz, B.; Bartoszek, A. Relationship between conversion rate of glucosinolates to isothiocyanates/indoles and genotoxicity of individual parts of Brassica vegetables. Eur. Food Res. Technol. 2019, 245, 383–400. [Google Scholar] [CrossRef]
- Eisenschmidt-Bönn, D.; Schneegans, N.; Backenköhler, A.; Wittstock, U.; Brandt, W. Structural diversification during glucosinolate breakdown: Mechanisms of thiocyanate, epithionitrile and simple nitrile formation. Plant J. 2019, 99, 329–343. [Google Scholar] [CrossRef] [PubMed]
- Prabu, S.L.; Umamaheswari, A.; Puratchikody, A. Phytopharmacological potential of the natural gift Moringa oleifera Lam and its therapeutic application: An overview. Asian Pac. J. Trop. Med. 2019, 12, 485–498. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, H.; Qin, X.; Wang, X.; Wang, Y.; Tu, T.; Wang, Y.; Yao, B.; Huang, H.; Luo, H. Biodegradation of nitriles derived from glucosinolates in rapeseed meal by BnNIT2: A nitrilase from Brassica napus with wide substrate specificity. Appl. Microbiol. Biotechnol. 2022, 106, 2445–2454. [Google Scholar] [CrossRef]
- Gambari, L.; Barone, M.; Amore, E.; Grigolo, B.; Filardo, G.; Iori, R.; Citi, V.; Calderone, V.; Grassi, F. Glucoraphanin Increases Intracellular Hydrogen Sulfide (H2S) Levels and Stimulates Osteogenic Differentiation in Human Mesenchymal Stromal Cell. Nutrients 2022, 14, 435. [Google Scholar] [CrossRef]
- Piragine, E.; Citi, V.; Lawson, K.; Calderone, V.; Martelli, A. Regulation of blood pressure by natural sulfur compounds: Focus on their mechanisms of action. Biochem. Pharmacol. 2022, 206, 115302. [Google Scholar] [CrossRef] [PubMed]
- Citi, V.; Corvino, A.; Fiorino, F.; Frecentese, F.; Magli, E.; Perissutti, E.; Santagada, V.; Brogi, S.; Flori, L.; Gorica, E.; et al. Structure-activity relationships study of isothiocyanates for H2S-releasing properties: 3-Pyridyl-isothiocyanate as a new promising cardioprotective agent. J. Adv. Res. 2021, 27, 41–53. [Google Scholar] [CrossRef]
- Martelli, A.; Citi, V.; Testai, L.; Brogi, S.; Calderone, V. Organic Isothiocyanates as H2S-donors. Antioxid. Redox Signal. 2020, 32, 110–144. [Google Scholar] [CrossRef] [PubMed]
- Lucarini, E.; Micheli, L.; Trallori, E.; Citi, V.; Martelli, A.; Testai, L.; De Nicola, G.R.; Iori, R.; Calderone, V.; Ghelardini, C.; et al. Effect of glucoraphanin and sulforaphane against chemotherapy-induced neuropathic pain: Kv7 potassium channels modulation by H2 S release in vivo. Phytother. Res. 2018, 32, 2226–2234. [Google Scholar] [CrossRef] [PubMed]
- Testai, L.; Barrese, V.; Soldovieri, M.V.; Ambrosino, P.; Martelli, A.; Vinciguerra, I.; Miceli, F.; Greenwood, I.A.; Curtis, M.J.; Breschi, M.C.; et al. Expression and function of Kv7.4 channels in rat cardiac mitochondria: Possible targets for cardioprotection. Cardiovasc. Res. 2016, 110, 40–50. [Google Scholar] [CrossRef]
- Harvey, F.; Aromokunola, B.; Montaut, S.; Yang, G. The Antioxidant Properties of Glucosinolates in Cardiac Cells Are Independent of H2S Signaling. Int. J. Mol. Sci. 2024, 25, 696. [Google Scholar] [CrossRef] [PubMed]
- Waz, S.; Matouk, A.I. Cardioprotective effect of allyl isothiocyanate in a rat model of doxorubicin acute toxicity. Toxicol. Mech. Methods 2021, 32, 194–203. [Google Scholar] [CrossRef]
- Mahgoub, M.O.; D’Souza, C.; Al Darmaki, R.S.M.H.; Baniyas, M.M.Y.H.; Adeghate, E. An update on the role of irisin in the regulation of endocrine and metabolic functions. Peptides 2018, 104, 15–23. [Google Scholar] [CrossRef]
- Yano, N.; Zhao, Y.T.; Zhao, T.C. The Physiological Role of Irisin in the Regulation of Muscle Glucose Homeostasis. Endocrines 2021, 2, 266–283. [Google Scholar] [CrossRef] [PubMed]
- Waseem, R.; Shamsi, A.; Mohammad, T.; Hassan, M.I.; Kazim, S.N.; Chaudhary, A.A.; Rudayni, H.A.; Al-Zharani, M.; Ahmad, F.; Islam, A. FNDC5/Irisin: Physiology and Pathophysiology. Molecules 2022, 8, 1118. [Google Scholar] [CrossRef] [PubMed]
- Boström, P.; Wu, J.; Jedrychowski, M.P.; Korde, A.; Ye, L.; Lo, J.C.; Rasbach, K.A.; Boström, E.A.; Choi, J.H.; Long, J.Z.; et al. A PGC1-α-Dependent Myokine That Drives Brown-Fat-like Development of White Fat and Thermogenesis. Nature 2012, 481, 463–468. [Google Scholar] [CrossRef] [PubMed]
- Flori, L.; Testai, L.; Calderone, V. The “irisin system”: From biological roles to pharmacological and nutraceutical perspectives. Life Sci. 2021, 267, 118954. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.; Li, F.; Tang, Y.; Cai, L.; Zeng, C.; Yang, Y.; Yang, J. The Emerging Role of Irisin in Cardiovascular Diseases. J Am Heart Assoc. 2021, 19, e022453. [Google Scholar] [CrossRef] [PubMed]
- Garcés, M.F.; Peralta, J.J.; Ruiz-Linares, C.E.; Lozano, A.R.; Poveda, N.E.; Torres-Sierra, A.L.; Eslava-Schmalbach, J.H.; Alzate, J.P.; Sánchez, A.-Y.; Sanchez, E.; et al. Irisin Levels During Pregnancy and Changes Associated With the Development of Preeclampsia. J. Clin. Endocrinol. Metab. 2014, 99, 2113–2119. [Google Scholar] [CrossRef] [PubMed]
- Ho, M.-Y.; Wang, C.-Y. Role of Irisin in Myocardial Infarction, Heart Failure, and Cardiac Hypertrophy. Cells 2021, 10, 2103. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Qiao, X.; Xu, L.; Huang, G. Irisin: Circulating levels in serum and its relation to gonadal axis. Endocrine 2022, 75, 663–671. [Google Scholar] [CrossRef] [PubMed]
- Barbagallo, F.; Cannarella, R.; Garofalo, V.; Marino, M.; La Vignera, S.; Condorelli, R.A.; Tiranini, L.; Nappi, R.E.; Calogero, A.E. The Role of Irisin throughout Women’s Life Span. Biomedicines 2023, 11, 3260. [Google Scholar] [CrossRef] [PubMed]
- Roca-Rivada, A.; Castelao, C.; Senin, L.L.; Landrove, M.O.; Baltar, J.; Crujeiras, A.B.; Seoane, L.M.; Casanueva, F.F.; Pardo, M. FNDC5/Irisin Is Not Only a Myokine but Also an Adipokine. PLoS ONE 2013, 8, e60563. [Google Scholar] [CrossRef]
- Wahab, F.; Khan, I.U.; Polo, I.R.; Zubair, H.; Drummer, C.; Shahab, M.; Behr, R. Irisin in the primate hypothalamus and its effect on GnRH in vitro. J. Endocrinol. 2019, 241, 175–187. [Google Scholar] [CrossRef]
- Parsanathan, R.; Jain, S.K. Hydrogen Sulfide Regulates Irisin and Glucose Metabolism in Myotubes and Muscle of HFD-Fed Diabetic Mice. Antioxidants 2022, 11, 1369. [Google Scholar] [CrossRef]
- Li, R.L.; Wu, S.S.; Wu, Y.; Wang, X.X.; Chen, H.Y.; Xin, J.J.; Li, H.; Lan, J.; Xue, K.Y.; Li, X.; et al. Irisin alleviates pressure overload-induced cardiac hypertrophy by inducing protective autophagy via mTOR-independent activation of the AMPK-ULK1 pathway. J. Mol. Cell. Cardiol. 2018, 121, 242–255. [Google Scholar] [CrossRef] [PubMed]
- Oguri, G.; Nakajima, T.; Kikuchi, H.; Obi, S.; Nakamura, F.; Komuro, I. Allyl isothiocyanate (AITC) activates nonselective cation currents in human cardiac fibroblasts: Possible involvement of TRPA1. Heliyon 2020, 7, e05816. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Song, H.; Zhang, Y.; Zhang, Y.; Mu, Q.; Jiang, M.; Wang, F.; Zhang, W.; Li, L.; Li, H.; et al. Irisin Induces Angiogenesis in Human Umbilical Vein Endothelial Cells In Vitro and in Zebrafish Embryos In Vivo via Activation of the ERK Signaling Pathway. PLoS ONE 2015, 10, e0134662. [Google Scholar] [CrossRef]
- Laronha, H.; Caldeira, J. Structure and Function of Human Matrix Metalloproteinases. Cells 2020, 9, 1076. [Google Scholar] [CrossRef] [PubMed]
- Vaduganathan, M.; Mensah, G.A.; Turco, J.V.; Valentin Fuster, V.; Roth, J.A. The Global Burden of Cardiovascular Diseases and Risk: A Compass for Future Health. J. Am. Coll. Cardiol. 2022, 80, 2361–2371. [Google Scholar] [CrossRef] [PubMed]
- Shirakabe, A.; Asai, K.; Hata, N.; Yokoyama, S.; Shinada, T.; Kobayashi, N.; Mizuno, K. Clinical Significance of Matrix Metalloproteinase (MMP)-2 in Patients With Acute Heart Failure. Int. Heart J. 2010, 51, 404–410. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferara, N.; Balta, V.; Đikić, D.; Odeh, D.; Mojsović-Ćuić, A.; Feher Turković, L.; Dilber, D.; Beletić, A.; Landeka Jurčević, I.; Šola, I. The Effect of the Glucosinolate Sinigrin on Alterations in Molecular Biomarkers of the Myocardium in Swiss Mice. Foods 2025, 14, 327. https://doi.org/10.3390/foods14020327
Ferara N, Balta V, Đikić D, Odeh D, Mojsović-Ćuić A, Feher Turković L, Dilber D, Beletić A, Landeka Jurčević I, Šola I. The Effect of the Glucosinolate Sinigrin on Alterations in Molecular Biomarkers of the Myocardium in Swiss Mice. Foods. 2025; 14(2):327. https://doi.org/10.3390/foods14020327
Chicago/Turabian StyleFerara, Nikola, Vedran Balta, Domagoj Đikić, Dyana Odeh, Ana Mojsović-Ćuić, Lana Feher Turković, Dario Dilber, Anđelo Beletić, Irena Landeka Jurčević, and Ivana Šola. 2025. "The Effect of the Glucosinolate Sinigrin on Alterations in Molecular Biomarkers of the Myocardium in Swiss Mice" Foods 14, no. 2: 327. https://doi.org/10.3390/foods14020327
APA StyleFerara, N., Balta, V., Đikić, D., Odeh, D., Mojsović-Ćuić, A., Feher Turković, L., Dilber, D., Beletić, A., Landeka Jurčević, I., & Šola, I. (2025). The Effect of the Glucosinolate Sinigrin on Alterations in Molecular Biomarkers of the Myocardium in Swiss Mice. Foods, 14(2), 327. https://doi.org/10.3390/foods14020327