Preparation and Mechanism Analysis of Boiling Resistance of the Fresh Alum-Free Sweet Potato Vermicelli Containing Gliadin Fractions
<p>The light micrograph of different SPV. (<b>a</b>) SPV with shortest boiling break time (swollen at 40 °C for 2 h); (<b>b</b>) SPV with longest boiling break time (swollen at 50 °C for 5 h); (<b>c</b>) SPV for control 1 (stirred at 70 °C for 40 min); (<b>d</b>) SPV for control 1 + ω-gliadin; (<b>e</b>) SPV for control 2 (stirred at 40 °C for 60 min); (<b>f</b>) SPV for control 2 + αβγ-gliadin; (<b>g</b>) SPV with both gliadin fractions (shortest boiling break time); (<b>h</b>) SPV with both gliadin fractions (longest boiling break time); (<b>i</b>) ω-gliadin; (<b>j</b>) αβγ-gliadin.</p> "> Figure 2
<p>FTIR spectra of different SPV samples. Note: the sample labeling is the same as in <a href="#foods-14-00081-f001" class="html-fig">Figure 1</a>. (<b>a</b>) SPV with shortest boiling break time (swollen at 40 °C for 2 h); (<b>b</b>) SPV with longest boiling break time (swollen at 50 °C for 5 h); (<b>c</b>) SPV for control 1 (stirred at 70 °C for 40 min); (<b>d</b>) SPV for control 1 + ω-gliadin; (<b>e</b>) SPV for control 2 (stirred at 40 °C for 60 min); (<b>f</b>) SPV for control 2 + αβγ-gliadin; (<b>g</b>) SPV with both gliadin fractions (shortest boiling break time); (<b>h</b>) SPV with both gliadin fractions (longest boiling break time); (<b>i</b>) ω-gliadin; (<b>j</b>) αβγ-gliadin.</p> "> Figure 3
<p>The <span class="html-italic"><sup>13</sup>C</span> solid-state NMR spectra of different SPV. Note: Sample labeling is the same as in <a href="#foods-14-00081-f001" class="html-fig">Figure 1</a>. (<b>a</b>) SPV with shortest boiling break time (swollen at 40 °C for 2 h); (<b>b</b>) SPV with longest boiling break time (swollen at 50 °C for 5 h); (<b>c</b>) SPV for control 1 (stirred at 70 °C for 40 min); (<b>d</b>) SPV for control 1 + ω-gliadin; (<b>e</b>) SPV for control 2 (stirred at 40 °C for 60 min); (<b>f</b>) SPV for control 2 + αβγ-gliadin; (<b>g</b>) SPV with both gliadin fractions (shortest boiling break time); (<b>h</b>) SPV with both gliadin fractions (longest boiling break time); (<b>i</b>) ω-gliadin; (<b>j</b>) αβγ-gliadin.</p> "> Figure 4
<p>The X-ray diffraction of different SPV samples. Note: sample labeling is the same as in <a href="#foods-14-00081-f001" class="html-fig">Figure 1</a>. (<b>a</b>) SPV with shortest boiling break time (swollen at 40 °C for 2 h); (<b>b</b>) SPV with longest boiling break time (swollen at 50 °C for 5 h); (<b>c</b>) SPV for control 1 (stirred at 70 °C for 40 min); (<b>d</b>) SPV for control 1 + ω-gliadin; (<b>e</b>) SPV for control 2 (stirred at 40 °C for 60 min); (<b>f</b>) SPV for control 2 + αβγ-gliadin; (<b>g</b>) SPV with both gliadin fractions (shortest boiling break time); (<b>h</b>) SPV with both gliadin fractions (longest boiling break time); (<b>i</b>) ω-gliadin; (<b>j</b>) αβγ-gliadin.</p> "> Figure 5
<p>A schematic diagram of the interaction between gliadin fractions and sweet potato starches in vermicelli.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. The Processing Technology of Vermicelli
2.2.1. Pre-Treatment of Sweet Potato Starch for Vermicelli Thickening
2.2.2. Preparation and Determination of Cooking Break Time of Vermicelli
2.2.3. Preparation of Gliadin Fractions
2.2.4. The Effects of Swollen Temperature and Time on Cooking Break Time of SPV
2.2.5. The Effect of Adding Gliadin 1, Gliadin 3 or a Combination of Both on the Cooking Break Time of SPV
2.2.6. The Effects of Cold Storage on the Retrogradation Rate of SPV Containing Gliadin Fractions
2.3. Light Microscopy
2.4. FTIR Spectroscopy
2.5. Determination of 13C Solid-State NMR Spectroscopy
2.6. Determination of X-Ray Powder Diffraction (XRD)
2.7. Determination of Differential Scanning Calorimetry (DSC)
2.8. Statistical Analysis
3. Results and Discussion
3.1. Effect of Swelling Temperature and Time on the Resistance of Vermicelli to Boiling
3.2. The Effects of Adding Gliadin Fractions on SPV Cooking Time
3.3. The Optical Micrographs of Samples with Different Boiling Break Time of SPV
3.4. FT-IR Spectra of Samples with Different Boiling Break Time of SPV
3.5. The 13C Solid-State NMR Spectra of Samples with Different Boiling Break Time of SPV
3.6. X-Ray Diffraction of Samples with Different Boiling Break Time of SPV
3.7. A Schematic Diagram of Gliadin Fractions Addition on the Increase of Boiling Break Time of SPV
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jiang, R.X.; Yang, L.; Lian, X.J.; Wang, X.Q.; Kang, H.Q. Analysis of alum content and boiling resistance of 7 different vermicelli brands. Food Qual. Saf. 2019, 10, 6780–6787. [Google Scholar]
- Li, Z.; Zhang, Y.; Ai, Z.; Fan, H.; Wang, N.; Suo, B. Effect of potassium alum addition on the quality of potato starch noodles. J. Food Sci. Technol. 2019, 56, 2932–2939. [Google Scholar] [CrossRef]
- Kandimalla, R.; Vallamkondu, J.; Corgiat, E.B.; Gill, K.D. Understanding aspects of Aluminum exposure in a lzheimer’s disease development. Brain Pathol. 2016, 26, 139–154. [Google Scholar] [CrossRef] [PubMed]
- Vignal, C.; Desreumaux, P.; Body-Malapel, M. Gut: An underestimated target organ for Aluminum. Morphologie 2016, 100, 75–84. [Google Scholar] [CrossRef]
- Gull, A.; Prasad, K.; Kumar, P. Effect of millet flours and carrot pomace on cooking qualities, color and texture of developed pasta. LWT-Food Sci. Technol. 2015, 63, 470–474. [Google Scholar] [CrossRef]
- Feng, Y.Y.; Mu, T.H.; Zhang, M.; Ma, M.M. Effects of different polysaccharides and proteins on dough rheological properties, texture, structure and in vitro starch digestibility of wet sweet potato vermicelli. Int. J. Biol. Macromol. 2020, 148, 1–10. [Google Scholar] [CrossRef]
- Feng, Y.Y.; Mu, T.H.; Zhang, M.; Ma, M.M. Effects of ionic polysaccharides and egg white protein complex formulations on dough rheological properties, structure formation and in vitro starch digestibility of wet sweet potato vermicelli. Int. J. Biol. Macromol. 2020, 149, 1170–1179. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Wen, Y.; Wang, D.; Lian, X.; Guo, J.; Zhao, Z.; Deng, J. Effects of ɑβ+ ω1, 2-gliadin and ω5-gliadin on retrogradation of wheat amylose/amylopectin. Starch-Stärke 2021, 73, 2100001. [Google Scholar] [CrossRef]
- Wieser, H.; Koehler, P.; Scherf, K.A. Chemistry of wheat gluten proteins: Quantitative composition. Cereal Chem. 2023, 100, 36–55. [Google Scholar] [CrossRef]
- Chaudhary, N.; Virdi, A.S.; Dangi, P.; Khatkar, B.S.; Mohanty, A.K.; Singh, N. Protein, thermal and functional properties of α-, γ-and ω-gliadins of wheat and their effect on bread making characteristics. Food Hydrocoll. 2022, 124, 107212. [Google Scholar] [CrossRef]
- He, Z.; Wang, H.; Lian, X. Isolation and characterization of four protein components of gluten by conventional methods. J. Food Compos. Anal. 2024, 131, 106271. [Google Scholar] [CrossRef]
- He, Z.; Wang, D.; Lian, X.; Guo, J.; Zhu, W. The anti-retrogradation properties of maize amylopectin treated by being co-crystallized with NaCl. Int. J. Biol. Macromol. 2022, 219, 508–518. [Google Scholar] [CrossRef]
- Yazar, G.; Duvarci, O.C.; Tavman, S.; Kokini, J.L. LAOS behavior of the two main gluten fractions: Gliadin and glutenin. J. Cereal Sci. 2017, 77, 201–210. [Google Scholar] [CrossRef]
- Guo, J.; Yang, L.; Wang, D.; Lian, X.; Liu, C. Research on the influences of two alcohol soluble glutenins on the retrogradation of wheat amylopectin/amylose. Int. J. Biol. Macromol. 2021, 183, 463–472. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Wang, D.; Zhang, L.; Lian, X. Study on the mechanism of structure modification of amylopectin co-crystalized by sodium chloride to promote disulfide bond formation of alkali-soluble glutenin. Food Hydrocoll. 2024, 146, 109229. [Google Scholar] [CrossRef]
- Zhu, J.; Li, L.Q.; Zhao, L.Y.; Song, L.J.; Li, X.J. Effects of freeze-thaw cycles on the structural and thermal properties of wheat gluten with variations in the high molecular weight glutenin subunit at the Glu-B1 locus. J. Cereal Sci. 2019, 87, 266–272. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhao, J.; Guo, J.; Lian, X.; Wang, H. Effects of amylopectins from five different sources on disulfide bond formation in alkali-soluble glutenin. Foods 2023, 12, 414. [Google Scholar] [CrossRef] [PubMed]
- Allan, M.C.; Read, Q.D.; Johanningsmeier, S.D. Impact of sweetpotato starch structures, thermal properties, and granules sizes on sweet potato fry textures. Food Hydrocoll. 2023, 137, 108377. [Google Scholar] [CrossRef]
- Shariffa, Y.N.; Karim, A.A.; Fazilah, A.; Zaidul, I.S.M. Enzymatic hydrolysis of granular native and mildly heat-treated tapioca and sweet potato starches at sub-gelatinization temperature. Food Hydrocoll. 2009, 23, 434–440. [Google Scholar] [CrossRef]
- Wang, P.; Jin, Z.; Xu, X. Physicochemical alterations of wheat gluten proteins upon dough formation and frozen storage–A review from gluten, glutenin and gliadin perspectives. Trends Food Sci. Technol. 2015, 46, 189–198. [Google Scholar] [CrossRef]
- Wang, P.; Zou, M.; Liu, K.; Gu, Z.; Yang, R. Effect of mild thermal treatment on the polymerization behavior, conformation and viscoelasticity of wheat gliadin. Food Chem. 2018, 239, 984–992. [Google Scholar] [CrossRef] [PubMed]
- Khan, N.A.; Niazi, M.B.K.; Sher, F.; Jahan, Z.; Noor, T.; Azhar, O.; Rashid, T.; Iqbal, N. Metal organic frameworks derived sustainable polyvinyl alcohol/starch nanocomposite films as robust materials for packaging applications. Polymers 2021, 13, 2307. [Google Scholar] [CrossRef]
- Kumar, L.; Brennan, M.; Brennan, C.; Zheng, H. Influence of whey protein isolate on pasting, thermal, and structural characteristics of oat starch. J. Cereal Sci. 2022, 105, 56–71. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Cano, A.; Mendoza-Báez, R.; Zenteno-Mateo, B.; Rodríguez-Mora, J.I.; Agustín-Serrano, R.; Morales, M.A. Study by DFT of the functionalization of amylose/amylopectin with glycerin monoacetate: Characterization by FTIR, electronic and adsorption properties. J. Mol. Struct. 2022, 1269, 133761. [Google Scholar] [CrossRef]
- Lu, H.; Ma, R.; Chang, R.; Tian, Y. Evaluation of starch retrogradation by infrared spectroscopy. Food Hydrocoll. 2021, 120, 106975. [Google Scholar] [CrossRef]
- Gao, S.; Zhai, X.; Cheng, Y.; Zhang, R.; Wang, W.; Hou, H. Starch/pbat blown antimicrobial films based on the synergistic effects of two commercial antimicrobial peptides. Int. J. Biol. Macromol. 2022, 204, 457–465. [Google Scholar] [CrossRef]
- Yong, H.; Wang, X.; Sun, J.; Fang, Y.; Liu, J.; Jin, C. Comparison of the structural characterization and physicochemical properties of starches from seven purple sweet potato varieties cultivated in China. Int. J. Biol. Macromol. 2018, 120, 1632–1638. [Google Scholar] [CrossRef]
Swelling Temperature/°C | Swelling Time/h | ||||
---|---|---|---|---|---|
2 | 3 | 4 | 5 | 6 | |
30 (poor formability) | 3.83 ± 0.10 | 4.65 ± 0.18 | 3.94 ± 0.02 | 4.13 ± 0.04 | 4.58 ± 0.04 |
35 (poor formability) | 4.65 ± 0.13 | 7.77 ± 0.22 | 8.20 ± 0.15 | 7.29 ± 0.39 | 10.89 ± 0.14 |
40 | 6.85 ± 0.17 | 9.33 ± 0.05 | 10.22 ± 0.13 | 9.23 ± 0.13 | 11.73 ± 0.38 |
50 | 11.67 ± 0.03 ** | 11.88 ± 0.05 ** | 12.53 ± 0.35 * | 15.84 ± 0.34 ** | 15.13 ± 0.30 * |
60 | 9.27 ± 0.05 ** | 9.01 ± 0.13 | 10.63 ± 0.26 | 12.06 ± 0.49 * | 10.54 ± 0.24 |
ω-Gliadin Addition/% | Mixing Temperature/°C | Mixing Time/min | ||
---|---|---|---|---|
20 | 40 | 60 | ||
0 | 30 | 16.54 ± 0.54 | 15.77 ± 0.13 | 17.35 ± 0.02 |
40 | 18.65 ± 0.03 * | 18.64 ± 0.13 * | 18.55 ± 0.20 * | |
50 | 18.89 ± 0.26 * | 18.45 ± 0.03 * | 18.36 ± 0.18 * | |
60 | 18.00 ± 0.22 * | 18.51 ± 0.03 * | 18.55 ± 0.03 * | |
70 | 17.53 ± 0.08 * | 17.78 ± 0.13 * | 17.52 ± 0.02 * | |
0.1 | 30 | 21.44 ± 0.34 ** | 22.30 ± 0.57 * | 24.35 ± 0.40 ** |
40 | 23.92 ± 0.47 ** | 22.33 ± 0.03 ** | 21.54 ± 0.16 ** | |
50 | 23.16 ± 0.03 ** | 24.6 ± 0.28 ** | 22.50 ± 0.33 ** | |
60 | 21.09 ± 0.59 * | 21.37 ± 0.25 ** | 23.10 ± 0.22 ** | |
70 | 24.58 ± 0.20 ** | 25.00 ± 0.42 ** | 23.20 ± 0.42 ** | |
0.5 | 30 | 20.42 ± 0.15 ** | 20.86 ± 0.18 ** | 22.18 ± 0.28 ** |
40 | 20.63 ± 0.10 ** | 20.91 ± 0.34 ** | 20.63 ± 0.26 ** | |
50 | 22.39 ± 0.28 ** | 21.11 ± 0.18 ** | 22.03 ± 0.62 * | |
60 | 22.17 ± 0.12 ** | 21.87 ± 0.10 ** | 20.05 ± 0.27 * | |
70 | 19.60 ± 0.05 ** | 20.23 ± 0.17 ** | 19.85 ± 0.17 ** | |
0.8 | 30 | 23.10 ± 0.22 ** | 23.37 ± 0.23 ** | 24.43 ± 0.12 ** |
40 | 23.02 ± 0.60 ** | 22.78 ± 0.09 ** | 20.88 ± 0.86 * | |
50 | 22.82 ± 0.30 ** | 21.64 ± 0.04 ** | 22.45 ± 0.27 ** | |
60 | 20.49 ± 0.28 ** | 20.75 ± 0.20 ** | 20.86 ± 0.24 ** | |
70 | 21.83 ± 0.18 ** | 21.34 ± 0.13 ** | 20.44 ± 0.16 ** | |
1 | 30 | 18.96 ± 0.21 * | 20.05 ± 0.35 * | 22.11 ± 0.28 ** |
40 | 22.44 ± 0.24 ** | 22.71 ± 0.24 ** | 22.22 ± 0.02 ** | |
50 | 19.54 ± 0.16 * | 20.70 ± 0.12 ** | 20.59 ± 0.28 ** | |
60 | 20.53 ± 0.34 * | 20.67 ± 0.15 ** | 21.89 ± 0.26 ** | |
70 | 19.64 ± 0.06 ** | 19.01 ± 0.29 * | 18.50 ± 0.15 * |
αβγ-Gliadin Addition/% | Mixing Temperature/°C | Mixing Time/min | ||
---|---|---|---|---|
20 | 40 | 60 | ||
0.5 | 30 | 22.85 ± 0.13 ** | 23.18 ± 0.04 ** | 22.12 ± 0.35 ** |
40 | 24.68 ± 0.80 ** | 22.63 ± 0.58 ** | 26.49 ± 0.23 ** | |
50 | 23.18 ± 0.20 ** | 25.90 ± 0.43 ** | 22.10 ± 0.23 ** | |
60 | 21.64 ± 0.44 ** | 23.56 ± 0.19 ** | 25.47 ± 0.57 ** | |
70 | 24.26 ± 0.16 ** | 24.66 ± 0.06 ** | 24.85 ± 0.42 ** | |
1.0 | 30 | 27.23 ± 0.28 ** | 27.43 ± 0.12 ** | 28.83 ± 0.39 ** |
40 | 27.98 ± 0.36 ** | 26.09 ± 0.17 ** | 24.78 ± 0.44 ** | |
50 | 23.65 ± 0.32 ** | 27.05 ± 0.17 ** | 26.59 ± 0.03 ** | |
60 | 26.54 ± 0.38 ** | 25.88 ± 0.13 ** | 25.58 ± 0.07 ** | |
70 | 23.32 ± 0.45 ** | 22.45 ± 0.20 ** | 23.79 ± 0.34 ** | |
2.0 | 30 | 26.63 ± 0.27 ** | 27.44 ± 0.21 ** | 27.03 ± 0.32 ** |
40 | 26.63 ± 0.31 ** | 26.72 ± 0.13 ** | 29.53 ± 0.18 ** | |
50 | 27.80 ± 0.37 ** | 26.04 ± 0.33 ** | 25.18 ± 0.34 ** | |
60 | 25.30 ± 0.12 ** | 26.37 ± 0.47 ** | 25.16 ± 0.34 ** | |
70 | 26.65 ± 0.13 ** | 27.43 ± 0.07 ** | 26.19 ± 0.32 ** | |
4.0 | 30 | 28.16 ± 0.01 ** | 28.31 ± 0.34 ** | 26.57 ± 0.17 ** |
40 | 26.56 ± 0.36 ** | 25.38 ± 0.16 ** | 25.78 ± 0.09 ** | |
50 | 25.55 ± 0.03 ** | 25.93 ± 0.06 ** | 24.04 ± 0.28 ** | |
60 | 24.97 ± 0.35 ** | 23.71 ± 0.01 ** | 24.73 ± 0.13 ** | |
70 | 25.13 ± 0.32 ** | 25.73 ± 0.19 ** | 24.83 ± 0.13 ** |
ω + αβγ-Gliadin Addition/% | Mixing Temperature/°C | Mixing Time/min | ||
---|---|---|---|---|
20 | 40 | 60 | ||
0.5 | 30 | 22.83 ± 0.20 ** | 23.28 ± 0.23 ** | 22.95 ± 0.25 ** |
40 | 21.58 ± 0.10 ** | 21.85 ± 0.15 ** | 21.61 ± 0.06 ** | |
50 | 21.77 ± 0.12 ** | 22.21 ± 0.29 ** | 21.33 ± 0.13 ** | |
60 | 22.45 ± 0.10 ** | 23.03 ± 0.28 ** | 21.31 ± 0.18 ** | |
70 | 24.11 ± 0.31 ** | 23.83 ± 0.18 ** | 25.38 ± 0.27 ** | |
1.0 | 30 | 20.30 ± 0.07 ** | 24.98 ± 0.22 ** | 24.43 ± 0.11 ** |
40 | 20.25 ± 0.13 ** | 21.40 ± 0.22 ** | 23.07 ± 0.27 ** | |
50 | 23.41 ± 0.09 ** | 24.73 ± 0.56 ** | 27.08 ± 0.13 ** | |
60 | 22.82 ± 0.22 ** | 26.99 ± 0.23 ** | 26.38 ± 0.47 ** | |
70 | 21.92 ± 0.37 ** | 22.28 ± 0.33 ** | 22.33 ± 0.38 ** | |
2.0 | 30 | 24.52 ± 0.00 ** | 22.12 ± 0.28 ** | 23.07 ± 0.10 ** |
40 | 22.61 ± 0.14 ** | 22.14 ± 0.28 ** | 22.00 ± 0.08 ** | |
50 | 21.25 ± 0.15 ** | 21.06 ± 0.07 ** | 21.73 ± 0.24 ** | |
60 | 25.52 ± 0.22 ** | 32.89 ± 0.66 ** | 29.77 ± 0.60 ** | |
70 | 34.31 ± 0.21 ** | 32.25 ± 0.10 ** | 28.53 ± 0.14 ** | |
4.0 | 30 | 24.43 ± 0.18 ** | 24.15 ± 0.03 ** | 27.52 ± 0.22 ** |
40 | 23.20 ± 0.17 ** | 20.30 ± 0.47 * | 24.90 ± 0.47 ** | |
50 | 24.01 ± 0.18 ** | 25.44 ± 0.13 ** | 30.68 ± 0.27 ** | |
60 | 23.72 ± 0.20 ** | 21.43 ± 0.20 ** | 20.56 ± 0.49 * | |
70 | 32.71 ± 0.13 ** | 21.55 ± 0.20 ** | 21.73 ± 0.05 ** |
Cooking Time/min | Storage Time/d | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
Swelling vermicelli 1 | 5.0 ± 0.3 | 10.9 ± 0.2 * | 13.7 ± 0.3 | 12.8 ± 1.1 * | 24.1 ± 1.3 * | 23.3 ± 0.4 | 23.8 ± 2.3 | 24.6 ± 0.1 | 25.6 ± 2.1 | 19.5 ± 1.0 * |
Swelling vermicelli 2 | 8.7 ± 0.5 | 8.9 ± 3.7 | 10.6 ± 4.2 | 19.2 ± 1.4 * | 34.0 ± 0.7 | 29.0 ± 1.7 | 34.2 ± 1.7 | 34.3 ± 0.9 | 33.9 ± 0.6 * | 23.7 ± 0.8 ** |
Control 1 | 7.2 ± 0.2 | 24.2 ± 1.6 | 27.7 ± 0.8 | 27.7 ± 3.8 | 22.7 ± 1.5 | 30.0 ± 0.6 | 27.7 ± 0.0 | 33.6 ± 0.8 | 30.1 ± 0.4 | 30.6 ± 0.3 ** |
ω-gliadin vermicelli | 4.3 ± 0.2 | 10.1 ± 0.0 * | 13.3 ± 0.3 | 16.2 ± 0.9 * | 25.1 ± 1.2 | 26.9 ± 1.6 | 25.8 ± 1.0 | 29.6 ± 0.6 | 34.3 ± 0.9 | 33.9 ± 0.6 ** |
Control 2 | 13.7 ± 0.3 * | 18.7 ± 1.5 | 33.0 ± 1.6 | 38.6 ± 0.8 | 39.5 ± 1.1 | 32.9 ± 0.5 | 22.3 ± 4.98 | 26.6 ± 0.8 * | 35.9 ± 0.7 | 36.8 ± 0.6 ** |
αβγ-gliadin vermicelli | 9.7 ± 1.0 | 17.4 ± 0.2 * | 15.6 ± 5.1 | 25.9 ± 0.8 | 27.6 ± 0.6 | 26.6 ± 0.6 * | 30.3 ± 0.1 * | 32.3 ± 0.1 | 32.6 ± 0.3 | 30.8 ± 0.3 ** |
Composited gliadin vermicelli 1 | 10.7 ± 0.6 | 13.7 ± 0.4 | 19.8 ± 1.8 * | 37.9 ± 0.5 | 40.6 ± 0.6 | 38.8 ± 1.7 | 39.3 ± 1.3 | 37.8 ± 0.4 | 35.9 ± 0.4 | 32.2 ± 1.0 * |
Composited gliadin vermicelli 2 | 15.2 ± 1.8 | 24.5 ± 0.7 | 24.5 ± 1.7 | 27.2 ± 0.4 | 28.4 ± 0.7 | 30.8 ± 1.2 | 27.0 ± 0.0 * | 30.2 ± 0.6 | 28.6 ± 1.3 | 32.2 ± 1.2 |
Samples | Thermal Properties | Secondary Structure | |||||
---|---|---|---|---|---|---|---|
Tp1 | ΔH1 | α-Helix Content | Intermolecular β-Sheet Content | Intra-Molecular Aggregation Extended β-Sheet Content | β-Turn Content | Random Coils Content | |
Swelling vermicelli 1 | 99.72 ± 0.41 | 258.43 ± 1.45 | |||||
Swelling vermicelli 2 | 100.05 ± 0.25 | 254.67 ± 0.69 | |||||
Control 1 | 100.59 ± 0.57 | 232.7 ± 2.80 | |||||
ω-gliadin vermicelli | 98.07 ± 0.07 | 260.82 ± 1.03 * | 39.54 | 3.85 | 15.17 | 25.77 | 15.67 |
Control 2 | 100.27 ± 0.03 | 240.78 ± 0.50 | |||||
αβγ-gliadin vermicelli | 98.95 ± 0.01 ** | 268.79 ± 0.22 ** | 0 | 53.71 | 46.29 | 0 | 0 |
Composited gliadin vermicelli 1 | 98.72 ± 0.10 | 269.59 ± 6.98 | 0 | 52.41 | 47.59 | 0 | 0 |
Composited gliadin vermicelli 2 | 97.72 ± 0.17 | 285.44 ± 3.18 | 0.30 | 46.07 | 50.93 | 1.66 | 1.04 |
ω-gliadin | 93.29 ± 0.42 | 142.35 ± 0.01 | 0.28 | 22.45 | 63.36 | 12.08 | 1.83 |
αβγ-gliadin | 89.51 ± 0.16 * | 137.36 ± 0.83 * | 2.40 | 23.25 | 61.45 | 12.90 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, T.; Men, Z.; Lai, C.; Lian, X. Preparation and Mechanism Analysis of Boiling Resistance of the Fresh Alum-Free Sweet Potato Vermicelli Containing Gliadin Fractions. Foods 2025, 14, 81. https://doi.org/10.3390/foods14010081
Liu T, Men Z, Lai C, Lian X. Preparation and Mechanism Analysis of Boiling Resistance of the Fresh Alum-Free Sweet Potato Vermicelli Containing Gliadin Fractions. Foods. 2025; 14(1):81. https://doi.org/10.3390/foods14010081
Chicago/Turabian StyleLiu, Tingting, Zhifang Men, Changjiangsheng Lai, and Xijun Lian. 2025. "Preparation and Mechanism Analysis of Boiling Resistance of the Fresh Alum-Free Sweet Potato Vermicelli Containing Gliadin Fractions" Foods 14, no. 1: 81. https://doi.org/10.3390/foods14010081
APA StyleLiu, T., Men, Z., Lai, C., & Lian, X. (2025). Preparation and Mechanism Analysis of Boiling Resistance of the Fresh Alum-Free Sweet Potato Vermicelli Containing Gliadin Fractions. Foods, 14(1), 81. https://doi.org/10.3390/foods14010081