Recent Advances in the Mechanisms of Quality Degradation and Control Technologies for Peanut Butter: A Literature Review
<p>Countries with high consumption of peanut butter worldwide. Source: the figure was drawn using BioRender (<a href="https://www.biorender.com/" target="_blank">https://www.biorender.com/</a>).</p> "> Figure 2
<p>Peanut grease layering (a phenomenon that occurs when oil and sauce are separated) (photo by Xinyan Liu). Source: the figure was drawn using BioRender.</p> "> Figure 3
<p>Fat oxidation reaction processes. Source: the figure was drawn using BioRender.</p> "> Figure 4
<p>Lipid oxidation, Maillard reaction, and microbial contamination—interactions. Source: the figure was drawn using BioRender.</p> "> Figure 5
<p>Interaction of peanut butter ingredients. Source: the figure was drawn using BioRender.</p> "> Figure 6
<p>Protein nanoparticle preparation method and the role of plant protein nanoparticles. Source: the figure was drawn using BioRender.</p> "> Figure 7
<p>Diversified use of peanut butter in the diet. Source: the figure was drawn using BioRender.</p> ">
Abstract
:1. Introduction
2. Peanut Butter Quality and Its Challenges
2.1. Food Quality
2.1.1. Color
2.1.2. Flavoring Substance
2.1.3. Texture
2.2. Physical and Chemical Quality
2.3. Nutrient Composition
2.3.1. Protein Composition
2.3.2. Fat Composition
2.3.3. Composition of Polysaccharides and Other Nutritionally Relevant Ingredients
3. Mechanisms of Quality Deterioration in Peanut Butter
3.1. Sensory Deterioration
3.2. Physical and Chemical Deterioration
3.3. Microbial Contamination
3.4. Lipid Oxidation, Maillard Reaction, and Microbial Contamination—Interactions
4. Techniques for Controlling Quality Deterioration
4.1. Screening and Processing of Raw Materials
4.2. Process Technology Processes
4.2.1. Influence of the Roasting Process on Flavor Composition
4.2.2. Influence of the Grinding Process on Stability
5. Food Additive Incorporation Process—Preparation and Application of Plant-Based Protein Nanoparticles
5.1. Anti-Solvent Method
5.2. Heat Treatment
5.3. Ultrasonic Method
6. Diversified Use of Peanut Butter in the Diet
6.1. Improvement of Sleep Problems
6.2. Replenish the Body’s Energy
6.3. Preventing Peanut Allergies
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bonku, R.; Yu, J. Health aspects of peanuts as an outcome of its chemical composition. Food Sci. Hum. Wellness 2020, 9, 21–30. [Google Scholar] [CrossRef]
- United States Department of Agriculture (USDA). World Agricultural Supply and Demand Estimates (WASDE). 2024. Available online: https://fas.usda.gov/data/wasde (accessed on 13 December 2024).
- Fletcher, S.M.; Shi, Z. Chapter 10—An Overview of World Peanut Markets. In Peanuts; Stalker, H.T., Wilson, R.F., Eds.; AOCS Press: Champaign, IL, USA, 2016. [Google Scholar] [CrossRef]
- Pidatala, P.K.; Bellmer, D.; McGlynn, W. Oxidative Stability of a New Peanut Butter Bite Product. Int. J. Food Sci. 2021, 2021, 5528315. [Google Scholar] [CrossRef]
- Ana, G.; Liu, H.; Liu, L.; Shi, A.; Wang, Q. Recent process in peanut butter preparation, quality analysis and safety evaluation. Food Sci. China 2015, 36, 272–275. [Google Scholar]
- Spence, C. 2—The Psychological Effects of Food Colors. In Handbook on Natural Pigments in Food and Beverages; Woodhead Publishing: Cambridge, UK, 2016; pp. 29–58. [Google Scholar] [CrossRef]
- Murley, T.; Chambers, E. The Influence of Colorants, Flavorants and Product Identity on Perceptions of Naturalness. Foods 2019, 8, 317. [Google Scholar] [CrossRef] [PubMed]
- Spence, C. On the relationship(s) between color and taste/flavor. Exp. Psychol. 2019, 66, 99–111. [Google Scholar] [CrossRef]
- Muniz, V.; Ribeiro, I.; Beckman, K.; Godoy, R. The Impact of Color on Food Choice. Braz. J. Food Technol. 2023, 26, e08822. [Google Scholar] [CrossRef]
- Mohd Rozalli, N.H.; Chin, N.L.; Yusof, Y.A.; Mahyudin, N. Quality changes of stabilizer-free natural peanut butter during storage. J. Food Sci. Technol. 2016, 53, 694–702. [Google Scholar] [CrossRef] [PubMed]
- Neta, E.R.; Sanders, T.; Drake, M.A. Understanding Peanut Flavor: A Current Review. In Handbook of Fruit and Vegetable Flavors; Wiley: Hoboken, NJ, USA, 2010. [Google Scholar] [CrossRef]
- Dhamsaniya, N.K.; Patel, N.C.; Dabhi, M.N. Selection of groundnut variety for making a good quality peanut butter. J. Food Sci. Technol. 2012, 49, 115–118. [Google Scholar] [CrossRef]
- Lu, J.I.N.; Zhang, L.; Sun, Q.; Zhang, L.; Wei, S.; Sun, X.; Huang, J.; Zang, X. Suitability Evaluation of Different Peanut Varieties for Peanut Butter Processing. Food Sci. Technol. 2023, 48, 187–196. [Google Scholar] [CrossRef]
- Dikkala, P.K.; Kaur, A.; Kaur, K.; Sardana, V.; Kakarlapudi, J.; Burla, S.V.S.; Inbaraj, B.S.; Sridhar, K. Valorization of Peanut Skin: Development of Functional Skin-on Peanut Butter and Quality Characteristics. Waste Biomass Valorization 2024, 15, 5719–5728. [Google Scholar] [CrossRef]
- Sanders, C.T., III; DeMasie, C.L.; Kerr, W.L.; Hargrove, J.L.; Pegg, R.B.; Swanson, R.B. Peanut skins-fortified peanut butters: Effects on consumer acceptability and quality characteristics. LWT-Food Sci. Technol. 2014, 59, 222–228. [Google Scholar] [CrossRef]
- Dean, L.L.; Campbell, R.A.; Stoner-Harris, T.; Hung, Y.C.; Hendrix, K.W.; Adhikari, K. Profiling seventeen cultivars of roasted peanuts by descriptive sensory and flavor volatile analyses. Meas. Food 2023, 11, 100105. [Google Scholar] [CrossRef]
- Su, G.; Zheng, L.; Cui, C.; Yang, B.; Ren, J.; Zhao, M. Characterization of antioxidant activity and volatile compounds of Maillard reaction products derived from different peptide fractions of peanut hydrolysate. Food Res. Int. 2011, 44, 3250–3258. [Google Scholar] [CrossRef]
- Ma, X.; Li, W.; Zhang, H.; Lu, P.; Chen, P.; Chen, L.; Qu, C. Influence of Nitrogen-Modified Atmosphere Storage on Lipid Oxidation of Peanuts: From a Lipidomic Perspective. Foods 2024, 13, 277. [Google Scholar] [CrossRef]
- Rao, H.; Chen, C.; Tian, Y.; Li, Y.; Gao, Y.; Tao, S.; Xue, W. Germination results in reduced allergenicity of peanut by degradation of allergens and resveratrol enrichment. Innov. Food Sci. Emerg. Technol. 2018, 50, 188–195. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, H.; Liu, H.; Wang, Q. Recent Advances for the Developing of Instant Flavor Peanut Powder: Generation and Challenges. Foods 2022, 11, 1544. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Chen, H.; Sun, B. Recent progress in food flavor analysis using gas chromatography-ion mobility spectrometry (GC-IMS). Food Chem. 2020, 315, 126158. [Google Scholar] [CrossRef] [PubMed]
- Dattatreya, B.S.; Kamath, A.; Bhat, K.K. Developments and challenges in flavor perception and measurement—A review. Food Rev. Int. 2011, 18, 223–241. [Google Scholar] [CrossRef]
- Lou, F.; Sun, X.; Pan, Y.; Zhao, J.; Zhao, Y. Identification of volatile flavour components in peanut butter. Food Sci. 2009, 30, 393–396. [Google Scholar] [CrossRef]
- Zhou, Y.; Ren, X.; Hu, Y. Comparative Analysis Demonstrates Changes in Volatile Flavor Components in Peanut Butter from Different Origins. Mod. Food Sci. Technol. 2023, 39, 297–310. [Google Scholar] [CrossRef]
- Singh, S.K.; Castell-Perez, M.E.; Moreira, R.G. Viscosity and textural attributes of reduced-fat peanut pastes. J. Food Sci. 2000, 65, 849–853. [Google Scholar] [CrossRef]
- Sithole, T.R.; Ma, Y.-X.; Qin, Z.; Liu, H.-M.; Wang, X.-D. Technical aspects of peanut butter production processes: Roasting and grinding processes review. J. Food Process. Preserv. 2022, 46, e16430. [Google Scholar] [CrossRef]
- Chen, B.-y.; Li, Q.-Z.; Hu, H.; Meng, S.; Shah, F.; Wang, Q.; Liu, H.-Z. An optimized industry processing technology of peanut tofu and the novel prediction model for suitable peanut varieties. J. Integr. Agric. 2020, 19, 2340–2351. [Google Scholar] [CrossRef]
- Shakerardekani, A.; Karim, R.; Ghazali, H.M.; Chin, N.L. Textural, Rheological and Sensory Properties and Oxidative Stability of Nut Spreads—A Review. Int. J. Mol. Sci. 2013, 14, 4223–4241. [Google Scholar] [CrossRef]
- Radočaj, O.; Dimić, E.; Diosady, L.L.; Vujasinović, V. Optimizing the texture attributes of a fat-based spread using instrumental measurements. J. Texture Stud. 2011, 42, 394–403. [Google Scholar] [CrossRef]
- Wang, L.; Liu, H.; Wang, Q.; Li, Q.; Du, Y.; Zhang, J. Protein Contents in Different Peanut Varieties and Their Relationship to Gel Property. Int. J. Food Prop. 2014, 17, 1560–1576. [Google Scholar] [CrossRef]
- Liu, L.; Xu, F.; Deleu, M.; Wang, Q. Structure and thermal properties of arachin from six varieties: Effect of 35.5 kDa subunit. Int. J. Food Prop. 2020, 23, 908–917. [Google Scholar] [CrossRef]
- Yu, H.; Liu, H.; Erasmus, S.W.; Zhao, S.; Wang, Q.; van Ruth, S.M. An explorative study on the relationships between the quality traits of peanut varieties and their peanut butters. LWT 2021, 151, 112068. [Google Scholar] [CrossRef]
- Mohd Rozalli, N.; Chin, N.; Yusof, Y. Simultaneous multiple responses modelling, optimisation and correlation of Asian type peanuts (Arachis hypogaea L.) roasting using response surface methodology. Acta Aliment. 2014, 43, 142–157. [Google Scholar] [CrossRef]
- Kehong, L.; Zhu, D.; Sun, J.; Qin, Y. Effects of variety and origin factors on the nutritional quality of peanuts. Jiangsu Agric. Sci. 2017, 45, 73–76. [Google Scholar] [CrossRef]
- Elsawy, H.A.; Alessa, F.M.; El-Kholany, E.A. Production and Evaluation of Peanut Butter Prepared with Peanut Shells. Curr. Nutr. Food Sci. 2023, 20, 1019–1027. [Google Scholar] [CrossRef]
- Gong, A.; Liu, H.; Liu, L.; Shi, A.; Lin, W.; Wang, Q. Quality characteristics analysis of different varieties of peanut butter. Sci. Technol. Food Ind. 2015, 72–76. [Google Scholar] [CrossRef]
- Xian, W.; Chen, Y.; Fan, J.; Dong, W.; Xu, B.; Wang, X.; Cui, L. Effects of irradiation on physicochemical quality and flavor of peanut butter. Food Sci. Technol. 2021, 46, 157–163. [Google Scholar] [CrossRef]
- Chun, J. Vitamin E Content and Stability in Peanuts and Peanut Products During Processing and Storage. Ph.D. Dissertation, University of Georgia, Athens, GA, USA, 2002. Available online: https://esploro.libs.uga.edu/esploro/outputs/9949334410402959 (accessed on accessed on 13 December 2024).
- Chen, L.; Zhang, S.Y. Effects of pH-shifting and ultrasound on the structural and emulsifying properties of peanut globulin fractions. Food Chem. X 2024, 22, 101390. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Tian, R.; Xu, Z.J.; Jiang, L.Z.; Sui, X.A. Recent advances in soy protein extraction technology. J. Am. Oil Chem. Soc. 2023, 100, 187–195. [Google Scholar] [CrossRef]
- Colombo, A.; Ribotta, P.D.; León, A.E. Differential Scanning Calorimetry (DSC) Studies on the Thermal Properties of Peanut Proteins. J. Agric. Food Chem. 2010, 58, 4434–4439. [Google Scholar] [CrossRef] [PubMed]
- Bhushan, R.; Agarwal, R. Reversed-phase high-performance liquid chromatographic, gel electrophoretic and size exclusion chromatographic studies of subunit structure of arachin and its molecular species. Biomed. Chromatogr. 2006, 20, 561–568. [Google Scholar] [CrossRef]
- Yu, H.; Liu, H.; Erasmus, S.W.; Zhao, S.; Wang, Q.; van Ruth, S.M. Rapid high-throughput determination of major components and amino acids in a single peanut kernel based on portable near-infrared spectroscopy combined with chemometrics. Ind. Crops Prod. 2020, 158, 112956. [Google Scholar] [CrossRef]
- Hiremath, C.P.; Nadaf, H.L.; Prakash, B.G.; Pujer, S.K.B. Character association studies in different fatty acid composition of groundnut (Arachis hypogaea L.). Crop Res. 2018, 41, 192–196. [Google Scholar] [CrossRef]
- Bei, W.; Liu, N.; Huang, L.; Luo, H.; Zhou, X.; Chen, W.; Guo, J.; Huai, D.; Xia, Y.; Lei, Y.; et al. Identification of markers stably associated with different fatty acid content in peanut through association analysis. Chin. J. Oil Crop Sci. 2022, 44, 818–825. [Google Scholar]
- Yeh, J.Y.; Phillips, R.D.; Hung, Y.C. Overall acceptability and sensory profiles of peanut spreads fortified with protein, vitamins, and minerals. J. Food Sci. 2002, 67, 1979–1985. [Google Scholar] [CrossRef]
- Capuano, E. Flavor of roasted peanuts (Arachis hypogaea)—Part I: Effect of raw material and processing technology on flavor, color and fatty acid composition of peanuts. Food Res. Int. 2016, 89, 860–869. [Google Scholar] [CrossRef]
- Hodge, J.E. Dehydrated Foods. Chemistry of Browning Reactions in Model Systems. J. Agric. Food Chem. 1953, 1, 928–943. [Google Scholar] [CrossRef]
- Cui, H.; Yu, J.; Zhai, Y.; Feng, L.; Chen, P.; Hayat, K.; Xu, Y.; Zhang, X.; Ho, C.-T. Formation and fate of Amadori rearrangement products in Maillard reaction. Trends Food Sci. Technol. 2021, 115, 391–408. [Google Scholar] [CrossRef]
- Zhang, W.; Azizi-Lalabadi, M.; Roy, S.; Salim, S.A.; Castro-Muñoz, R.; Jafari, S.M. Maillard-reaction (glycation) of biopolymeric packaging films, principles, mechanisms, food applications. Trends Food Sci. Technol. 2023, 138, 523–538. [Google Scholar] [CrossRef]
- Xiao, Q.; Huang, Q.; Ho, C.T. Influence of Deamidation on the Formation of Pyrazines and Proline-Specific Compounds in Maillard Reaction of Asparagine and Proline with Glucose. J. Agric. Food Chem. 2023, 71, 7090–7098. [Google Scholar] [CrossRef] [PubMed]
- Quan, W.; Li, Y.; Jiao, Y.; Xue, C.; Liu, G.; Wang, Z.; He, Z.; Qin, F.; Zeng, M.; Chen, J. Simultaneous generation of acrylamide, β-carboline heterocyclic amines and advanced glycation ends products in an aqueous Maillard reaction model system. Food Chem. 2020, 332, 127387. [Google Scholar] [CrossRef] [PubMed]
- Jia, W.; Guo, A.; Zhang, R.; Shi, L. Mechanism of natural antioxidants regulating advanced glycosylation end products of Maillard reaction. Food Chem. 2023, 404, 134541. [Google Scholar] [CrossRef]
- Riveros, C.G.; Mestrallet, M.G.; Gayol, M.F.; Quiroga, P.R.; Nepote, V.; Grosso, N.R. Effect of storage on chemical and sensory profiles of peanut pastes prepared with high-oleic and normal peanuts. J. Sci. Food Agric. 2010, 90, 2694–2699. [Google Scholar] [CrossRef]
- Ma, Y.; Kerr, W.L.; Swanson, R.B.; Hargrove, J.L.; Pegg, R.B. Peanut skins-fortified peanut butters: Effect of processing on the phenolics content, fibre content and antioxidant activity. Food Chem. 2014, 145, 883–891. [Google Scholar] [CrossRef] [PubMed]
- Hathorn, C.S.; Sanders, T.H. Flavor and antioxidant capacity of peanut paste and peanut butter supplemented with peanut skins. J. Food Sci. 2012, 77, S407–S411. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.; Pickova, J.; Ahmad, T.; Liaquat, M.; Farid, A.; Jahangir, M. Oxidation of Lipids in Foods. Sarhad J. Agric. 2016, 32, 230–238. [Google Scholar] [CrossRef]
- Xu, S.; Tao, L.; Wang, J.; Zhang, X.; Huang, Z. Rapid in-situ aerobic biodegradation of high salt and oily food waste employing constructed synthetic microbiome. Eng. Life Sci. 2024, 24, 2200067. [Google Scholar] [CrossRef]
- Snyder, A.B.; Martin, N.; Wiedmann, M. Microbial Food Spoilage: Impact, Causative Agents and Control Strategies. Nat. Rev. Microbiol. 2024, 22, 528–542. [Google Scholar] [CrossRef]
- Karanth, S.; Feng, S.; Patra, D.; Pradhan, A.K. Linking microbial contamination to food spoilage and food waste: The role of smart packaging, spoilage risk assessments, and date labeling. Front. Microbiol. 2023, 14, 1198124. [Google Scholar] [CrossRef] [PubMed]
- Yu, H. Novel Spectroscopic Approaches for the Characterisation of Quality- and Identity-Related Key Features of Peanuts and Peanut Butters. Ph.D. Thesis, Wageningen University, Wageningen, The Netherlands, 2022. [Google Scholar]
- Li, X.; Liu, S.; Gao, C. Preparation of high oleic acid peanut butter and its oxidative stability. China Seas. 2020, 45, 43–47. [Google Scholar] [CrossRef]
- Troise, A.D.; Fogliano, V.; Vitaglione, P.; Berton-Carabin, C.C. Effects of Lipid Oxidation and Maillard Reactions on the Sensory and Nutritional Properties of Foods. J. Agric. Food Chem. 2020, 68, 12107–12115. [Google Scholar] [CrossRef] [PubMed]
- Yao, S.; Liu, Y.; Jiang, Y.; Xu, Y. Effect of baking temperature for fresh peanut kernels on flavor and comprehensive quality of peanut butter. Food Sci. China 2020, 41, 28–35. [Google Scholar] [CrossRef]
- Bagheri, H.; Kashaninejad, M.; Ziaiifar, A.M.; Aalami, M. Textural, color and sensory attributes of peanut kernels as affected by infrared roasting method. Inf. Process. Agric. 2019, 6, 255–264. [Google Scholar] [CrossRef]
- Ziegler, V.; Ferreira, C.; Rockembach, C.; Pereira, C.; Oliveira, M.; Elias, M. Sensory and chemical properties of peanut grains (Arachis hypogaea L.) roasted in microwave or oven. Semin. Ciênc. Agrár. 2017, 38, 197. [Google Scholar] [CrossRef]
- McDaniel, K.A.; White, B.L.; Dean, L.L.; Sanders, T.H.; Davis, J.P. Compositional and mechanical properties of peanuts roasted to equivalent colors using different time/temperature combinations. J. Food Sci. 2012, 77, C1293–C1299. [Google Scholar] [CrossRef] [PubMed]
- Yahia, S.H.; Machnes-Maayan, D.; Frizinsky, S.; Maoz-Segal, R.; Offenganden, I.; Kenett, R.S.; Agmon-Levin, N.; Hovav, R.; Kidon, M.I. Oral immunotherapy for children with a high-threshold peanut allergy. Ann. Allergy Asthma Immunol. 2022, 129, 347–353. [Google Scholar] [CrossRef]
- Hanim, M.R.; Chin, N.L.; Yusof, Y.A. Effects of Grinding Time on Rheological, Textural and Physical Properties of Natural Peanut Butter Stored at Different Temperatures. J. Texture Stud. 2016, 47, 131–141. [Google Scholar] [CrossRef]
- Rozalli, N.M.; Chin, N.L.; Yusof, Y.A. Grinding characteristics of Asian originated peanuts (Arachishypogaea L.) and specific energy consumption during ultra-high speed grinding for natural peanut butter production. J. Food Eng. 2015, 152, 1–7. [Google Scholar] [CrossRef]
- Xin, G.; Wu, B.-C.; Jiang, Y.; Zhang, Y.; Jiao, B.; Wang, Q. Improving enzyme accessibility in the aqueous enzymatic extraction process by microwave-induced porous cell walls to increase oil body and protein yields. Food Hydrocoll. 2024, 147, 109407. [Google Scholar] [CrossRef]
- Souza, T.S.P.d.; Kawaguti, H.Y. Cellulases, hemicellulases, and pectinases: Applications in the food and beverage industry. Food Bioprocess Technol. 2021, 14, 1446–1477. [Google Scholar] [CrossRef]
- Larocque, J.; Vincent, S.; Lacanette, D.; Lubin, P.; Caltagirone, J.P. Parametric study of LES subgrid terms in a turbulent phase separation flow. Int. J. Heat Fluid Flow 2010, 31, 536–544. [Google Scholar] [CrossRef]
- Feng, H.; Jin, H.; Gao, Y.; Yan, S.; Zhang, Y.; Zhao, Q.S.; Xu, J. Effects of Freeze-Thaw Cycles on the Structure and Emulsifying Properties of Peanut Protein Isolates. Food Chem. 2020, 330, 127215. [Google Scholar] [CrossRef] [PubMed]
- McClements, D.J.; Gumus, C.E. Natural emulsifiers—Biosurfactants, phospholipids, biopolymers, and colloidal particles: Molecular and physicochemical basis of functional performance. Adv. Colloid Interface Sci. 2016, 234, 3–26. [Google Scholar] [CrossRef] [PubMed]
- Reddy, N.A.-O.; Rapisarda, M. Properties and Applications of Nanoparticles from Plant Proteins. Materials 2021, 14, 3607. [Google Scholar] [CrossRef] [PubMed]
- Tang, C.-H. Nanostructured soy proteins: Fabrication and applications as delivery systems for bioactives (a review). Food Hydrocoll. 2019, 91, 92–116. [Google Scholar] [CrossRef]
- Nikbakht, M.; Doost, A.; Mezzenga, R. Modification approaches of plant-based proteins to improve their techno-functionality and use in food products. Food Hydrocoll. 2021, 118, 106789. [Google Scholar] [CrossRef]
- Zhang, R.; Han, Y.; Xie, W.; Liu, F.; Chen, S. Advances in Protein-Based Nanocarriers of Bioactive Compounds: From Microscopic Molecular Principles to Macroscopical Structural and Functional Attributes. J. Agric. Food Chem. 2022, 70, 6354–6367. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Luo, Y. Colloidal nanoparticles prepared from zein and casein: Interactions, characterizations and emerging food applications. Food Sci. Hum. Wellness 2023, 12, 337–350. [Google Scholar] [CrossRef]
- Hu, B.; Yang, Y.; Han, L.; Yang, J.; Zheng, W.; Cao, J. Characterization of hydrophilic and hydrophobic core-shell microcapsules prepared using a range of antisolvent approaches. Food Hydrocoll. 2022, 131, 107750. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, X.; Sang, S.; McClements, D.J.; Chen, L.; Long, J.; Jiao, A.; Jin, Z.; Qiu, C. Polyphenols as Plant-Based Nutraceuticals: Health Effects, Encapsulation, Nano-Delivery, and Application. Foods 2022, 11, 2189. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, T.-Y.; Wu, Y.-C.; Gong, P.-X.; Li, H.-J. Foxtail millet prolamin as an effective encapsulant deliver curcumin by fabricating caseinate stabilized composite nanoparticles. Food Chem. 2022, 367, 130764. [Google Scholar] [CrossRef]
- Song, H.; He, A.; Guan, X.; Chen, Z.; Bao, Y.; Huang, K. Fabrication of chitosan-coated epigallocatechin-3-gallate (EGCG)-hordein nanoparticles and their transcellular permeability in Caco-2/HT29 cocultures. Int. J. Biol. Macromol. 2022, 196, 144–150. [Google Scholar] [CrossRef]
- Liu, Q.; Chen, J.; Qin, Y.; Jiang, B.; Zhang, T. Zein/fucoidan-based composite nanoparticles for the encapsulation of pterostilbene: Preparation, characterization, physicochemical stability, and formation mechanism. Int. J. Biol. Macromol. 2020, 158, 461–470. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Wang, D.; Li, F.; Li, D.; Huang, Q. Cinnamon essential oil Pickering emulsion stabilized by zein-pectin composite nanoparticles: Characterization, antimicrobial effect and advantages in storage application. Int. J. Biol. Macromol. 2020, 148, 1280–1289. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Teng, Z.; Wang, Q. Development of Zein Nanoparticles Coated with Carboxymethyl Chitosan for Encapsulation and Controlled Release of Vitamin D3. J. Agric. Food Chem. 2012, 60, 836–843. [Google Scholar] [CrossRef]
- Park, C.-E.; Park, D.; Kim, B.-K. Effects of a chitosan coating on properties of retinol-encapsulated zein nanoparticles. Food Sci. Biotechnol. 2015, 24, 1725–1733. [Google Scholar] [CrossRef]
- Mauerer, A.; Lee, G. Changes in the amide I FT-IR bands of poly-l-lysine on spray-drying from α-helix, β-sheet or random coil conformations. Eur. J. Pharm. Biopharm. 2006, 62, 131–142. [Google Scholar] [CrossRef]
- Dai, Q.; Zhu, X.; Yu, J.; Karangwa, E.; Xia, S.; Zhang, X.; Jia, C. Mechanism of Formation and Stabilization of Nanoparticles Produced by Heating Electrostatic Complexes of WPI–Dextran Conjugate and Chondroitin Sulfate. J. Agric. Food Chem. 2016, 64, 5539–5548. [Google Scholar] [CrossRef]
- Gao, Q.; Zhang, S.; Tang, Z.; Peng, X.; Wang, N.; Xue, Y. Research progress on preparation and application of protain nanoparticles in food field. Sci. Technol. Food Ind. 2023, 44, 30–37. [Google Scholar] [CrossRef]
- Veneranda, M.; Hu, Q.; Wang, T.; Luo, Y.; Castro, K.; Madariaga, J.M. Formation and characterization of zein-caseinate-pectin complex nanoparticles for encapsulation of eugenol. LWT 2018, 89, 596–603. [Google Scholar] [CrossRef]
- Liu, F.; Tang, C.H. Soy protein nanoparticle aggregates as pickering stabilizers for oil-in-water emulsions. J. Agric. Food Chem. 2013, 61, 8888–8898. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xiong, W.; Lei, L.; Pei, Y.; He, L.; Ai, T.; Li, Y.; Li, B.; Jiang, Y.; Liu, X.; et al. Influence of heat treatment on structure, interfacial rheology and emulsifying properties of peanut protein isolate. Czech J. Food Sci. 2019, 37, 212–220. [Google Scholar] [CrossRef]
- Gallego-Juárez, J.; Rodriguez, G.; Acosta, V.; Riera, E. Power ultrasonic transducers with extensive radiators for industrial processing. Ultrason. Sonochemistry 2010, 17, 953–964. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.; Azam, S.R.; Feng, M.; Wu, B.; Yan, W.; Zhou, C.; Ma, H. Application of multi-frequency power ultrasound in selected food processing using large-scale reactors: A review. Ultrason. Sonochemistry 2021, 81, 105855. [Google Scholar] [CrossRef]
- Arzeni, C.; Martínez, K.; Zema, P.; Arias, A.; Pérez, O.; Pilosof, A. Comparative study of high intensity ultrasound effects on food proteins functionality. J. Food Eng. 2012, 108, 463–472. [Google Scholar] [CrossRef]
- Huang, L.; Jia, S.; Zhang, W.; Ma, L.; Ding, X. Aggregation and emulsifying properties of soybean protein isolate pretreated by combination of dual-frequency ultrasound and ionic liquids. J. Mol. Liq. 2020, 301, 112394. [Google Scholar] [CrossRef]
- AlimiAlimi, S.; Fadavi, A.; Sayyed-Alangi, S.Z.; Delouee, S.A. Physical and thermal characteristics of amaranth (Amaranthus hypochondriacus) protein nanoparticles affected by ultrasound time and microbial transglutaminase. J. Food Meas. Charact. 2024, 18, 1–14. [Google Scholar] [CrossRef]
- Chen, F.-P.; Li, B.-S.; Tang, C.-H. Nanocomplexation of soy protein isolate with curcumin: Influence of ultrasonic treatment. Food Res. Int. 2015, 75, 157–165. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.-T.; Tu, Z.-C.; Xiao, H.; Wang, H.; Huang, X.-Q.; Liu, G.-X.; Liu, C.-M.; Shi, Y.; Fan, L.-L.; Lin, D.-R. Influence of ultrasonic treatment on the structure and emulsifying properties of peanut protein isolate. Food Bioprod. Process. 2014, 92, 30–37. [Google Scholar] [CrossRef]
- Sartorius, T.; Ketterer, C.; Kullmann, S.; Balzer, M.; Rotermund, C.; Binder, S.; Hallschmid, M.; Machann, J.; Schick, F.; Somoza, V.; et al. Monounsaturated Fatty Acids Prevent the Aversive Effects of Obesity on Locomotion, Brain Activity, and Sleep Behavior. Diabetes 2012, 61, 1669–1679. [Google Scholar] [CrossRef]
- Martin, C.K.; Anton, S.D.; Walden, H.; Arnett, C.; Greenway, F.L.; Williamson, D.A. Slower eating rate reduces the food intake of men, but not women: Implications for behavioral weight control. Behav. Res. Ther. 2007, 45, 2349–2359. [Google Scholar] [CrossRef] [PubMed]
- Oberther, T.J.; Moore, A.R.; Kohler, A.A.; Shuler, D.H.; Peritore, N.; Holland-Winkler, A.M. Effect of Peanut Butter Intake on Sleep Health in Firefighters: A Randomized Controlled Trial. Int. J. Environ. Res. Public Health 2024, 21, 571. [Google Scholar] [CrossRef] [PubMed]
- Alper, C.M.; Mattes, R.D. Effects of chronic peanut consumption on energy balance and hedonics. Int. J. Obes. 2002, 26, 1129–1137. [Google Scholar] [CrossRef]
- Arab, A.; Rafie, N.; Amani, R.; Shirani, F. The Role of Magnesium in Sleep Health: A Systematic Review of Available Literature. Biol. Trace Elem. Res. 2023, 201, 121–128. [Google Scholar] [CrossRef]
- Song, F.; Gu, T.; Zhang, L.; Zhang, J.; You, S.; Qi, W. Rational design of tryptophan hydroxylation 1 for im-proving 5-Hydroxytryptophan production. Enzym. Microb. Technol. 2023, 165, 110198. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, N.R.; DiMarco, N.M.; Langley, S. American Dietetic Association, Dietitians of Canada, and American College of Sports Medicine: Nutrition and Athletic Performance. Position of the American Dietetic Association, Dietitians of Canada, and the American College of Sports Medicine: Nutrition and athletic performance. J. Am. Diet. Assoc. 2009, 109, 509–527. [Google Scholar] [CrossRef] [PubMed]
- Carbone, J.W.; Pasiakos, S.M. Dietary Protein and Muscle Mass: Translating Science to Application and Health Benefit. Nutrients 2019, 11, 1136. [Google Scholar] [CrossRef] [PubMed]
- Dixon, V.; Habeeb, S.; Lakshman, R. Did you know this medicine has peanut butter in it, doctor? Arch. Dis. Child. 2007, 92, 654. [Google Scholar] [CrossRef]
- NASA. Human Health and Performance Risks of Spaceflight. NASA Technical Paper. Available online: https://www.nasa.gov (accessed on 10 December 2023).
- United States Department of Agriculture. FoodData Central: Peanut Butter, Smooth, Plain, Without Salt. 2023. Available online: https://fdc.nal.usda.gov/ (accessed on 11 December 2024).
- Brummel, S.A.; Reidy, C. Food Systems in Space: Challenges and Benefits. Food and Agriculture Organization (FAO). 2014. Available online: https://www.fao.org (accessed on 10 December 2023).
- NASA. Space and Food Nutrition—An Educator’s Guide with Activities in Science and Mathematics. NASA Spacelink. Available online: https://www.semanticscholar.org/paper/Space-Food-and-Nutrition%3A-An-Educator's-Guide-with-Casaburri-Gardner/8328a5f987317a7ceb5c90c934eace16678ccbe7 (accessed on 14 July 2009).
- Muñoz-Arrieta, R.; Esquivel-Alvarado, D.; Alfaro-Viquez, E.; Alvarez-Valverde, V.; Krueger, C.G.; Reed, J.D. Nutritional and bioactive composition of Spanish, Valencia, and Virginia type peanut skins. J. Food Compos. Anal. 2021, 98, 103816. [Google Scholar] [CrossRef]
- Wollmann, E.; Hamsten, C.; Sibanda, E.; Ochome, M.; Focke-Tejkl, M.; Asarnoj, A.; Önell, A.; Lilja, G.; Gallerano, D.; Lupinek, C.; et al. Natural clinical tolerance to peanut in African patients is caused by poor allergenic activity of peanut IgE. Allergy 2015, 70, 638–652. [Google Scholar] [CrossRef]
- Peeters, K.A.; Lamers, R.J.; Penninks, A.H.; Knol, E.F.; Bruijnzeel-Koomen, C.A.; van Nesselrooij, J.H.; Knulst, A.C. A search for biomarkers as diagnostic tools for food allergy: A pilot study in peanut-allergic patients. Int. Arch. Allergy Immunol. 2011, 155, 23–30. [Google Scholar] [CrossRef] [PubMed]
Nutrient Composition | Raw Peanut | Dry-Roasted Peanuts | Peanut Butter | |
---|---|---|---|---|
Basic Nutrient Content/(g/100 g) | Crude Protein | 25.80 | 23.68 | 25.21 |
Crude Fat | 49.24 | 49.66 | 51.03 | |
Ash | 2.33 | 3.60 | 3.25 | |
Polysaccharide | 19.28 | 21.51 | 19.28 | |
Crude Fiber | 8.50 | 8.00 | 5.90 | |
Mineral Content/ (mg/100 g) | Calcium | 92 | 54 | 38 |
Magnesium | 168 | 176 | 159 | |
Phosphorus | 376 | 358 | 369 | |
Potassium | 705 | 658 | 669 | |
Vitamin Content/ (mg/100 g) | Niacin | 12.066 | 13.525 | 13.403 |
Pantothenic Acid | 1.767 | 1.395 | 0.806 | |
VE | 9.130 | 7.410 | 10.000 | |
Folic Acid | 240 | 145 | 74 |
Typology | Name | Peanut Protein | Soy Protein | Peanut Protein/Soy Protein Ratio |
---|---|---|---|---|
Hydrophobic Amino Acids | Ala | 3.78 | 4.50 | 0.84 |
Leu | 6.67 | 7.72 | 0.86 | |
Ile | 2.89 | 5.02 | 0.58 | |
Val | 3.68 | 5.30 | 0.69 | |
Phe | 5.27 | 5.00 | 1.05 | |
Met | 0.91 | 1.56 | 0.58 | |
Pro | 3.62 | 6.20 | 0.58 | |
Trp | 0.59 | 1.20 | 0.49 | |
Total | 27.41 | 36.50 | 0.75 | |
Hydrophilic Amino Acids | Ser | 5.27 | 4.61 | 1.14 |
Tyr | 4.38 | 3.91 | 1.12 | |
Thr | 2.55 | 3.66 | 0.70 | |
Asp | 12.61 | 10.38 | 1.21 | |
Cys | 2.92 | 1.63 | 1.79 | |
Glu | 21.64 | 18.42 | 1.17 | |
Gly | 6.21 | 4.62 | 1.34 | |
Total | 55.58 | 47.23 | 1.18 | |
Sulfur-Containing Amino Acids | Met | 0.91 | 1.56 | 0.58 |
Cys | 2.92 | 1.63 | 1.79 | |
Lys | 3.73 | 6.01 | 0.62 | |
Trp | 0.59 | 1.20 | 0.49 | |
Phe | 5.27 | 5.00 | 1.05 | |
Met | 0.91 | 1.56 | 0.58 | |
Thr | 2.55 | 3.66 | 0.70 | |
Ile | 2.89 | 5.02 | 0.58 | |
Leu | 6.67 | 7.72 | 0.86 | |
Val | 3.68 | 5.30 | 0.69 | |
Total | 26.29 | 35.47 | 0.74 | |
Others | Lys | 3.73 | 6.01 | 0.62 |
Arg | 12.58 | 7.55 | 1.67 | |
His | 2.22 | 2.25 | 0.99 |
Treatment | Mechanism of Action | Reference |
---|---|---|
Chemical Treatment | Changing the composition and structure of the cell wall | [71] |
Acid–Base Treatment | Partial hydrolysis of the polysaccharide component of the cell wall, making it more fragile and easily fragmented | [71] |
Enzymatic Processing | Treatment of peanut cell walls with cellulase or pectinase can significantly improve the efficiency of cell wall fragmentation during the milling process | [72] |
Nanoparticle Material | Features/Effects | Appliance | Reference |
---|---|---|---|
Glutathione—Sodium Caseinate | Enhanced thermal stability and antioxidant and antitumor properties of curcumin | Curcumin | [83] |
Alginate—Chitosan—Zein | Improved photostability, slow release, and bioavailability of resveratrol | EGCG | [84] |
Corn Alcohol Protein—Fucoidan Gum | The nanoparticles were prepared with a particle size of 120.8 nm and a PDI value of less than 0.2, which were biocompatible and showed a high encapsulation rate of 95.6% for Ziandra stilbene | Red Sandalwood | [85] |
Maize Alcohol Soluble Protein—Pectin | Cinnamon essential oil Pickering lotion has good antibacterial properties | Cinnamon Essential oil | [86] |
Carboxymethyl Chitosan—Zein | Enhanced controlled release properties and photochemical stability of vitamin D3 | Vitamin D3 | [87] |
Chitosan—Zein | Enhanced photochemical stability of retinol | Retinol | [88] |
Nanoparticle Material | Features/Effects | Appliance | Reference |
---|---|---|---|
Maize Alcohol-Soluble Protein–Sodium Caseinate–Pectin | Nanoparticles exhibit excellent redispersibility and sodium caseinate helps to maintain the original nanosize | Eugenol | [92] |
Soy Protein | After adsorption to the interface, it is not easy for structural unfolding and rearrangement to occur, thus maintaining its own intact particle morphology and playing a Pickering stabilization effect | Building Pickering Stabilized Emulsions | [93] |
Peanut Protein | Formation of nanoparticles in the particle size range of 176–203 nm; thermal treatment improves the functional properties of peanut proteins | - | [94] |
Sodium Arachidonate | Formation of arachidonin nanoparticles in the particle size range of 205–260 nm, which can lead to a significant increase in the anti-coalescence ability of emulsions | Building Pickering Stabilized Emulsions | [86] |
Nanoparticle Material | Features/Effects | Appliance | Reference |
---|---|---|---|
Soy Protein | Formation of soy protein nanoparticles with maximum emulsion stability | - | [98] |
Amaranthine Protein | Ultrasound-assisted mTG caused modification of API nanoparticles that improved particle size, zeta potential, and thermal properties | For Pickering Emulsion Preparation | [99] |
Soy Protein | Soy protein nanoparticles with an average particle size of 110 nm were obtained to improve the loading and storage stability of curcumin | Curcumin | [100] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Zhu, X.; Han, Z.; Liu, H. Recent Advances in the Mechanisms of Quality Degradation and Control Technologies for Peanut Butter: A Literature Review. Foods 2025, 14, 105. https://doi.org/10.3390/foods14010105
Liu X, Zhu X, Han Z, Liu H. Recent Advances in the Mechanisms of Quality Degradation and Control Technologies for Peanut Butter: A Literature Review. Foods. 2025; 14(1):105. https://doi.org/10.3390/foods14010105
Chicago/Turabian StyleLiu, Xinyan, Xuchun Zhu, Zhaowei Han, and Hongzhi Liu. 2025. "Recent Advances in the Mechanisms of Quality Degradation and Control Technologies for Peanut Butter: A Literature Review" Foods 14, no. 1: 105. https://doi.org/10.3390/foods14010105
APA StyleLiu, X., Zhu, X., Han, Z., & Liu, H. (2025). Recent Advances in the Mechanisms of Quality Degradation and Control Technologies for Peanut Butter: A Literature Review. Foods, 14(1), 105. https://doi.org/10.3390/foods14010105