Exploring the Bioaccessibility of Roasted Japanese Green Tea: Impact of Simulated Gastrointestinal Digestion
"> Figure 1
<p>Bioaccessibility (%) of total polyphenol content (TPC) and total flavonoid content (TFC) in roasted green tea infusion during simulated digestion. Bars represent the standard deviation of triplicate determinations. Uppercase letters denote significant differences (<span class="html-italic">p</span> < 0.05) between the MD (mimicked digestion) and WOE (without digestive enzymes) treatments within the same compound groups. Lowercase letters indicate significant differences (<span class="html-italic">p</span> < 0.05) among different phenolic compound groups within the same digestive condition.</p> "> Figure 2
<p>Residual activity of roasted green tea infusion during simulated digestion, evaluated by DPPH, ABTS, FRAP, and MIC assays. Bars represent the standard deviation of triplicate determinations. Lowercase letters indicate significant differences among samples within the digestion stages (G0, G1, G1I0, G1I1, and G1I2) (<span class="html-italic">p</span> < 0.05). Uppercase letters denote significant differences between mimicked digestion in MD and WOE within the same digestion stage (<span class="html-italic">p</span> < 0.05).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Preparation of Infusion
2.2. In Vitro Gastrointestinal Digestion
2.3. Determination of Bioactive Compounds
2.4. Antioxidant Activity
2.5. Assessment of Bioaccessibility of Bioactive Compounds and Residual Antioxidant Activity
2.6. Statistical Analysis
3. Results and Discussion
3.1. Change in Bioactive Compounds During In Vitro Digestion
3.2. Variations in Antioxidant Activity Throughout Simulated Digestion
3.3. Bioaccessibility of TPC and TFC and Associated Residual Antioxidant Activity
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mao, A.J.; Su, H.; Fang, S.M.; Chen, X.; Ning, J.M.; Ho, C.T.; Wan, X.C. Effects of roasting treatment on non-volatile compounds and taste of green tea. Int. J. Food Sci. Technol. 2018, 53, 2586–2594. [Google Scholar] [CrossRef]
- Wang, L.F.; Kim, D.M.; Lee, C.Y. Effects of heat processing and storage on flavanols and sensory qualities of green tea beverage. J. Agric. Food Chem. 2000, 48, 4227–4232. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Ho, C.T. Polyphenolic chemistry of tea and coffee: A century of progress. J. Agric. Food Chem. 2009, 57, 8109–8114. [Google Scholar] [CrossRef] [PubMed]
- Kurosaka, C.; Tagata, C.; Nakagawa, S.; Kobayashi, M.; Miyake, S. Effects of green tea and roasted green tea on human responses. Sci. Rep. 2024, 14, 8588. [Google Scholar] [CrossRef]
- Morikawa, H.; Okuda, K.; Kunihira, Y.; Inada, A.; Miyagi, C.; Matsuo, Y.; Saito, Y.; Tanaka, T. Oligomerization mechanism of tea catechins during tea roasting. Food Chem. 2019, 285, 252–259. [Google Scholar] [CrossRef]
- De Taeye, C.; Bodart, M.; Caullet, G.; Collin, S. Roasting conditions for preserving cocoa flavan-3-ol monomers and oligomers: Interesting behaviour of Criollo clones. J. Sci. Food Agric. 2017, 97, 4001–4008. [Google Scholar] [CrossRef]
- Moreira, A.S.; Nunes, F.M.; Simões, C.; Maciel, E.; Domingues, P.; Domingues, M.R.M.; Coimbra, M.A. Transglycosylation reactions, a main mechanism of phenolics incorporation in coffee melanoidins: Inhibition by Maillard reaction. Food Chem. 2017, 227, 422–431. [Google Scholar] [CrossRef]
- Zhu, Y.M.; Dong, J.J.; Jin, J.; Liu, J.H.; Zheng, X.Q.; Lu, J.L.; Liang, Y.R.; Ye, J.H. Roasting process shaping the chemical profile of roasted green tea and the association with aroma features. Food Chem. 2021, 353, 129428. [Google Scholar] [CrossRef]
- Chen, M.; Dai, W.D.; Li, P.L.; Zhu, Y.; Chen, Q.C.; Yang, Y.Q.; Tan, J.F.; Lin, Z. Study on the changes of primary metabolites during the manufacturing process of roasted green tea by pre-column derivatization combining with GC-MS. J. Tea Sci. 2019, 39, 297–308. [Google Scholar] [CrossRef]
- Chen, Y.J.; Kuo, P.C.; Yang, M.L.; Li, F.Y.; Tzen, J.T.C. Effects of baking and aging on the changes of phenolic and volatile compounds in the preparation of old Tieguanyin oolong teas. Food Res. Int. 2013, 53, 732–743. [Google Scholar] [CrossRef]
- Fu, Y.Q.; Wang, J.Q.; Chen, J.X.; Wang, F.; Yin, J.F.; Zeng, L.; Shi, J.; Xu, Y.Q. Effect of baking on the flavor stability of green tea beverages. Food Chem. 2020, 331, 127258. [Google Scholar] [CrossRef] [PubMed]
- Kawakami, M.; Yamanishi, T. Formation of aroma components in roasted or pan-fired green tea by roasting or pan-firing treatment. Nippon Nogeikagaku Kaishi-J. Jpn. Soc. Biosci. Biotechol. Agrochem. 1999, 73, 893–906. [Google Scholar] [CrossRef]
- Zheng, X.Q.; Li, Q.S.; Xiang, L.P.; Liang, Y.R. Recent advances in volatiles of teas. Molecules 2016, 21, 338. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, T.; Yuikawa, N.; Tanihiro, N.; Michihata, T.; Enomoto, T. The effects of roasting conditions on the physical appearance traits and aroma and taste components of roasted stem tea. Food Sci. Technol. Res. 2020, 26, 643–654. [Google Scholar] [CrossRef]
- Hara, T.; Kubota, E. Effects of roasting condition on the qualities of roasted green tea (Hojicha). Nippon Shokuhin Kogyo Gakkaishi 1969, 16, 145–149. [Google Scholar] [CrossRef]
- Qin, W.; Ketnawa, S.; Ogawa, Y. Effect of digestive enzymes and pH on variation of bioavailability of green tea during simulated in vitro gastrointestinal digestion. Food Sci. Hum. Wellness 2022, 11, 669–675. [Google Scholar] [CrossRef]
- Ferruzzi, M.G.; Blakeslee, J. Digestion, absorption, and cancer preventative activity of dietary chlorophyll derivatives. Nutr. Res. 2007, 27, 1–12. [Google Scholar] [CrossRef]
- Zhu, Q.Y.; Zhang, A.; Tsang, D.; Huang, Y.; Chen, Z.Y. Stability of green tea catechins. J. Agric. Food Chem. 1997, 45, 4624–4628. [Google Scholar] [CrossRef]
- Bohn, T.; McDougall, G.J.; Alegría, A.; Alminger, M.; Arrigoni, E.; Aura, A.M.; Brito, C.; Cilla, A.; El, S.N.; Karakaya, S. Mind the gap—Deficits in our knowledge of aspects impacting the bioavailability of phytochemicals and their metabolites—A position paper focusing on carotenoids and polyphenols. Mol. Nutr. Food Res. 2015, 59, 1307–1323. [Google Scholar] [CrossRef]
- Dreosti, I.E. Antioxidant polyphenols in tea, cocoa, and wine. Nutrition 2000, 16, 692–694. [Google Scholar] [CrossRef]
- Siebert, K.J.; Troukhanova, N.V.; Lynn, P.Y. Nature of polyphenol−protein interactions. J. Agric. Food Chem. 1996, 44, 80–85. [Google Scholar] [CrossRef]
- Tagliazucchi, D.; Verzelloni, E.; Bertolini, D.; Conte, A. In vitro bio-accessibility and antioxidant activity of grape polyphenols. Food Chem. 2010, 120, 599–606. [Google Scholar] [CrossRef]
- Zhang, A.Q.; Chan, P.T.; Luk, Y.S.; Ho, W.K.K.; Chen, Z.Y. Inhibitory effect of jasmine green tea epicatechin isomers on LDL-oxidation. J. Nutr. Biochem. 1997, 8, 334–340. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, S.; Qin, Y.; Liu, J.; Liu, J.; Wang, Q.; Ren, F.; Zhang, H. Interaction of phenolic acids and their derivatives with human serum albumin: Structure–affinity relationships and effects on antioxidant activity. Food Chem. 2018, 240, 1072–1080. [Google Scholar] [CrossRef]
- Gullon, B.; Pintado, M.E.; Fernández-López, J.; Pérez-Álvarez, J.A.; Viuda-Martos, M. In vitro gastrointestinal digestion of pomegranate peel (Punica granatum) flour obtained from co-products: Changes in the antioxidant potential and bioactive compounds stability. J. Funct. Foods 2015, 19, 617–628. [Google Scholar] [CrossRef]
- Hollebeeck, S.; Borlon, F.; Schneider, Y.J.; Larondelle, Y.; Rogez, H. Development of a standardised human in vitro digestion protocol based on macronutrient digestion using response surface methodology. Food Chem. 2013, 138, 1936–1944. [Google Scholar] [CrossRef]
- Barak, T.H.; Celep, E.; İnan, Y.; Yesilada, E. Influence of in vitro human digestion on the bioavailability of phenolic content and antioxidant activity of Viburnum opulus L. (European cranberry) fruit extracts. Ind. Crops Prod. 2019, 131, 62–69. [Google Scholar] [CrossRef]
- Chen, G.L.; Chen, S.G.; Zhao, Y.Y.; Luo, C.X.; Li, J.; Gao, Y.Q. Total phenolic contents of 33 fruits and their antioxidant capacities before and after in vitro digestion. Ind. Crop. Prod. 2014, 57, 150–157. [Google Scholar] [CrossRef]
- Czubinski, J.; Wroblewska, K.; Czyzniejewski, M.; Górnaś, P.; Kachlicki, P.; Siger, A. Bioaccessibility of defatted lupin seed phenolic compounds in a standardized static in vitro digestion system. Food Res. Int. 2018, 116, 1126–1134. [Google Scholar] [CrossRef]
- Sęczyk, Ł.; Sugier, D.; Świeca, M.; Gawlik-Dziki, U. The effect of in vitro digestion, food matrix, and hydrothermal treatment on the potential bioaccessibility of selected phenolic compounds. Food Chem. 2020, 344, 128581. [Google Scholar] [CrossRef]
- Wu, Z.; Teng, J.; Huang, L.; Xia, N.; Wei, B. Stability, antioxidant activity and in vitro bile acid-binding of green, black and dark tea polyphenols during simulated in vitro gastrointestinal digestion. RSC Adv. 2015, 5, 92089–92095. [Google Scholar] [CrossRef]
- Anjali, B.; Vinayak, P. Antioxidant activity of garlic using conventional extraction and in vitro gastrointestinal digestion. Free Radic. Antioxid. 2013, 3, 30–34. [Google Scholar] [CrossRef]
- Jamali, B.; Bjørnsdottir, I.; Nordfang, O.; Hansen, S.H. Investigation of racemisation of the enantiomers of glitazone drug compounds at different pH using chiral HPLC and chiral CE. J. Pharm. Biomed. Anal. 2008, 46, 82–87. [Google Scholar] [CrossRef] [PubMed]
- Wootton-Beard, P.C.; Moran, A.; Ryan, L. Stability of the total antioxidant capacity and total polyphenol content of 23 commercially available vegetable juices before and after in vitro digestion measured by FRAP, DPPH, ABTS and Folin–Ciocalteu methods. Food Res. Int. 2011, 44, 217–224. [Google Scholar] [CrossRef]
- Ketnawa, S.; Suwannachot, J.; Ogawa, Y. In vitro gastrointestinal digestion of crisphead lettuce: Changes in bioactive compounds and antioxidant potential. Food Chem. 2020, 311, 125885. [Google Scholar] [CrossRef] [PubMed]
- Tarko, T.; Duda-Chodak, A.; Soszka, A. Changes in phenolic compounds and antioxidant activity of fruit musts and fruit wines during simulated digestion. Molecules 2020, 25, 5574. [Google Scholar] [CrossRef] [PubMed]
Digestion Stage | TPC | TFC | ||
---|---|---|---|---|
BF | 46.49 ± 0.37 AA | 2.05 ± 0.15 AA | ||
G0 | 22.42 ± 0.12 EC | 0.48 ± 0.02 EE | ||
MD | WOE | MD | WOE | |
G1 | 26.75 ± 1.80 B * | 21.70 ± 0.07 D | 0.54 ± 0.02 D * | 0.38 ± 0.00 F |
G1I0 | 24.30 ± 0.27 C * | 21.95 ± 0.33 D | 1.23 ± 0.03 B * | 0.92 ± 0.02 B |
G1I1 | 23.67 ± 0.27 D * | 21.64 ± 0.25 D | 1.12 ± 0.03 C * | 0.64 ± 0.02 D |
G1I2 | 25.13 ± 0.33 B * | 23.14 ± 0.71 B | 1.18 ± 0.02 C * | 0.73 ± 0.00 C |
Digestion Stage | DPPH | ABTS | FRAP | MIC |
---|---|---|---|---|
BF | 66.71 ± 1.37 AA | 216.94 ± 4.63 AA | 236.57 ± 1.80 AA | 7.27 ± 0.11 BB |
G0 | 34.90 ± 0.03 CC | 116.54 ± 0.40 BB | 141.93 ± 1.31 BD | 6.58 ± 0.06 DD |
MD | ||||
G1 | 39.25 ± 0.01 B * | 105.56 ± 4.38 C * | 133.85 ± 6.08 C * | 6.85 ± 0.04 C |
G1I0 | 30.56 ± 0.01 D * | 93.30 ± 2.38 D * | 116.06 ± 0.83 D * | 7.27 ± 0.03 B * |
G1I1 | 25.25 ± 0.25 E * | 94.84 ± 2.11 D * | 106.21 ± 2.41 E * | 10.51 ± 0.04 A * |
G1I2 | 22.52 ± 0.16 F * | 86.06 ± 1.77 E * | 96.31 ± 3.27 F * | 10.51 ± 0.03 A * |
WOE | ||||
G1 | 34.39 ± 0.07 C | 102.11 ± 4.43 C | 123.40 ± 1.63 C | 7.73 ± 0.10 B * |
G1I0 | 24.98 ± 0.07 D | 82.53 ± 3.71 D | 95.98 ± 2.15 D | 5.71 ± 0.03 D |
G1I1 | 18.36 ± 0.17 E | 66.49 ± 2.08 E | 87.83 ± 0.39 E | 9.76 ± 0.00 A |
G1I2 | 11.89 ± 0.03 F | 68.23 ± 1.35 E | 81.41 ± 0.63 F | 9.39 ± 0.02 A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, W.; Ketnawa, S. Exploring the Bioaccessibility of Roasted Japanese Green Tea: Impact of Simulated Gastrointestinal Digestion. Foods 2025, 14, 311. https://doi.org/10.3390/foods14020311
Qin W, Ketnawa S. Exploring the Bioaccessibility of Roasted Japanese Green Tea: Impact of Simulated Gastrointestinal Digestion. Foods. 2025; 14(2):311. https://doi.org/10.3390/foods14020311
Chicago/Turabian StyleQin, Wei, and Sunantha Ketnawa. 2025. "Exploring the Bioaccessibility of Roasted Japanese Green Tea: Impact of Simulated Gastrointestinal Digestion" Foods 14, no. 2: 311. https://doi.org/10.3390/foods14020311
APA StyleQin, W., & Ketnawa, S. (2025). Exploring the Bioaccessibility of Roasted Japanese Green Tea: Impact of Simulated Gastrointestinal Digestion. Foods, 14(2), 311. https://doi.org/10.3390/foods14020311