Microencapsulation of Deer Oil in Soy Protein Isolate–Chitosan Complex Coacervate—Preparation, Characterization, and Simulated Digestion
<p>Standard UV curve of deer oil.</p> "> Figure 2
<p>Diagram illustrating the preparation process of deer oil microcapsules.</p> "> Figure 3
<p>GC-MS analysis of deer oil components.</p> "> Figure 4
<p>Optimization of pH and SPI/CS ratio (<span class="html-italic">n</span> = 3). (<b>A</b>) Zeta potential variation in SPI/CS at different pH. (<b>B</b>) SEI variation in SPI/CS at different pH. (<b>C</b>) Yield and turbidity of SPI/CS at different pH and ratios. (<b>D</b>) Yield and turbidity of SPI/CS at different ratios.</p> "> Figure 5
<p>FTIR spectra of SPI, CS, SPI/CS.</p> "> Figure 6
<p>(<b>A</b>) Embedding rate of SPI/CS/DO at different wall concentrations. (<b>B</b>) Embedding rate of SPI/CS/DO at different core-to-wall ratios.</p> "> Figure 7
<p>FTIR spectra of SPI/CS, SPI/CS/DO, DO.</p> "> Figure 8
<p>(<b>A</b>) CLSM images showing the oil phase (highlighted in yellow) and SPI/CS (highlighted in red), with the scale bar set to 1 μm. (<b>B</b>) SEM images of DO-loaded microcapsules, with scale bars of 200 μm and 50 μm shown in the figure.</p> "> Figure 9
<p>DSC spectra of SPI, CS, SPI/CS, DO, SPI/CS/DO.</p> "> Figure 10
<p>Deer oil microcapsules particle size distribution.</p> "> Figure 11
<p>Oxidative stability of encapsulated and unencapsulated cores during storage. * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01, *** <span class="html-italic">p</span> < 0.001, Control and Microcapsules groups compared with their respective initial; # <span class="html-italic">p</span> < 0.05, ## <span class="html-italic">p</span> < 0.01, ### <span class="html-italic">p</span> < 0.001, Microcapsules group compared with Control group.</p> "> Figure 12
<p>Simulates the cumulative release of DO from microcapsules during digestion.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Extraction of Deer Oil
2.3. Gas Chromatography–Mass Spectrometry (GC–MS) Analysis of Fatty Acids in DO
2.4. Plotting of Deer Oil Standard Curves
2.5. Preparation of SPI, CS Complexes, and Microcapsules
2.5.1. Preparation of SPI and CS Complexes
2.5.2. Preparation of Deer Oil Microcapsules
2.6. Detection of SPI, CS Complexes, and Microcapsules
2.6.1. Zeta Potential, Static Electric Interaction (SEI), Turbidity, Yield Detection
2.6.2. FTIR
2.6.3. Measurement of Embedding Rate
2.6.4. Microstructural Observations
2.6.5. Scanning Electron Microscopy (SEM)
2.6.6. Differential Scanning Calorimetry (DSC)
2.6.7. Physical Property Testing
2.7. Determination of Oxidative Stability of Deer Oil Microcapsules
2.8. In Vitro Simulated Digestion of Microcapsules
2.9. Statistical Analyses
3. Results and Discussion
3.1. Deer Oil Fatty Acid Types and Content
3.2. Optimization of the Complex Coacervation
3.2.1. pH Optimization
3.2.2. Optimization of SPI to CS Ratio
3.2.3. Complex Condensations FT-IR Analysis
3.3. Optimization and Characterization of Deer Oil Microcapsules
3.3.1. Optimization of the Core-to-Wall Ratio and the Overall Concentration of Wall Material in Deer Oil Microcapsules
3.3.2. Deer Oil Microcapsules FT-IR Analysis
3.3.3. Microstructure of Deer Oil Microcapsules
3.3.4. Thermal Stability of Deer Oil Microcapsules
3.3.5. Physical Properties of Deer Oil Microcapsules
3.4. Microencapsulated Oxidative Stability
3.5. The Release Behavior of SPI/CS/DO Microcapsules in Simulated Gastrointestinal Digestion SPI/CS/DO
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xia, Y.-S.; Sun, Y.-S.; Liu, C.; Li, Z.-M.; Ren, D.-D.; Mu, R.; Zhang, Y.-T.; Bo, P.-P.; Zhao, L.-J.; Wang, Z. Effect of Aqueous Enzymatic Extraction of Deer Oil on Its Components and Its Protective Effect on Gastric Mucosa Injury. Front. Nutr. 2021, 8, 769463. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Han, L.; Zong, Y.; Feng, R.; Chen, W.; Geng, J.; Li, J.; Zhao, Y.; Wang, Y.; He, Z.; et al. Deer oil improves ulcerative colitis induced by DSS in mice by regulating the intestinal microbiota and SCFAs metabolism and modulating NF-κB and Nrf2 signaling pathways. J. Sci. Food Agric. 2024, 105, 382–393. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.-S.; Li, Z.-M.; Liu, C.; Mu, R.; Bo, P.-P.; Wang, Z.; Sun, Y.-S. Preparation of deer oil powder and its effect on acute gastric mucosal injury in rats. J. Food Biochem. 2022, 46, e14088. [Google Scholar] [CrossRef] [PubMed]
- Corrêa-Filho, L.; Moldão-Martins, M.; Alves, V. Advances in the Application of Microcapsules as Carriers of Functional Compounds for Food Products. Appl. Sci. 2019, 9, 571. [Google Scholar] [CrossRef]
- Moschakis, T.; Biliaderis, C.G. Biopolymer-based coacervates: Structures, functionality and applications in food products. Curr. Opin. Colloid Interface Sci. 2017, 28, 96–109. [Google Scholar] [CrossRef]
- Zheng, J.; Tang, C.-H.; Sun, W. Heteroprotein complex coacervation: Focus on experimental strategies to investigate structure formation as a function of intrinsic and external physicochemical parameters for food applications. Adv. Colloid Interface Sci. 2020, 284, 102268. [Google Scholar] [CrossRef] [PubMed]
- Eratte, D.; Dowling, K.; Barrow, C.J.; Adhikari, B. Recent advances in the microencapsulation of omega-3 oil and probiotic bacteria through complex coacervation: A review. Trends Food Sci. Technol. 2018, 71, 121–131. [Google Scholar] [CrossRef]
- Lan, Y.; Ohm, J.-B.; Chen, B.; Rao, J. Microencapsulation of hempseed oil by pea protein isolate−sugar beet pectin complex coacervation: Influence of coacervation pH and wall/core ratio. Food Hydrocoll. 2021, 113, 106423. [Google Scholar] [CrossRef]
- Timilsena, Y.P.; Adhikari, R.; Barrow, C.J.; Adhikari, B. Digestion behaviour of chia seed oil encapsulated in chia seed protein-gum complex coacervates. Food Hydrocoll. 2017, 66, 71–81. [Google Scholar] [CrossRef]
- Mu, H.; Song, Z.; Wang, X.; Wang, D.; Zheng, X.; Li, X. Microencapsulation of algae oil by complex coacervation of chitosan and modified starch: Characterization and oxidative stability. Int. J. Biol. Macromol. 2021, 194, 66–73. [Google Scholar] [CrossRef]
- Xu, N.; Ding, Y.; Li, Y.; Zhou, T.; Ye, S. Preparation and characterization of vitamin A microcapsules nutrient fortified salt. J. Food Sci. Technol. 2024, 61, 1201–1213. [Google Scholar] [CrossRef] [PubMed]
- Koupantsis, T.; Paraskevopoulou, A. Flavour retention in sodium caseinate—Carboxymethylcellulose complex coavervates as a function of storage conditions. Food Hydrocoll. 2017, 69, 459–465. [Google Scholar] [CrossRef]
- Muhoza, B.; Xia, S.; Cai, J.; Zhang, X.; Duhoranimana, E.; Su, J. Gelatin and pectin complex coacervates as carriers for cinnamaldehyde: Effect of pectin esterification degree on coacervate formation, and enhanced thermal stability. Food Hydrocoll. 2019, 87, 712–722. [Google Scholar] [CrossRef]
- Zhong, Q.; Jin, M. Zein nanoparticles produced by liquid–liquid dispersion. Food Hydrocoll. 2009, 23, 2380–2387. [Google Scholar] [CrossRef]
- Huang, G.Q.; Sun, Y.T.; Xiao, J.X.; Yang, J. Complex coacervation of soybean protein isolate and chitosan. Food Chem. 2012, 135, 534–539. [Google Scholar] [CrossRef] [PubMed]
- Butstraen, C.; Salaün, F. Preparation of microcapsules by complex coacervation of gum Arabic and chitosan. Carbohydr. Polym. 2014, 99, 608–616. [Google Scholar] [CrossRef]
- Chang, P.G.; Gupta, R.; Timilsena, Y.P.; Adhikari, B. Optimisation of the complex coacervation between canola protein isolate and chitosan. J. Food Eng. 2016, 191, 58–66. [Google Scholar] [CrossRef]
- Yuan, Y.; Kong, Z.-Y.; Sun, Y.-E.; Zeng, Q.-Z.; Yang, X.-Q. Complex coacervation of soy protein with chitosan: Constructing antioxidant microcapsule for algal oil delivery. LWT 2017, 75, 171–179. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, F.; Fang, Y.; Wang, S. Alginate-shelled SPI nanoparticle for encapsulation of resveratrol with enhanced colloidal and chemical stability. Food Hydrocoll. 2019, 90, 313–320. [Google Scholar] [CrossRef]
- Yuan, Y.; Wan, Z.-L.; Yin, S.-W.; Yang, X.-Q.; Qi, J.-R.; Liu, G.-Q.; Zhang, Y. Characterization of complexes of soy protein and chitosan heated at low pH. LWT—Food Sci. Technol. 2012, 50, 657–664. [Google Scholar] [CrossRef]
- Gao, S.; Yang, M.; Luo, Z.; Ban, Z.; Pan, Y.; Tu, M.; Ma, Q.; Lin, X.; Xu, Y.; Li, L. Soy protein/chitosan-based microsphere as Stable Biocompatible Vehicles of Oleanolic Acid: An Emerging Alternative Enabling the Quality Maintenance of Minimally Processed Produce. Food Hydrocoll. 2021, 124, 107325. [Google Scholar]
- Xiao, J.-X.; Huang, G.-Q.; Wang, S.-Q.; Sun, Y.-T. Microencapsulation of capsanthin by soybean protein isolate-chitosan coacervation and microcapsule stability evaluation. J. Appl. Polym. Sci. 2013, 131, 39671. [Google Scholar] [CrossRef]
- Fu, N.; Chen, X.D. Towards a maximal cell survival in convective thermal drying processes. Food Res. Int. 2011, 44, 1127–1149. [Google Scholar] [CrossRef]
- Li, H.; Peng, F.; Lin, J.-X.; Xiong, T.; Huang, T. Preparation of probiotic microcapsules using gelatin-xylooligosaccharides conjugates by spray drying: Physicochemical properties, survival, digestion resistance and colonization. Food Biosci. 2023, 52, 102462. [Google Scholar] [CrossRef]
- Das, G.; Sen, A.K. Structural investigation of a Novel Polysaccharide (HWSPP) from Semi-Ripe Bael Fruit Pulp (Aegle marmelos). ES Food Agrofor. 2024, 17, 1100. [Google Scholar] [CrossRef]
- Pei, H.; Li, J.; Kuang, J.; He, Z.; Zong, Y.; Qi, L.; Du, R.; Ji, Y.; Zhao, K. Preparation, characterization, bioactivity, and safety evaluation of PEI-modified PLGA nanoparticles loaded with polysaccharide from Cordyceps militaris. Adv. Compos. Hybrid Mater. 2024, 8, 93. [Google Scholar] [CrossRef]
- Hu, X.; Liu, L.; Zhong, J.; Liu, X.; Qin, X. Improved physicochemical properties and in vitro digestion of walnut oil microcapsules with soy protein isolate and highly oxidized konjac glucomannan as wall materials. Food Chem. 2024, 444, 138640. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zhang, Z.; Li, X.; Zhou, S.; Liu, M.; Li, S.; Liu, H.; Gao, H.; Zhao, A.; Zhang, Y.; et al. Preparation and Characterization of Prickly Ash Peel Oleoresin Microcapsules and Flavor Retention Analysis. Foods 2024, 13, 1726. [Google Scholar] [CrossRef]
- Xie, D.; Kuang, Y.; Yuan, B.; Zhang, Y.; Ye, C.; Guo, Y.; Qiu, H.; Ren, J.; Alshammari, S.O.; Alshammari, Q.A.; et al. Convenient and highly efficient adsorption of diosmetin from lemon peel by magnetic surface molecularly imprinted polymers. J. Mater. Sci. Technol. 2025, 211, 159–170. [Google Scholar] [CrossRef]
- de Barros Fernandes, R.V.; Borges, S.V.; Botrel, D.A. Gum arabic/starch/maltodextrin/inulin as wall materials on the microencapsulation of rosemary essential oil. Carbohydr. Polym. 2013, 101, 524–532. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wang, D.; Liu, L.; Jiang, W.; Xiang, W.; Zhang, Q.; Tang, J. Microencapsulation of Zanthoxylum schinifolium essential oil through emulsification followed by spray drying: Microcapsule characterization and functional evaluation. Colloids Surf. A Physicochem. Eng. Asp. 2024, 687, 133484. [Google Scholar] [CrossRef]
- Chen, X.-W.; Chen, Y.-J.; Wang, J.-M.; Guo, J.; Yin, S.-W.; Yang, X.-Q. Phytosterol structured algae oil nanoemulsions and powders: Improving antioxidant and flavor properties. Food Funct. 2016, 7, 3694–3702. [Google Scholar] [CrossRef] [PubMed]
- Akhtar, G.; Masoodi, F.A.; Murtaza, M.; Rather, Z.U.K. Soy Protein Isolate–Maltodextrin–Pectin Microcapsules of Himalayan Walnut Oil: Complex Coacervation under Variable pH Systems and Characterization. ACS Food Sci. Technol. 2022, 2, 1283–1295. [Google Scholar] [CrossRef]
- Kosaraju, S.L.; Weerakkody, R.; Augustin, M.A. In-vitro evaluation of hydrocolloid–based encapsulated fish oil. Food Hydrocoll. 2009, 23, 1413–1419. [Google Scholar] [CrossRef]
- Yuan, Y.; Wan, Z.-L.; Yang, X.-Q.; Yin, S.-W. Associative interactions between chitosan and soy protein fractions: Effects of pH, mixing ratio, heat treatment and ionic strength. Food Res. Int. 2013, 55, 207–214. [Google Scholar] [CrossRef]
- Espinosa-Andrews, H.; Enríquez-Ramírez, K.E.; García-Márquez, E.; Ramírez-Santiago, C.; Lobato-Calleros, C.; Vernon-Carter, J. Interrelationship between the zeta potential and viscoelastic properties in coacervates complexes. Carbohydr. Polym. 2013, 95, 161–166. [Google Scholar] [CrossRef] [PubMed]
- Muhoza, B.; Yuyang, H.; Uriho, A.; Harindintwali, J.D.; Liu, Q.; Li, Y. Spray-and freeze-drying of microcapsules prepared by complex coacervation method: A review. Food Hydrocoll. 2023, 140, 108650. [Google Scholar] [CrossRef]
- Hajji, S.; Younes, I.; Ghorbel-Bellaaj, O.; Hajji, R.; Rinaudo, M.; Nasri, M.; Jellouli, K. Structural differences between chitin and chitosan extracted from three different marine sources. Int. J. Biol. Macromol. 2014, 65, 298–306. [Google Scholar] [CrossRef]
- Modak, P.; Hammond, W.; Jaffe, M.; Nadig, M.; Russo, R. Reproducible, biocompatible medical materials from biologically derived polysaccharides: Processing and Characterization. J. Appl. Polym. Sci. 2019, 137, 48454. [Google Scholar] [CrossRef]
- Duarte, M.L.; Ferreira, M.C.; Marvão, M.R.; Rocha, J. An optimised method to determine the degree of acetylation of chitin and chitosan by FTIR spectroscopy. Int. J. Biol. Macromol. 2003, 31, 1–8. [Google Scholar] [CrossRef]
- Zhao, K.; Qi, L.; Li, Q.; Wang, Y.; Qian, C.; Shi, Z. Self-absorbing multilayer skin-like composite with Phyllostachys nigra polysaccharides promotes wound healing. Adv. Compos. Hybrid Mater. 2024, 7, 225. [Google Scholar] [CrossRef]
- Han, J.; Chen, F.; Gao, C.; Zhang, Y.; Tang, X. Environmental stability and curcumin release properties of Pickering emulsion stabilized by chitosan/gum arabic nanoparticles. Int. J. Biol. Macromol. 2020, 157, 202–211. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Wang, J.; Hu, Z.; Zhong, S.; Huang, N.; Zhao, Y.; Tao, Y.; Liang, Y. Preparation of norfloxacin-grafted chitosan antimicrobial sponge and its application in wound repair. Int. J. Biol. Macromol. 2022, 210, 243–251. [Google Scholar] [CrossRef]
- Tan, C.; Pajoumshariati, S.; Arshadi, M.; Abbaspourrad, A. A simple route to renewable high internal phase emulsions (HIPEs) strengthened by successive cross-linking and electrostatics of polysaccharides. Chem. Commun. 2018, 55, 1225–1228. [Google Scholar] [CrossRef] [PubMed]
- Remanan, M.K.; Zhu, F. Encapsulation of rutin using quinoa and maize starch nanoparticles. Food Chem. 2021, 353, 128534. [Google Scholar] [CrossRef] [PubMed]
- Asfour, M.H.; Mohsen, A.M. Formulation and evaluation of pH-sensitive rutin nanospheres against colon carcinoma using HCT-116 cell line. J. Adv. Res. 2018, 9, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Irudayaraj, J. Characterization of semisolid fats and edible oils by Fourier transform infrared photoacoustic spectroscopy. J. Am. Oil Chem. Soc. 2000, 77, 291–295. [Google Scholar] [CrossRef]
- Timilsena, Y.P.; Adhikari, R.; Barrow, C.J.; Adhikari, B. Microencapsulation of chia seed oil using chia seed protein isolate-chia seed gum complex coacervates. Int. J. Biol. Macromol. 2016, 91, 347–357. [Google Scholar] [CrossRef]
- Bakry, A.M.; Huang, J.; Zhai, Y.; Huang, Q. Myofibrillar protein with κ- or λ-carrageenans as novel shell materials for microencapsulation of tuna oil through complex coacervation. Food Hydrocoll. 2019, 96, 43–53. [Google Scholar] [CrossRef]
- Li, F.; Wang, H.; Mei, X. Preparation and characterization of phytosterol-loaded microcapsules based on the complex coacervation. J. Food Eng. 2021, 311, 110728. [Google Scholar] [CrossRef]
- Marques da Silva, T.; Lopes, E.J.; Codevilla, C.F.; Cichoski, A.J.; Flores, E.; Motta, M.H.; da Silva, C.D.B.; Grosso, C.R.F.; de Menezes, C.R. Development and characterization of microcapsules containing Bifidobacterium Bb-12 produced by complex coacervation followed by freeze drying. LWT—Food Sci. Technol. 2017, 90, 412–417. [Google Scholar] [CrossRef]
- Rodrigues da Cruz, M.C.; Andreotti Dagostin, J.L.; Perussello, C.A.; Masson, M.L. Assessment of physicochemical characteristics, thermal stability and release profile of ascorbic acid microcapsules obtained by complex coacervation. Food Hydrocoll. 2019, 87, 71–82. [Google Scholar] [CrossRef]
- Zhou, X.; Feng, X.; Qi, W.; Zhang, J.; Chen, L. Microencapsulation of vitamin E by gelatin-high/low methoxy pectin complex coacervates: Effect of pH, pectin type, and protein/polysaccharide ratio. Food Hydrocoll. 2024, 151, 109794. [Google Scholar] [CrossRef]
- Wang, Q.; Xie, Y.; Xiong, Z.; Gu, X.; Nie, X.; Lan, Y.; Chen, B. Structural and physical properties of spray-dried fish oil microcapsules via pea protein isolate based emulsification or complex coacervation with sugar beet pectin. J. Food Eng. 2022, 335, 111173. [Google Scholar] [CrossRef]
- Muhoza, B.; Xia, S.; Wang, X.; Zhang, X. The protection effect of trehalose on the multinuclear microcapsules based on gelatin and high methyl pectin coacervate during freeze-drying. Food Hydrocoll. 2020, 105, 105807. [Google Scholar] [CrossRef]
- Locali Pereira, A.R.; Gonçalves Cattelan, M.; Nicoletti, V.R. Microencapsulation of pink pepper essential oil: Properties of spray-dried pectin/SPI double-layer versus SPI single-layer stabilized emulsions. Colloids Surfaces A Physicochem. Eng. Asp. 2019, 581, 123806. [Google Scholar] [CrossRef]
- Carneiro, H.C.F.; Tonon, R.V.; Grosso, C.R.F.; Hubinger, M.D. Encapsulation efficiency and oxidative stability of flaxseed oil microencapsulated by spray drying using different combinations of wall materials. J. Food Eng. 2013, 115, 443–451. [Google Scholar] [CrossRef]
- Alvarenga Botrel, D.; Vilela Borges, S.; Victória de Barros Fernandes, R.; Dantas Viana, A.; Maria Gomes da Costa, J.; Reginaldo Marques, G. Evaluation of spray drying conditions on properties of microencapsulated oregano essential oil. Int. J. Food Sci. Technol. 2012, 47, 2289–2296. [Google Scholar] [CrossRef]
- Kha, T.C.; Nguyen, M.H.; Roach, P.D. Effects of spray drying conditions on the physicochemical and antioxidant properties of the Gac (Momordica cochinchinensis) fruit aril powder. J. Food Eng. 2010, 98, 385–392. [Google Scholar] [CrossRef]
- Massaro Sousa, L.; Ferreira, M.C. Spent coffee grounds as a renewable source of energy: An analysis of bulk powder flowability. Particuology 2018, 43, 92–100. [Google Scholar] [CrossRef]
- Jinapong, N.; Suphantharika, M.; Jamnong, P. Production of instant soymilk powders by ultrafiltration, spray drying and fluidized bed agglomeration. J. Food Eng. 2008, 84, 194–205. [Google Scholar] [CrossRef]
- Shah, R.B.; Tawakkul, M.A.; Khan, M.A. Comparative evaluation of flow for pharmaceutical powders and granules. AAPS Pharmscitech 2008, 9, 250–258. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.-F.; Chen, X.-W.; Guo, J.; Yang, X.-Q. Zein-based core–shell microcapsules for the potential delivery of algae oil and lipophilic compounds. Food Funct. 2019, 10, 1504–1512. [Google Scholar] [CrossRef]
- Karaca, A.C.; Nickerson, M.; Low, N.H. Microcapsule production employing chickpea or lentil protein isolates and maltodextrin: Physicochemical properties and oxidative protection of encapsulated flaxseed oil. Food Chem. 2013, 139, 448–457. [Google Scholar] [CrossRef] [PubMed]
Physical Property | SPI/CS/DO |
---|---|
Embeddedness/% | 85.28 ± 1.308 |
Particle size/nm | 2026 ± 183.5 |
PDI | 0.287 ± 0.018 |
Zeta | 22.78 ± 4.88 |
Water content/% | 1.3 |
Absorbent property | 8.76 |
Bulk density | 0.334 ± 0.011 |
Knockdown density | 0.390 ± 0.009 |
Angle of repose/° | 28.66 ± 1.305 |
Carr Index | 14.396 |
Hausner ratio | 1.168 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Zong, Y.; Chen, W.; Zhao, Y.; Geng, J.; He, Z.; Du, R. Microencapsulation of Deer Oil in Soy Protein Isolate–Chitosan Complex Coacervate—Preparation, Characterization, and Simulated Digestion. Foods 2025, 14, 181. https://doi.org/10.3390/foods14020181
Li H, Zong Y, Chen W, Zhao Y, Geng J, He Z, Du R. Microencapsulation of Deer Oil in Soy Protein Isolate–Chitosan Complex Coacervate—Preparation, Characterization, and Simulated Digestion. Foods. 2025; 14(2):181. https://doi.org/10.3390/foods14020181
Chicago/Turabian StyleLi, Hongyan, Ying Zong, Weijia Chen, Yan Zhao, Jianan Geng, Zhongmei He, and Rui Du. 2025. "Microencapsulation of Deer Oil in Soy Protein Isolate–Chitosan Complex Coacervate—Preparation, Characterization, and Simulated Digestion" Foods 14, no. 2: 181. https://doi.org/10.3390/foods14020181
APA StyleLi, H., Zong, Y., Chen, W., Zhao, Y., Geng, J., He, Z., & Du, R. (2025). Microencapsulation of Deer Oil in Soy Protein Isolate–Chitosan Complex Coacervate—Preparation, Characterization, and Simulated Digestion. Foods, 14(2), 181. https://doi.org/10.3390/foods14020181