Synthesis and Physico-Chemical Analysis of Dextran from Maltodextrin via pH Controlled Fermentation by Gluconobacter oxydans
<p>Changes in the <span class="html-italic">G. oxydans</span> growth curve (solid line), and pH (short dash line) (<b>A</b>); DO (<b>B</b>). Symbols: ●, Jp-UC; ○, Jp-4.5; and ▼, Jp-5.0.</p> "> Figure 2
<p>Effect of shear stress on <span class="html-italic">G. oxydans</span> culture media growth under various culture conditions.</p> "> Figure 3
<p>Gel permeation chromatography analysis of dextran from <span class="html-italic">G. oxydans</span>. (<b>A</b>) Time-dependent changes in the molecular weight distribution of Jp-4.5. (<b>B</b>) Molecular weight distribution of dextran produced under varying pH conditions.</p> "> Figure 4
<p><sup>1</sup>H-NMR spectrum of dextran from <span class="html-italic">G. oxydans</span>.</p> "> Figure 5
<p>Glucose generation property of dextran from <span class="html-italic">G. oxydans</span> by mammalian small intestinal α-glucosidase.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Strains and Preparation of Stock Cultures
2.2. Cultivation of the Jar Fermenter
2.3. Analysis of Rheological Properties
2.4. Dextran Isolation
2.5. Gel Permeation Chromatography (GPC) Analysis
2.6. NMR Analysis
2.7. Hydrolysis Properties of Dextran by Mammalian Mucosal α-Glucosidase
2.8. Statistical Analysis
3. Results and Discussion
3.1. Growth Properties of G. oxydans
3.2. Physicochemical Properties of Dextran Produced in G. oxydans Culture Media
3.2.1. Flow Behavior
3.2.2. Molecular Weight Distribution
3.2.3. 1H-NMR Analysis
3.3. Digestibility of Dextran by Mammalian α-Glucosidases
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nicolaus, B.; Kambourova, M.; Oner, E.T. Exopolysaccharides from extremophiles: From fundamentals to biotechnology. Environ. Technol. 2010, 31, 1145–1158. [Google Scholar] [CrossRef]
- Sutherland, I.W. Surface Carbohydrates of the Prokaryotic Cell; Academic Press: Cambridge, MA, USA, 1977. [Google Scholar]
- Donot, F.; Fontana, A.; Baccou, J.C.; Schorr-Galindo, S. Microbial exopolysaccharides: Main examples of synthesis, excretion, genetics and extraction. Carbohydr. Polym. 2012, 87, 951–962. [Google Scholar] [CrossRef]
- Parikh, A.; Madamwar, D. Partial characterization of extracellular polysaccharides from cyanobacteria. Bioresour. Technol. 2006, 97, 1822–1827. [Google Scholar] [CrossRef]
- Singh, S.; Kant, C.; Yadav, R.K.; Reddy, Y.P.; Abraham, G. Cyanobacterial exopolysaccharides: Composition, biosynthesis, and biotechnological applications. In Cyanobacteria: From Basic Science to Applications; Academic Press: Cambridge, MA, USA, 2019; pp. 347–358. [Google Scholar]
- Bounaix, M.S.; Robert, H.; Gabriel, V.; Morel, S.; Remaud-Siméon, M.; Gabriel, B. Characterization of dextran-producing Weissella strains isolated from sourdoughs and evidence of constitutive dextransucrase expression. FEMS Microbiol. Lett. 2010, 311, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Ruas-Madiedo, P.; Hugenholtz, J.; Zoon, P. An overview of the functionality of exopolysaccharides produced by lactic acid bacteria. Int. Dairy J. 2002, 12, 163–171. [Google Scholar] [CrossRef]
- Besrour-Aouam, N.; Fhoula, I.; Hernández-Alcántara, A.M.; Mohedano, M.L.; Najjari, A.; Prieto, A. The role of dextran production in the metabolic context of Leuconostoc and Weissella Tunisian strains. Carbohydr. Polym. 2021, 253, 117254. [Google Scholar] [CrossRef]
- Mountzouris, K.C.; Gilmour, S.G.; Jay, A.J.; Rastall, R.A. A study of dextran production from maltodextrin by cell suspensions of Gluconobacter oxydans NCIB 4943. J. Appl. Microbiol. 1999, 87, 546–556. [Google Scholar] [CrossRef]
- Robyt, J.F. Structure, biosynthesis and uses of non-starch polysaccharides: Dextran, alternan, pullulan and algin. In Developments in Carbohydrate Chemistry; American Association of Cereal Chemists: St. Paul, MN, USA, 1992; pp. 261–292. [Google Scholar]
- Hehre, E.J. Production from sucrose of a serologically reactive polysaccharide by a sterile bacterial extract. Science 1941, 93, 237–238. [Google Scholar] [CrossRef]
- Naessens, M.; Cerdobbel, A.; Soetaert, W.; Vandamme, E.J. Leuconostoc dextransucrase and dextran: Production, properties and applications. J. Chem. Technol. Biotechnol. 2005, 80, 845–860. [Google Scholar] [CrossRef]
- Hehre, E.J.; Hamilton, D.M. Bacterial conversion of dextrin into a polysaccharide with the serological properties of dextran. Proceedings of the Society for Experimental Biology and Medicine. Proc. Soc. Exp. Biol. Med. 1949, 71, 336–339. [Google Scholar] [CrossRef] [PubMed]
- Hehre, E.J. The biological synthesis of dextran from dextrins. J. Biol. Chem. 1951, 192, 161–174. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, k.; Yoshikawa, K.; Kitahata, S.; Okada, S. Purification and some properties of dextrin dextranase from Acetobacter capsulatus ATCC 11894. Biosci. Biotechnol. Biochem. 1992, 56, 169–173. [Google Scholar] [CrossRef]
- Mao, X.; Wang, S.; Kan, F.; Wei, D.; Li, F. A novel dextran dextrinase from Gluconobacter oxydans DSM-2003: Purification and properties. Appl. Biochem. Biotechnol. 2012, 168, 1256–1264. [Google Scholar] [CrossRef]
- Yamamoto, K.; Yoshikawa, K.; Okada, S. Structure of dextran synthesized by dextrin dextranase from Acetobacter capsulatus ATCC 11894. Biosci. Biotechnol. Biochem. 1993, 57, 1450–1453. [Google Scholar] [CrossRef]
- De Muynck, C.; Pereira, C.S.S.; Naessens, M.; Parmentier, S.; Soetaert, W.; Vandamme, E.J. The genus Gluconobacter oxydans: Comprehensive overview of biochemistry and biotechnological applications. Crit. Rev. Biotechnol. 2007, 27, 147–171. [Google Scholar] [CrossRef]
- Naessens, M. Dextran Dextrinase from Gluconobacter oxydans: Production and Characterization. Ph.D. Thesis, Ghent University, Gent, Belgium, 2003. [Google Scholar]
- Naessens, M.; Cerdobbel, A.; Soetaert, W.; Vandamme, E.J. Dextran dextrinase and dextran of Gluconobacter oxydans. J. Ind. Microbiol. Biotechnol. 2005, 32, 323–334. [Google Scholar] [CrossRef]
- Son, B.S.; Park, S.K.; Lee, S.W.; Sung, C.K.; Seo, K.I. Viscosity of exopolysaccharide from Xanthomonas sp. EPS-1. J. Korean Soc. Food Sci. Nutr. 1996, 25, 53–57. [Google Scholar]
- Vettori, M.H.P.B.; Blanco, K.C.; Cortezi, M.; De Lima, C.J.; Contiero, J. Dextran: Effect of process parameters on production, purification and molecular weight and recent applications. Diálogos Ciênc. 2012, 31, 171–186. [Google Scholar] [CrossRef]
- Scientific Committee on Food. Opinion of the Scientific Committee on Food on a Dextran Preparation, Produced using Leuconostoc mesenteroides, Saccharomyces cerevisiae, and Lactobacillus spp. as a Novel Food Ingredient in Bakery Products; European Commission; Health and Consumer Protection Directorate-General: Brussels, Belgium, 2000. [Google Scholar]
- Wang, S.; Mao, X.; Wang, H.; Lin, J.; Li, F.; Wei, D. Characterization of a novel dextran produced by Gluconobacter oxydans DSM 2003. Appl. Microbiol. Biotechnol. 2011, 91, 287–294. [Google Scholar] [CrossRef]
- Yamamoto, K.; Yoshikawa, K.; Okada, S. Substrate Specificity of dextrin dextranase from Acetobacter capsulatus ATCC 11894. Biosci. Biotechnol. Biochem. 1994, 58, 330–333. [Google Scholar] [CrossRef]
- Gupta, A.; Singh, V.K.; Qazi, G.N.; Kumar, A. Gluconobacter oxydans: Its Biotechnological Applications. J. Mol. Microbiol. Biotechnol. 2001, 3, 445–456. [Google Scholar]
- Wei, G.; Yang, X.; Gan, T.; Zhou, W.; Lin, J.; Wei, D. High cell density fermentation of Gluconobacter oxydans DSM 2003 for glycolic acid production. J. Ind. Microbiol. Biotechnol. 2009, 36, 1029–1034. [Google Scholar] [CrossRef] [PubMed]
- Habe, H.; Shimada, Y.; Yakushi, T.; Hattori, H.; Ano, Y.; Fukuoka, T.; Kitamoto, D.; Itagaki, M.; Watanabe, K.; Yanagishita, H.; et al. Microbial Production of Glyceric Acid, an Organic Acid That Can Be Mass Produced from Glycerol. Appl. Environ. Microbiol. 2009, 75, 7760–7766. [Google Scholar] [CrossRef]
- Sato, S.; Morita, N.; Kitamoto, D.; Yakushi, T.; Matsushita, K.; Habe, H. Change in product selectivity during the production of glyceric acid from glycerol by Gluconobacter atrains in the presence of methanol. AMB Express. 2013, 3, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Zhong-Ce, H.; Liu, Z.Q.; Zheng, Y.G.; Shen, Y.C. Production of 1,3-Dihydroxyacetone from Glycerol by Gluconobacter oxydans ZJB09112. J. Microbiol. Biotechnol. 2010, 20, 340–345. [Google Scholar]
- Jeong, J.H.; Park, J.Y.; Lee, H.J.; Choi, J.H.; Park, S.Y.; Park, C.S.; Park, B.R. Synthesis and physicochemical properties of polysaccharides by Gluconobacter oxydans with glycosyltransferase activity. Food Sci. Preserv. 2021, 28, 391–402. [Google Scholar] [CrossRef]
- Olijve, W.; Kok, J.J. An analysis of the growth of Gluconobacter oxydans in chemostat cultures. Arch. Microbiol. 1979, 121, 291–297. [Google Scholar] [CrossRef]
- Silberbach, M.; Maier, B.; Zimmermann, M.; Büchs, J. Glucose oxidation by Gluconobacter oxydans: Characterization in shaking-flasks, scale-up and optimization of the pH profile. Appl. Microbiol. Biotechnol. 2003, 62, 92–98. [Google Scholar] [CrossRef] [PubMed]
- Im, P.; Han, J.H.; Kim, Y.C.; Lee, B.; Kim, M.Y.; Chang, Y.; Lee, Y. Effects of guar gum on quality of soft tofu stew sauce. J. Korean Soc. Food Sci. Nutr. 2015, 44, 442–448. [Google Scholar] [CrossRef]
- Chewaka, L.S.; Park, C.S.; Cha, Y.S.; Desta, K.T.; Park, B.R. Enzymatic Hydrolysis of Tenebrio molitor (Mealworm) Using Nuruk Extract Concentrate and an Evaluation of Its Nutritional, Functional, and Sensory Properties. Foods 2023, 12, 2188. [Google Scholar] [CrossRef] [PubMed]
- Nishidono, Y.; Tanaka, K. Structure Elucidation of New Kavalactone Dimers From Alpinia zerumbet Pericarps Using NMR Calculations. Magn. Reson. Chem. 2024, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Um, H.E.; Park, B.R.; Kim, Y.M.; Lee, B.H. Slow digestion properties of long-sized isomaltooligosaccharides synthesized by a transglucosidase from Thermoanaerobacter thermocopriae. Food Chem. 2023, 417, 135892. [Google Scholar] [CrossRef] [PubMed]
- Prust, C.; Hoffmeister, M.; Liesegang, H.; Wiezer, A.; Fricke, W.F.; Ehrenreich, A. Complete genome sequence of the acetic acid bacterium Gluconobacter oxydans. Nat. Biotechnol. 2005, 23, 195–200. [Google Scholar] [CrossRef] [PubMed]
- Adachi, O.; Matsushita, K.; Shinagawa, E.; Ameyama, M. Crystallization and characterization of NADP-dependent D-glucose dehydrogenase from Gluconobacter suboxydans. Agric. Biol. Chem. 1980, 44, 301–308. [Google Scholar] [CrossRef]
- De Ley, J.; Swings, J. The genus Gluconobacter. In Bergey’s Manual of Systematic Bacteriology; Williams & Wilkins: Philadelphia, PA, USA, 1984; pp. 267–278. [Google Scholar]
- Zarour, K.; Llamas, M.G.; Prieto, A.; Ruas-Madiedo, P.; Dueñas, M.T.; de Palencia, P.F.; Lopez, P. Rheology and bioactivity of high molecular weight dextrans synthesised by lactic acid bacteria. Carbohydr. Polym. 2017, 174, 646–657. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Li, H.; Zhang, Z.; Qi, X. Hydrodynamic properties of aqueous dextran solutions. J. Appl. Polym. Sci. 2009, 111, 1523–1529. [Google Scholar] [CrossRef]
- Sadahiro, J.; Mori, H.; Saburi, W.; Okuyama, M.; Kimura, A. Extracellular and cell-associated forms of Gluconobacter oxydans dextran dextrinase change their localization depending on the cell growth. Biochem. Biophys. Res. Commun. 2015, 456, 500–505. [Google Scholar] [CrossRef]
- Lang, W.; Kumagai, Y.; Sadahiro, J.; Saburi, W.; Sarnthima, R.; Tagami, T.; Kimura, A. A practical approach to producing isomaltomegalosaccharide using dextran dextrinase from Gluconobacter oxydans ATCC 11894. Appl. Microbiol. Biotechnol. 2022, 106, 689–698. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, M.; Unno, T.; Okadal, G. Simple purification and characterization of an extracellular dextrin dextranase from Acetobacter capsulatum ATCC 11894. J. Appl. Glycosci. 1999, 46, 469–473. [Google Scholar] [CrossRef]
- Cheetham, N.W.; Fiala-Beer, E.; Walker, G.J. Dextran structural details from high-field proton NMR spectroscopy. Carbohydr. Polym. 1990, 14, 149–158. [Google Scholar] [CrossRef]
- Lee, B.H.; Yan, L.; Phillips, R.J.; Reuhs, B.L.; Jones, K.; Rose, D.R.; Hamaker, B.R. Enzyme-synthesized highly branched maltodextrins have slow glucose generation at the mucosal α-glucosidase level and are slowly digestible in vivo. PLoS ONE. 2013, 8, e59745. [Google Scholar] [CrossRef]
- Zhang, G.; Hamaker, B.R. Slowly digestible starch: Concept, mechanism, and proposed extended glycemic index. Crit. Rev. Food Sci. Nutr. 2009, 49, 852–867. [Google Scholar] [CrossRef] [PubMed]
- Seo, J.M.; Lamothe, L.M.; Shin, H.; Austin, S.; Yoo, S.H.; Lee, B.H. Determination of glucose generation rate from various types of glycemic carbohydrates by mammalian glucosidases anchored in the small intestinal tissue. Int. J. Biol. Macromol. 2020, 154, 751–757. [Google Scholar] [CrossRef] [PubMed]
- Hofman, D.L.; Van Buul, V.J.; Brouns, F.J. Nutrition, health, and regulatory aspects of digestible maltodextrins. Crit. Rev. Food Sci. Nutr. 2016, 56, 2091–2100. [Google Scholar] [CrossRef] [PubMed]
- Ludwig, D.S. The glycemic index: Physiological mechanisms relating to obesity, diabetes, and cardiovascular disease. Jama 2002, 287, 2414–2423. [Google Scholar] [CrossRef] [PubMed]
- Ao, Z.; Simsek, S.; Zhang, G.; Venkatachalam, M.; Reuhs, B.L.; Hamaker, B.R. Starch with a slow digestion property produced by altering its chain length, branch density, and crystalline structure. J. Agric. Food chem. 2007, 55, 4540–4547. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Hamaker, B.R. Slowly digestible starch and health benefits. In Resistant Starch: Sources, Applications and Health Benefits; John Wiley & Sons: Hoboken, NJ, USA, 2013; pp. 111–130, Chapter 6. [Google Scholar]
Sample Abbreviation | Composition | Condition | ||||
---|---|---|---|---|---|---|
* Substrate Solution (g) | Media Volume (L) | RPM | pH | Time (h) | Aeration (vvm) | |
Jp-UC | 120 | 1.2 | 600 | Unadjusted | 72 | 0.5 |
Jp-4.5 | 4.5 | |||||
Jp-5.0 | 5.0 |
Sample | Apparent Viscosity (mPa∙s) |
---|---|
Media | 1.67 ± 0.028 d |
10% dextran solution | 4.25 ± 0.059 c |
20% dextran solution | 16.17 ± 0.123 b |
Jp-UC | 15.20 ± 0.407 b |
Jp-4.5 | 30.99 ± 1.259 a |
Jp-5.0 | 2.39 ± 0.349 d |
Sample | MW (1) | Mp (2) | DP (3) |
---|---|---|---|
MD | 5636 | 1284 | 8 |
Dextran | 41,559 | 34,780 | 215 |
Jp-UC | 28,669 | 1512 | 9 |
Jp-4.5 | 88,286 | 44,267 | 273 |
Jp-5.0 | 46,577 | 50,722 | 313 |
Samples | Glycosidic Linkage Ratio | |
---|---|---|
α-(1→4) | α-(1→6) | |
Jp-UC | 1.00 | 1.84 ± 0 b |
Jp-4.5 | 1.00 | 2.84 ± 0.02 a |
Jp-5.0 | 1.00 | 0.17 ± 0.01 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baek, S.-M.; Park, B.-R.; Chewaka, L.S.; So, Y.-S.; Jung, J.-H.; Lee, S.; Park, J.Y. Synthesis and Physico-Chemical Analysis of Dextran from Maltodextrin via pH Controlled Fermentation by Gluconobacter oxydans. Foods 2025, 14, 85. https://doi.org/10.3390/foods14010085
Baek S-M, Park B-R, Chewaka LS, So Y-S, Jung J-H, Lee S, Park JY. Synthesis and Physico-Chemical Analysis of Dextran from Maltodextrin via pH Controlled Fermentation by Gluconobacter oxydans. Foods. 2025; 14(1):85. https://doi.org/10.3390/foods14010085
Chicago/Turabian StyleBaek, Seung-Min, Bo-Ram Park, Legesse Shiferaw Chewaka, Yun-Sang So, Ji-Hye Jung, Seul Lee, and Ji Young Park. 2025. "Synthesis and Physico-Chemical Analysis of Dextran from Maltodextrin via pH Controlled Fermentation by Gluconobacter oxydans" Foods 14, no. 1: 85. https://doi.org/10.3390/foods14010085
APA StyleBaek, S. -M., Park, B. -R., Chewaka, L. S., So, Y. -S., Jung, J. -H., Lee, S., & Park, J. Y. (2025). Synthesis and Physico-Chemical Analysis of Dextran from Maltodextrin via pH Controlled Fermentation by Gluconobacter oxydans. Foods, 14(1), 85. https://doi.org/10.3390/foods14010085