Vanadium(V)-Substitution Reactions of Wells–Dawson-Type Polyoxometalates: From [X2M18O62]6− (X = P, As; M = Mo, W) to [X2VM17O62]7−
<p>Structure of the Well–Dawson-type polyoxometalate.</p> "> Figure 2
<p>Cyclic voltammograms (<b>A</b>) and Raman spectra (<b>B</b>) of a 100 mM W(VI)–200 mM As(V)–10 mM V(V)–pH 2.0 system collected (a) after a solution without V(V) was heated at 80 °C for one week and (b) after 10 mM V(V) was added and the solution was heated again at 80 °C for one day.</p> "> Figure 3
<p><sup>31</sup>P NMR spectrum of a 100 mM W(VI)–500 mM P(V)–V(V)–pH 2.0 system collected (<b>a</b>) after a solution without V(V) was heated at 80 °C for one week, (<b>b</b>) after 50 mM V(V) was added and the solution was heated again at 80 °C for one day and (<b>c</b>) after a solution of 100 mM W(VI)–500 mM P(V)–50 mM V(V)–pH 2 was heated at 80 °C for one week.</p> "> Figure 4
<p>Raman spectra of a 100 mM W(VI)–200 mM As(V)–pH 2.0 system containing various concentrations of V(V) collected after each solution was heated at 80 °C for one week. [V(V)]/mM = (a) 0; (b) 5; (c) 10; (d) 15; and (e) 20.</p> "> Figure 5
<p>Cyclic voltammograms of a 100 mM Mo(VI)–10 mM As(V)–10 mM V(V)–0.5 M HCl system collected (a) after a solution without V(V) was heated at 80 °C for 7 h, (b) immediately after 10 mM V(V) was added to solution (a) and subsequently heated at 80 °C for 2 h and (c) after solution (b) was heated at 80 °C for one day.</p> "> Figure 6
<p><sup>31</sup>P NMR spectra of a 100 mM Mo(VI)–100 mM P(V)–25 mM V(V)–1.0 M HCl system collected (<b>a</b>) after a solution without V(V) was heated at 80 °C for 30 h and (<b>b</b>) after V(V) was added and the solution was heated again at 80 °C for one day.</p> "> Figure 7
<p>Vanadium substitution reaction of Wells–Dawson-type POMs for the M(VI)–X(V)–V(V) (M = W, Mo; X = P, As) systems in aqueous solution.</p> "> Figure 8
<p>Cyclic voltammograms of (a) [As<sub>2</sub>VW<sub>17</sub>O<sub>62</sub>]<sup>7-</sup>, (b) [As<sub>2</sub>W<sub>18</sub>O<sub>62</sub>]<sup>6-</sup>, (c) [P<sub>2</sub>VW<sub>17</sub>O<sub>62</sub>]<sup>7-</sup>, and (d) [P<sub>2</sub>W<sub>18</sub>O<sub>62</sub>]<sup>6-</sup> in 95% (v/v) CH<sub>3</sub>CN containing 0.1 M HClO<sub>4</sub>.</p> ">
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of POMs Related to the Present Study
Compounds | νRaman(M-Od) |
---|---|
As2VW17 | 982 |
As2W18 | 982 (995) a |
P2VW17 | 985 |
P2W18 | 983 (993) a |
P2Mo18 b | 971 |
As2Mo18 b | 971 |
Compounds | 31P NMR signals (vs 85% H3PO4) | Ref. |
---|---|---|
α-P2W18 | −12.44 | [49] |
β-P2W18 | −11.0, −11.7 | [50] |
1-P2W17 | −6.79, −13.63 | [49] |
4-P2W17 | −8.53, −12.86 | [49] |
P2W15 | +0.1, −13.3 | [50] |
1-P2VW17 | −10.84, −12.92 | [49] |
4-P2VW17 | −11.83, −12.90 | [49] |
1,2,3-P2V3W15 | −6.25, −13.89 | [49] |
α-PW12 | −14.42 | [45] |
β-PW12 | −13.50 | [45] |
PW11 | −11.8 a, −10.2 b | [41] |
A-α-PW9 | −5.1 | [41] |
PVW11 | −14.11 | [45] |
P2Mo18 | −2.45 | [47] |
α-PMo12 | −3.16 | [47] |
PMo11 | −0.79 c, −1.05 d | [51] |
A-PMo9 | −0.93 | [47] |
PVMo11 | −3.53 | [44] |
2.2. Formation of Dawson-Type Vanadium-Substituted Tungstoarsenate and Tungstophosphate Complexes
2.3. Formation of Wells–Dawson-Type Vanadium-Substituted Molybdoarsenate and Molybdophosphate Complexes
3. Experimental Section
4. Conclusions
Acknowledgements
Author Contributions
Conflicts of Interest
Appendix
A1. Cyclic Voltammograms of X2VaW18−a (X = P, As; a = 0, 1)
A2. Identification of POMs Isolated as a tetra-Butylammonium Salt from a 100 mM Mo(VI)–10 mM As(V)–0.5 M HCl System after the Addition of 5–20 mM V(V)
References
- Pope, M.T. Heteropoly and Isopoly Oxometalates; Springer: Berlin, Gemany, 1983. [Google Scholar]
- Hill, C.L. Introduction: Polyoxometalates s Multicomponent Molecular Vehicles To Probe Fundamental Issues and Practical Problems. Chem. Rev. 1998, 98, 1–390. [Google Scholar] [CrossRef] [PubMed]
- Pope, M.T.; Müller, A. Polyoxometalate Chemistry From Topology via Self-Assembly to Applications; Kluwer Academic Publishers: New York, NY, USA, 2001. [Google Scholar]
- Yamase, T.; Pope, M.T. (Eds.) Polyoxometalate Chemistry for Nano-Composite Design; Kluwer Academic/Plenum Publishers: New York, NY, USA, 2002.
- Borrás-Almenar, J.J.; Coronado, E.; Müller, A.; Pope, M.T. Polyoxometalate Molecular Science; Kluwer Academic Publishers: New York, NY, USA, 2003. [Google Scholar]
- Mialane, P.; Dolbecq, A.; Sécheresse, F. Functionalization of polyoxometalates by carboxylato and azido ligands: macromolecular complexes and extended compounds. Chem. Commun. 2006, 33, 3477–3485. [Google Scholar] [CrossRef] [PubMed]
- Long, D.-L.; Burkholder, E.; Cronin, L. Polyoxometalate clusters, nanostructures and materials: From self assembly to designer materials and devices. Chem. Soc. Rev. 2007, 36, 105–121. [Google Scholar] [CrossRef] [PubMed]
- Proust, A.; Thouvenot, R.; Gouzerh, P. Functionalization of polyoxometalates: towards advanced applications in catalysis and materials science. Chem. Commun. 2008, 1837–1852. [Google Scholar] [CrossRef] [PubMed]
- Ueda, T.; Kotsuki, H. Heteropoly acids: green chemical catalysts in organic synthesis. Heterocycle 2008, 76, 73–97. [Google Scholar]
- Huang, Z.; Luo, Z.; Geletii, Y.V.; Vickers, J.W.; Yin, Q.; Wu, D.; Hou, Y.; Ding, Y.; Song, J.; Musaev, D.G.; Hill, C.L.; Lian, T. Efficient light-driven carbon-free cobalt-based molecular catalyst for water oxidation. J. Am. Chem. Soc. 2011, 133, 2068–2071. [Google Scholar] [CrossRef] [PubMed]
- Car, P.-E.; Guttentag, M.; Baldridge, K.K.; Alberto, R.; Patzke, G.R. Synthesis and characterization of open and sandwich-type polyoxometalates reveals visible-light-driven water oxidation via POM-photosensitizer complexes. Green Chem. 2012, 14, 1680–1688. [Google Scholar] [CrossRef]
- Natali, M.; Orlandi, M.; Berardi, S.; Campagna, S.; Bonchio, M.; Sartorel, A.; Scandola, F. Photoinduced Water Oxidation by a Tetraruthenium Polyoxometalate Catalyst: Ion-pairing and Primary Processes with Ru(bpy)32+ Photosensitizer. Inorg. Chem. 2012, 51, 7324–7331. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.-X.; Liu, Y.; Lee, C.-Y.; Bond, A.M.; Zhang, J.; Geletii, Y.V.; Hill, C.L. Graphene-supported [{Ru4O4(OH)2(H2O)4}(γ-SiW10O36)2]10− for highly efficient electrocatalytic water oxidation. Energy Environ. Sci. 2013, 6, 2654–2663. [Google Scholar]
- Liu, Y.; Guo, S.-X.; Bond, A.M.; Zhang, J.; Geletii, Y.V.; Hill, C.L. Voltammetric Determination of the Reversible Potentials for [{Ru4O4(OH)2(H2O)4}(γ-SiW10O36)2]10− over the pH Range of 2-12: Electrolyte Dependence and Implications for Water Oxidation Catalysis. Inorg Chem 2013, 52, 11986–11996. [Google Scholar] [CrossRef] [PubMed]
- Anwar, N.; Sartorel, A.; Yaqub, M.; Wearen, K.; Laffir, F.; Armstrong, G.; Dickinson, C.; Bonchio, M.; McCormac, T. Surface immobilization of a tetra-ruthenium substituted polyoxometalate water oxidation catalyst through the employment of conducting polypyrrole and the layer-by-layer (LBL) technique. ACS Appl. Mater. Interfaces 2014, 6, 8022–8031. [Google Scholar] [CrossRef] [PubMed]
- Hill, C.L. POMs in Catalysis. J. Mol. Catal. A 2007, 262, 1–242. [Google Scholar] [CrossRef]
- Kholdeeva, O.A.; Maksimchuk, N.V.; Maksimov, G.M. Polyoxometalate-based heterogeneous catalysts for liquid phase selective oxidations: Comparison of different strategies. Catal. Today 2010, 157, 107–113. [Google Scholar] [CrossRef]
- Mizuno, N.; Kamata, K.; Yamaguchi, K. Green Oxidation Reactions by Polyoxometalate-Based Catalysts: From Molecular to Solid Catalysts. Top. Catal. 2010, 53, 876–893. [Google Scholar] [CrossRef]
- Neumann, R. Activation of Molecular Oxygen, Polyoxometalates, and Liquid-Phase Catalytic Oxidation. Inorg. Chem. 2010, 49, 3594–3601. [Google Scholar]
- Han, Z.G.; Bond, A.M.; Zhao, C. Recent trends in the use of polyoxometalate-based material for efficient water oxidation. Sci. China Chem. 2011, 54, 1877–1887. [Google Scholar] [CrossRef]
- Maksimchuk, N.V.; Kholdeeva, O.A.; Kovalenko, K.A.; Fedin, V.P. MIL-101 Supported Polyoxometalates: Synthesis, Characterization, and Catalytic Applications in Selective Liquid-Phase Oxidation. Isr. J. Chem. 2011, 51, 281–289. [Google Scholar] [CrossRef]
- Mizuno, N.; Kamata, K. Catalytic oxidation of hydrocarbons with hydrogen peroxide by vanadium-based polyoxometalates. Coord. Chem. Rev. 2011, 255, 2358–2370. [Google Scholar] [CrossRef]
- Deng, W.; Zhang, Q.; Wang, Y. Polyoxometalates as efficient catalysts for transformations of cellulose into platform chemicals. Dalton Trans. 2012, 41, 9817–9831. [Google Scholar] [CrossRef] [PubMed]
- Lv, H.; Geletii, Y.V.; Zhao, C.; Vickers, J.W.; Zhu, G.; Luo, Z.; Song, J.; Lian, T.; Musaev, D.G.; Hill, C.L. Polyoxometalate water oxidation catalysts and the production of green fuel. Chem. Soc. Rev. 2011, 41, 7572–7589. [Google Scholar] [CrossRef] [PubMed]
- Stracke, J.J.; Finke, R.G. Distinguishing Homogeneous from Heterogeneous Water Oxidation Catalysis when Beginning with Polyoxometalates. ACS Catal. 2014, 4, 909–933. [Google Scholar] [CrossRef]
- Sumliner, J.M.; Lv, H.; Fielden, J.; Geletii, Y.V.; Hill, C.L. Polyoxometalate Multi-Electron-Transfer Catalytic Systems for Water Splitting. Eur. J. Inorg. Chem. 2014, 635–644. [Google Scholar] [CrossRef]
- Himeno, S.; Saito, A. Preparation of dodecamolybdovanadate(V). Inorg. Chim. Acta 1990, 171, 135–137. [Google Scholar] [CrossRef]
- Himeno, S.; Takamoto, M.; Higuchi, A.; Maekawa, M. Preparation and voltammetric characterization of Keggin-type tungstovanadate [VW12O40]3− and [V(VW11)O40]4− complexes. Inorg. Chim. Acta 2003, 348, 57–62. [Google Scholar] [CrossRef]
- Himeno, S.; Kawasaki, K.; Hashimoto, M. Preparation and characterization of an α-Wells-Dawson-type [V2Mo18O62]6− complex. Bull. Chem. Soc. Jpn. 2008, 81, 1465–1471. [Google Scholar] [CrossRef]
- Miras, H.N.; Ochoa, M.N.C.; Long, D.-L.; Cronin, L. Controlling transformations in the assembly of polyoxometalate clusters: {Mo11V7}, {Mo17V8} and {Mo72V30}. Chem. Commun. 2010, 46, 8148–8150. [Google Scholar] [CrossRef] [PubMed]
- Miras, H.N.; Stone, D.; Long, D.-L.; McInnes, E.J.L.; Kogerler, P.; Cronin, L. Exploring the Structure and Properties of Transition Metal Templated {VM17(VO4)2} Dawson-Like Capsules. Inorg. Chem. 2011, 50, 8384–8391. [Google Scholar]
- Miras, H.N.; Sorus, M.; Hawkett, J.; Sells, D.O.; McInnes, E.J.L.; Cronin, L. Oscillatory Template Exchange in Polyoxometalate Capsules: A Ligand-Triggered, Redox-Powered, Chemically Damped Oscillation. J. Am. Chem. Soc. 2012, 134, 6980–6983. [Google Scholar] [CrossRef] [PubMed]
- Pettersson, L.; Andersson, I.; Oehman, L.O. Multicomponent polyanions. 35. A phosphorus-31 NMR study of aqueous molybdophosphates. Acta Chem. Scand., Ser. A 1985, A39, 53–58. [Google Scholar] [CrossRef]
- Pettersson, L.; Andersson, I.; Oehman, L.O. Multicomponent polyanions. 39. Speciation in the aqueous hydrogen ion-molybdate(MoO42−)-hydrogenphosphate(HPO42-) system as deduced from a combined Emf-phosphorus-31 NMR study. Inorg. Chem. 1986, 25, 4726–4733. [Google Scholar] [CrossRef]
- Pettersson, L.; Andersson, I.; Grate, J.H.; Selling, A. Multicomponent Polyanions. 46. Characterization of the Isomeric Keggin Decamolybdodivanadophosphate Ions in Aqueous Solution by 31P and 51V NMR. Inorg. Chem. 1994, 33, 982–993. [Google Scholar] [CrossRef]
- Katano, H.; Osakai, T.; Himeno, S.; Saito, A. A kinetic study of the formation of 12-molybdosilicate and 12-molybdogermanate in aqueous solutions by ion transfer voltammetry with the nitrobenzene-water interface. Electrochim. Acta 1995, 40, 2935–2942. [Google Scholar] [CrossRef]
- Ueda, T.; Sano, K.; Himeno, S.; Hori, T. Formation and conversion of yellow molybdophosphonate complexes in aqueous-organic media. Bull. Chem. Soc. Jpn. 1997, 70, 1093–1099. [Google Scholar] [CrossRef]
- Himeno, S.; Ueda, T.; Shiomi, M.; Hori, T. Raman studies on the formation of 12-molybdopyrophosphate. Inorg. Chim. Acta 1997, 262, 219–223. [Google Scholar] [CrossRef]
- Himeno, S.; Sano, K.; Niiya, H.; Yamazaki, Y.; Ueda, T.; Hori, T. Formation and conversion of yellow heteropoly complexes in a Mo(VI)-Se(IV), Te(IV) system. Inorg. Chim. Acta 1998, 281, 214–220. [Google Scholar]
- Selling, A.; Andersson, I.; Grate, J.H.; Pettersson, L. Multicomponent polyanions. 49. A potentiometric and (31P, 51V) NMR study of the aqueous molybdovanadophosphate system. Eur. J. Inorg. Chem. 2000, 1509–1521. [Google Scholar] [CrossRef]
- Himeno, S.; Takamoto, M.; Ueda, T. Formation of α- and β-Keggin-Type [PW12O40]3− Complexes in Aqueous Media. Bull. Chem. Soc. Jpn. 2005, 78, 1463–1468. [Google Scholar] [CrossRef]
- Hashimoto, M.; Andersson, I.; Pettersson, L. An equilibrium analysis of the aqueous H+-MoO42--(HP)O32- and H+-MoO42--(HP)O32--HPO42- systems. Dalton Trans. 2007, 124–132. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, M.; Andersson, I.; Pettersson, L. A 31P-NMR study of the H+-MoO42−-(HP)O32−-HPO42−-(C6H5P)O32−-(CH3P)O32− system at low Motot/Ptot ratio - Formation of mixed-hetero X2M5-type polyanions. Dalton Trans. 2009, 3321–3327. [Google Scholar] [CrossRef] [PubMed]
- Ueda, T.; Wada, K.; Hojo, M. Voltammetric and Raman spectroscopic study on the formation of Keggin-type V(V)-substituted molybdoarsenate complexes in aqueous and aqueous-organic solution. Polyhedron 2001, 20, 83–89. [Google Scholar] [CrossRef]
- Ueda, T.; Nambu, J.; Yokota, H.; Hojo, M. The effect of water-miscible organic solvents on the substitution reaction of Keggin-type heteropolysilicates and -germanates with vanadium(V) ion. Polyhedron 2009, 28, 43–48. [Google Scholar] [CrossRef]
- Ueda, T.; Ohnishi, M.; Shiro, M.; Nambu, J.-i.; Yonemura, T.; Boas, J.F.; Bond, A.M. Synthesis and Characterization of Novel Wells-Dawson-Type Mono Vanadium(V)-Substituted Tungsto-polyoxometalate Isomers: 1- and 4-[S2VW17O62]5−. Inorg. Chem. 2014, 53, 4891–4898. [Google Scholar] [CrossRef] [PubMed]
- Himeno, S.; Hashimoto, M.; Ueda, T. Formation and conversion of molybdophosphate and -arsenate complexes in aqueous solution. Inorg. Chim. Acta 1999, 284, 237–245. [Google Scholar] [CrossRef]
- Roy, S.K.; Day, K.C. Synthesis and characterization of sodium, potassium, guanidinium and tetramethylammonium salts of 17-tungstovanadodiarsenate(V). Ind. J. Chem. 1992, 31A, 64–66. [Google Scholar]
- Contant, R.; Abbessi, M.; Thouvenot, R.; Herve, G. Dawson Type Heteropolyanions. 3. Syntheses and 31P, 51V, and 183W NMR Structural Investigation of Octadeca(molybdotungstovanado)diphosphates Related to the [H2P2W12O48]12− Anion. Inorg. Chem. 2004, 43, 3597–3604. [Google Scholar] [CrossRef] [PubMed]
- Contant, R.; Klemperer, W.G.; Yaghi, O. Potassium Octadecatungstodiphosphates(V) and Related Lacunary Compounds. Inorg. Synth. 1990, 27, 104–111. [Google Scholar]
- Rob van Veen, J.A.; Sudmeijer, O.; Emeis, C.A.; Wit, H. On the identification of molybdophosphate complexes in aqueous solution. Dalton Trans. 1986, 1825–1831. [Google Scholar] [CrossRef]
- Rocchiccioli-Deltcheff, C.; Fournier, M.; Franck, R.; Thouvenot, R. Vibrational investigations of polyoxometalates. 2. Evidence for anion-anion interactions in molybdenum(VI) and tungsten(VI) compounds related to the Keggin structure. Inorg. Chem. 1983, 22, 207–216. [Google Scholar] [CrossRef]
- Contant, R.; Thouvenot, R. Hétéropolyanions de type Dawson. 2. Synthèses de polyoxotungstoarsénates lacunaires dérivant de l'octadécatungstodiarsénate. Étude structurale par RMN du tungstène-183 des octadéca(molybdotungstovanado)diarsénates apparentés. Can. J. Chem. 1991, 69, 1498–1506. (In French) [Google Scholar] [CrossRef]
- Abbessi, M.; Contant, R.; Thouvenot, R.; Herve, G. Dawson type heteropolyanions. 1. Multinuclear (phosphorus-31, vanadium-51, tungsten-183) NMR structural investigations of octadeca(molybdotungstovanado)diphosphates .alpha.-1,2,3-[P2MM'2W15O62]n− (M, M' = Mo, V, W): syntheses of new related compounds. Inorg. Chem. 1991, 30, 1695. [Google Scholar] [CrossRef]
- Pope, M.T. Heteropoly and isopoly anions as oxo complexes and their reducibility to mixed-valence blues. Inorg. Chem. 1972, 11, 1973–1974. [Google Scholar] [CrossRef]
- Smith, D.P.; Pope, M.T. Heteropoly 12-metallophosphates containing tungsten and vanadium. Preparation, voltammetry, and properties of mono-, di-, tetra-, and hexavanado complexes. Inorg. Chem. 1973, 12, 331–336. [Google Scholar] [CrossRef]
- Altenau, J.J.; Pope, M.T.; Prados, R.A.; So, H. Models for heteropoly blues. Degrees of valence trapping in vanadium(IV)- and molybdenum(V)-substituted Keggin anions. Inorg. Chem. 1975, 14, 417–421. [Google Scholar] [CrossRef]
- Himeno, S.; Osakai, T.; Saito, A. Preparation and Properties of Heteropoly Molybdovanadate(V) Complexes. Bull. Chem. Soc. Jpn. 1991, 64, 21–28. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ueda, T.; Nishimoto, Y.; Saito, R.; Ohnishi, M.; Nambu, J.-i. Vanadium(V)-Substitution Reactions of Wells–Dawson-Type Polyoxometalates: From [X2M18O62]6− (X = P, As; M = Mo, W) to [X2VM17O62]7−. Inorganics 2015, 3, 355-369. https://doi.org/10.3390/inorganics3030355
Ueda T, Nishimoto Y, Saito R, Ohnishi M, Nambu J-i. Vanadium(V)-Substitution Reactions of Wells–Dawson-Type Polyoxometalates: From [X2M18O62]6− (X = P, As; M = Mo, W) to [X2VM17O62]7−. Inorganics. 2015; 3(3):355-369. https://doi.org/10.3390/inorganics3030355
Chicago/Turabian StyleUeda, Tadaharu, Yuriko Nishimoto, Rie Saito, Miho Ohnishi, and Jun-ichi Nambu. 2015. "Vanadium(V)-Substitution Reactions of Wells–Dawson-Type Polyoxometalates: From [X2M18O62]6− (X = P, As; M = Mo, W) to [X2VM17O62]7−" Inorganics 3, no. 3: 355-369. https://doi.org/10.3390/inorganics3030355
APA StyleUeda, T., Nishimoto, Y., Saito, R., Ohnishi, M., & Nambu, J. -i. (2015). Vanadium(V)-Substitution Reactions of Wells–Dawson-Type Polyoxometalates: From [X2M18O62]6− (X = P, As; M = Mo, W) to [X2VM17O62]7−. Inorganics, 3(3), 355-369. https://doi.org/10.3390/inorganics3030355