Direct Synthesis of LiAlH4 from Ti-Doped Active LiAl Alloy
"> Figure 1
<p>(<b>a</b>) Schematic diagram of the preparation process of active LAT alloys; optical photographs of (<b>b</b>) as-cast alloy by induction smelting, (<b>c</b>) alloy flakes by melt spinning, and (<b>d</b>) alloy powder after cryomilling.</p> "> Figure 2
<p>XRD patterns of LAT–b, LAT–2000, and LAT–4000 alloy flakes.</p> "> Figure 3
<p>SEM of (<b>a</b>) LAT-b, (<b>b</b>) LAT-2000, and (<b>c</b>) LAT-4000; corresponding (<b>d</b>–<b>f</b>) EDX mapping (<b>g</b>–<b>i</b>) corresponding BSE images.</p> "> Figure 4
<p>(<b>a</b>) XRD patterns and (<b>b</b>) corresponding crystallite size and strain of LAT–b–CM, LAT–2000–CM, and LAT–4000–CM; SEM images of (<b>c</b>) LAT–b–CM, (<b>d</b>) LAT–2000–CM, and (<b>e</b>) LAT–4000–CM, respectively; (<b>f</b>) TEM and corresponding EDX mapping of LAT–4000–CM.</p> "> Figure 5
<p>(<b>a</b>) XRD patterns and (<b>b</b>) Non-isothermal dehydrogen curves of LAT–b–CM–H, LAT–2000–CM–H, LAT–4000–CM–H samples; (<b>c</b>) hydrogen mass spectrum of LAT–4000–CM–H sample; (<b>d</b>) survey XPS spectra, and (<b>e</b>) Al 2p XPS spectra of LAT–4000–CM–H and as-received LiAlH<sub>4</sub>.</p> "> Figure 6
<p>(<b>a</b>) XRD patterns of LAT–4000–CM and LA–b alloy, (<b>b</b>) XRD patterns, (<b>c</b>) non-isothermal dehydrogen curves, (<b>d</b>) survey XPS spectra, and (<b>e</b>) Al 2p XPS spectra of LAT–4000–CM–H and LA–b–H samples.</p> "> Figure 7
<p>(<b>a</b>) Non-isothermal dehydrogen curves, (<b>b</b>) survey XPS spectra, (<b>c</b>) Al 2p XPS spectrum, and (<b>d</b>) Li 1s XPS spectrum of rehydrogenated LAT–4000–CM–H.</p> ">
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Preparation of the Li–Al–Ti Alloy
3.2. Synthesis of LiAlH4 Through Hydrogen-Reactive Ball Milling
3.3. Structure and Morphology Characterizations
3.4. Hydrogen Storage Property Measurements
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhao, P.C.; Deng, L.Q.; Sun, C.; Li, X.P.; Tian, X.Y.; Li, Z.; Sheng, W.C. New Insights into the Roles of Surface and Lattice Hydrogen in Electrocatalytic Hydrogen Oxidation. ACS Catal. 2025, 15, 1352–1362. [Google Scholar] [CrossRef]
- Yang, Q.; Jia, X.; Qin, Z.; Ding, X.; Li, Y. Enhancements in Hydrogen Storage Properties of Magnesium Hydride Supported by Carbon Fiber: Effect of C–H Interactions. Inorganics 2024, 12, 273. [Google Scholar] [CrossRef]
- Jensen, E.H.; Dornheim, M.; Sartori, S. Scaling up Metal Hydrides for Real-Scale Applications: Achievements, Challenges and Outlook. Inorganics 2021, 9, 37. [Google Scholar] [CrossRef]
- Peru, F.; Payandeh, S.; Jensen, T.R.; Charalambopoulou, G.; Steriotis, T. Destabilization of the LiBH4–NaBH4 Eutectic Mixture through Pore Confinement for Hydrogen Storage. Inorganics 2023, 11, 128. [Google Scholar] [CrossRef]
- Abdechafik, E.H.; Ousaleh, H.A.; Mehmood, S.; Baba, Y.F.; Bürger, I.; Linder, M.; Faik, A. An analytical review of recent advancements on solid-state hydrogen storage. Int. J. Hydrogen Energy 2024, 52, 1182–1193. [Google Scholar] [CrossRef]
- Wang, L.; Aguey-Zinsou, K.F. Synthesis of LiAlH4 Nanoparticles Leading to a Single Hydrogen Release Step upon Ti Coating. Inorganics 2017, 5, 38. [Google Scholar] [CrossRef]
- Zhang, G.R.; Liu, J.X.; Wei, S.; Xu, F.; Sun, L.X.; Xia, Y.P.; Wang, H.H.; Wu, J.F.; Gao, Y.; Shao, Q.W.; et al. Thermally induced in situ fabrication of TiO2/CN heterojunction dopant for enhancement of hydrogen storage properties of LiAlH4. J. Mater. Sci. Technol. 2024, 203, 227–236. [Google Scholar] [CrossRef]
- Pratthana, C.; Aguey-Zinsou, K.F. LiAlH4 Nanoparticles Encapsulated within Metallic Titanium Shells for Enhanced Hydrogen Storage. ACS Appl. Nano Mater. 2022, 5, 16413–16422. [Google Scholar] [CrossRef]
- Tena-García, J.R.; Osorio-Garcia, M.; Suárez-Alcántara, K. LiBH4–VCl3 and LiAlH4–VCl3 mixtures prepared in soft milling conditions for hydrogen release at low temperature. Int. J. Hydrogen Energy 2022, 47, 28046–28060. [Google Scholar] [CrossRef]
- Bu, Y.T.; Sun, L.X.; Xu, F.; Luo, Y.M.; Zhang, C.C.; Wei, S.; Zhang, G.R.; Pan, H.G.; Zeng, J.L.; Cao, Z. Improved dehydrogenation of LiAlH4 by Hollow 3D flower-like bimetallic composites M-NC@TiO2 (M=Ni, Co, Fe, Cu). Ceram. Int. 2024, 50, 34251–34263. [Google Scholar] [CrossRef]
- Bu, Y.T.; Sun, L.X.; Xu, F.; Wei, S.; Rosei, F.; Luo, Y.M.; Liu, Z.Y.; Liu, J.X.; Zhang, C.C.; Yao, Y. Highly active bimetallic MOF derivatives for improving the dehydrogenation performance of LiAlH4. J. Alloys Compd. 2023, 961, 170897. [Google Scholar] [CrossRef]
- Liu, Z.Y.; Liu, J.X.; Wei, S.; Xia, Y.P.; Cheng, R.G.; Sun, L.X.; Xu, F.; Huang, P.R.; Bu, Y.T.; Cheng, J.; et al. Improved Hydrogen Storage Properties and Mechanisms of LiAlH4 Doped with Ni/C Nanoparticles Anchored on Large-Size Ti3C2Tx. J. Alloys Compd. 2023, 931, 167353. [Google Scholar] [CrossRef]
- Ismail, M.; Ali, N.A.; Sazelee, N.A.; Suwarno, S.S. Catalytic effect of Al2TiO5 on the dehydrogenation properties of LiAlH4. Int. J. Hydrogen Energy 2022, 47, 31903–31910. [Google Scholar] [CrossRef]
- Pratthana, C.; Aguey-Zinsou, K.F. Surfactant Induced Synthesis of LiAlH4 and NaAlH4 Nanoparticles for Hydrogen Storage. Appl. Sci. 2022, 12, 4742. [Google Scholar] [CrossRef]
- Leng, H.Y.; Xu, J.L.; Jiang, J.J.; Xiao, H.Y.; Li, Q.; Chou, K.-C. Improved dehydrogenation properties of Mg(BH4)2·2NH3 combined with LiAlH4. Int. J. Hydrogen Energy 2015, 40, 8362–8367. [Google Scholar] [CrossRef]
- Jain, I.P.; Jain, P.Y.; Jain, A. Novel hydrogen storage materials: A review of lightweight complex hydrides. J. Alloys Compd. 2010, 503, 303–339. [Google Scholar] [CrossRef]
- Orimo, S.I.; Nakamori, Y.; Eliseo, J.R.; Züttel, A.; Jensen, C.M. Complex hydrides for hydrogen storage. Chem. Rev. 2007, 107, 4111–4132. [Google Scholar] [CrossRef]
- Jang, J.W.; Shim, J.H.; Cho, Y.W.; Lee, B.J. Thermodynamic calculation of LiH↔Li3AlH6↔LiAlH4 reactions. J. Alloys Compd. 2006, 420, 286–290. [Google Scholar] [CrossRef]
- Ke, X.Z.; Chen, C.F. Thermodynamic functions and pressure-temperature phase diagram of lithium alanates by ab initio calculations. Phys. Rev. B Condens. Matter Mater. Phys. 2007, 76, 024112. [Google Scholar] [CrossRef]
- Chen, J.; Kuriyama, N.; Xu, Q.; Takeshita, H.T.; Sakai, T. Reversible Hydrogen Storage via Titanium-Catalyzed LiAlH4 and Li3AlH6. J. Phys. Chem. B 2001, 105, 11214–11220. [Google Scholar] [CrossRef]
- Din, R.U.; Zhang, L.; Li, P.; Qu, X.H. Catalytic effects of nano-sized TiC additions on the hydrogen storage properties of LiAlH4. J. Alloys Compd. 2010, 508, 119–128. [Google Scholar] [CrossRef]
- Wei, S.; Liu, J.X.; Xia, Y.P.; Zhang, H.Z.; Cheng, R.G.; Sun, L.X.; Xu, F.; Huang, P.R.; Rosei, F.; Pimerzin, A.A.; et al. Remarkable catalysis of spinel ferrite XFe2O4 (X = Ni, Co, Mn, Cu, Zn) nanoparticles on the dehydrogenation properties of LiAlH4: An experimental and theoretical study. J. Mater. Sci. Technol. 2022, 111, 189–203. [Google Scholar] [CrossRef]
- Wei, S.; Liu, J.X.; Xia, Y.P.; Zhang, H.Z.; Cheng, R.G.; Sun, L.X.; Xu, F.; Bu, Y.T.; Liu, Z.Y.; Huang, P.R.; et al. Enhanced Hydrogen Storage Properties of LiAlH4 by Excellent Catalytic Activity of XTiO3@h-BN (X = Co, Ni). Adv. Funct. Mater. 2021, 32, 2110180. [Google Scholar] [CrossRef]
- Graetz, J.; Wegrzyn, J.; Reilly, J.J. Regeneration of Lithium Aluminum Hydride. J. Am. Chem. Soc. 2008, 130, 17790–17794. [Google Scholar] [CrossRef] [PubMed]
- Clasen, H. Alanat-Synthese aus den Elementen und ihre Bedeutung. Angew. Chem. 1961, 73, 322–331. [Google Scholar] [CrossRef]
- Ashby, E.C.; Brendel, G.J.; Redman, H.E. Direct synthesis of complex metal hydrides. Inorg. Chem. 1963, 2, 499–504. [Google Scholar] [CrossRef]
- Liu, X.; McGrady, G.S.; Langmi, H.W.; Jensen, C.M. Facile cycling of Ti-doped LiAlH4 for high performance hydrogen storage. J. Am. Chem. Soc. 2009, 131, 5032–5033. [Google Scholar] [CrossRef]
- Finholt, A.E.; Bond Jr, A.C.; Schlesinger, H.I. Lithium aluminum hydride, aluminum hydride and lithium gallium hydride, and some of their applications in organic and inorganic chemistry1. J. Am. Chem. Soc. 1947, 69, 1199–1203. [Google Scholar] [CrossRef]
- Sazelee, N.A.; Ismail, M. Recent advances in catalyst-enhanced LiAlH4 for solid-state hydrogen storage: A review. Int. J. Hydrogen Energy 2021, 46, 9123–9141. [Google Scholar] [CrossRef]
- Zheng, X.P.; Li, P.; Qu, X.H. Engineering, Effect of additives on the reversibility of lithium alanate (LiAlH4). Rare Met. Mater. Eng. 2009, 38, 766–769. [Google Scholar] [CrossRef]
- Zheng, X.P.; Li, P.; Humail, I.S.; An, F.Q.; Wang, G.Q.; Qu, X.H. Effect of catalyst LaCl3 on hydrogen storage properties of lithium alanate (LiAlH4). Int. J. Hydrogen Energy 2007, 32, 4957–4960. [Google Scholar] [CrossRef]
- Kojima, Y.; Kawai, Y.; Haga, T.; Matsumoto, M.; Koiwai, A. Direct formation of LiAlH4 by a mechanochemical reaction. J. Alloys Compd. 2007, 441, 189–191. [Google Scholar] [CrossRef]
- Zhang, C.M.; Wang, C.L.; Shi, Q.Y.; Wang, X.L.; Zhao, S.L.; Liang, L.; Wang, Q.S.; Wang, L.M.; Cheng, Y. Constructing Ni/CeO2 synergistic catalysts into LiAlH4 and AlH3 composite for enhanced hydrogen released properties. Appl. Catal. B Environ. 2024, 359, 124521. [Google Scholar] [CrossRef]
- Sazelee, N.A.; Ali, N.A.; Liu, H.; Ismail, M. Improving the desorption properties of LiAlH4 by the addition of Ni0.6Zn0.4O. Int. J. Hydrogen Energy 2024, 56, 543–551. [Google Scholar] [CrossRef]
- Ali, N.A.; Nasef, M.M.; Jalil, A.A.; Ismail, M. Zn2TiO4 synthesized via solid-state method and its effects on dehydrogenation properties of LiAlH4. Int. J. Hydrogen Energy 2024, 50, 484–494. [Google Scholar] [CrossRef]
- Zhang, C.M.; Liang, L.; Zhao, S.L.; Wu, Z.J.; Wang, S.H.; Yin, D.M.; Wang, Q.S.; Wang, L.M.; Wang, C.L.; Cheng, Y. Dehydrogenation behavior and mechanism of LiAlH4 adding nano-CeO2 with different morphologies. Nano Res. 2023, 16, 9426–9434. [Google Scholar] [CrossRef]
- Gu, J.L.; Duan, F.H.; Liu, S.D.; Cha, W.H.; Lu, J. Phase Engineering of Nanostructural Metallic Materials: Classification, Structures, and Applications. Chem. Rev. 2024, 124, 1247–1287. [Google Scholar] [CrossRef]
- Kotelnikova, A.; Zubar, T.; Vershinina, T.; Panasiuk, M.; Kanafyev, O.; Fedkin, V.; Kubasov, I.; Turutin, A.; Trukhanov, S.; Tishkevich, D.; et al. The Influence of Saccharin Adsorption on NiFe Alloy Film Frowth Mechanisms during Electrodeposition. RSC Adv. 2022, 12, 35722–35729. [Google Scholar] [CrossRef]
- Hu, K.S.; Zou, C.M.; Wang, H.W.; Wei, Z.J. The role of in-situ Al3Ti formed during solidification in improving the high-temperature properties of Al-Cu alloy. Mater. Sci. Eng. A 2024, 902, 146585. [Google Scholar] [CrossRef]
- Watanabe, Y.; Mihara-Narita, M.; Sato, H. Grain Refinement of Cast Aluminum by Heterogeneous Nucleation Site Particles with High Lattice Matching. Mater. Trans. 2023, 64, 1083–1097. [Google Scholar] [CrossRef]
- Ascencio de la Cruz, L.A.; Flores-Zúñiga, H.; Alvarado-Hernández, F.; Camarillo-Garcia, J.P. Microstructure and thermal characterization of Ni50Mn33Cr10In7 alloy in bulk and ribbons. MRS Adv. 2025, 1–6. [Google Scholar] [CrossRef]
- Klassen, T.; Oehring, M.; Bormann, R. The early stages of phase formation during mechanical alloying of Ti–Al. J. Mater. Res. 1994, 9, 47–52. [Google Scholar] [CrossRef]
- Turchenko, V.A.; Trukhanov, S.V.; Kostishin, V.G.; Damay, F.; Porcher, F.; Klygach, D.S.; Vakhitov, M.G.; Matzui, L.Y.u.; Yakovenko, O.S.; Bozzo, B.; et al. Impact of In3+ Cations on Structure and Electromagnetic State of M-Type Hexaferrites. J. Energy Chem. 2022, 69, 667–676. [Google Scholar] [CrossRef]
- Kalita, A.; Kalita, M.P.C. Nanostructures, Williamson-Hall analysis and optical properties of small sized ZnO nanocrystals. Phys. E 2017, 92, 36–40. [Google Scholar] [CrossRef]
- Balema, V.P.; Wiench, J.W.; Dennis, K.W.; Pruski, M.; Pecharsky, V.K. Titanium catalyzed solid-state transformations in LiAlH4 during high-energy ball-milling. J. Alloys Compd. 2001, 329, 108–114. [Google Scholar] [CrossRef]
- Li, X.X.; Wang, J.S.; Miao, Y.S.; Li, Q.; Xue, C.P.; Yang, X.H. In-situ study on the effect of Li concentration on hydrogen microporosity evolution in Al-Li alloys by synchrotron X-ray radiography. J. Alloys Compd. 2024, 1008, 176810. [Google Scholar] [CrossRef]
- Kim, S.H.; Hui, K.N.; Kim, Y.J.; Lim, T.S.; Yang, D.Y.; Kim, K.B.; Kim, Y.J.; Jang, G.J.; Yang, S.S. Fabrication of Pre-Alloyed Al-Li Powders with High Li Content via Thermal Dehydrogenation of LiH and Rapid Solidification Process. Mater. Des. 2016, 94, 159–165. [Google Scholar] [CrossRef]
- Ares, J.R.; Aguey-Zinsou, K.F.; Porcu, M.; Sykes, J.M.; Dornheim, M.; Klassen, T.; Bormann, R. Thermal and Mechanically Activated Decomposition of LiAlH4. Mater. Res. Bull. 2008, 43, 1263–1275. [Google Scholar] [CrossRef]
- Andrei, C.M.; Walmsley, J.C.; Brinks, H.W.; Holmestad, R.; Blanchard, D.; Hauback, B.C.; Botton, G.A. Analytical Electron Microscopy Studies of Lithium Aluminum Hydrides with Ti- and V-Based Additives. J. Phys. Chem. B 2005, 109, 4350–4356. [Google Scholar] [CrossRef]
- Trukhanov, S.V.; Trukhanov, A.V.; Vasiliev, A.N.; Balagurov, A.M.; Szymczak, H. Magnetic State of the Structural Separated Anion-Deficient La0.70Sr0.30MnO2.85 Manganite. J. Exp. Theor. Phys. 2011, 113, 819–825. [Google Scholar] [CrossRef]
- Léon, A.; Schild, D.; Fichtner, M. Chemical State of Ti in Sodium Alanate Doped with TiCl3 using X-ray photoelectron spectroscopy. J. Alloys Compd. 2005, 404, 766–770. [Google Scholar] [CrossRef]
- Xin, G.B.; Yang, J.Z.; Zhang, G.Q.; Zheng, J.; Li, X.G. Promising HydrogenStorage Properties and Potential Applications of Mg–Al–Pd Trilayer Films under Mild Conditions. Dalton Trans. 2012, 41, 11555–11558. [Google Scholar] [CrossRef] [PubMed]
- Pacanowski, S.; Wachowiak, M.; Jabłoński, B.; Szymański, B.; Smardz, L. Interface Mixing and Hydrogen Absorption in Pd/Mg and Pd/Al/Mg Thin Films. Int. J. Hydrogen Energy 2021, 46, 806–813. [Google Scholar] [CrossRef]
- Xin, G.B.; Yang, J.Z.; Wang, C.Y.; Zheng, J.; Li, X.G. Superior (De)Hydrogenation Properties of Mg–Ti–Pd Trilayer Films at Room Temperature. Dalton Trans. 2012, 41, 6783–6790. [Google Scholar] [CrossRef]
- Fang, S.W.; Yang, Y.X.; Li, Z.L.; Chu, Y.; Chen, Y.J.; Gao, Y.; Liu, Y.X.; Cui, W.G.; Wang, X.Q.; Miao, J.; et al. Direct Mechanochemical Synthesis of Nano-LiAlH4 Promoted by 0.696 wt% TiCl4 Catalyst Surface-Modified Al Powder. J. Alloys Compd. 2024, 1008, 176537. [Google Scholar] [CrossRef]
- Zang, L.; Cai, J.X.; Zhao, L.P.; Gao, W.H.; Liu, J.; Wang, Y.J. Improved Hydrogen Storage Properties of LiAlH4 by Mechanical Milling with TiF3. J. Alloys Compd. 2015, 647, 756–762. [Google Scholar] [CrossRef]
- Saitoh, H.; Machida, A.; Katayama, Y.; Aoki, K. Formation and Decomposition of AlH3 in the Aluminum-Hydrogen System. Appl. Phys. Lett. 2008, 93, 151918. [Google Scholar] [CrossRef]
- Borgschulte, A.; Bielmann, M.; Züttel, A.; Barkhordarian, G.; Dornheim, M.; Bormann, R. Hydrogen Dissociation on Oxide Covered MgH2 by Catalytically Active Vacancies. Appl. Surf. Sci. 2008, 254, 2377–2384. [Google Scholar] [CrossRef]
- Varin, R.A.; Parviz, R. The Effects of the Nanometric Interstitial Compounds TiC, ZrC and TiC on the Mechanical and Thermal Dehydrogenation and Rehydrogenation of the Nanocomposite Lithium Alanate (LiAIH4) Hydride. Int. J. Hydrogen Energy 2014, 39, 2575–2586. [Google Scholar] [CrossRef]
- Zhai, F.Q.; Li, P.; Sun, A.Z.; Wu, S.; Wan, Q.; Zhang, W.N.; Li, Y.L.; Cui, L.Q.; Qu, X.H. Significantly Improved Dehydrogenation of LiAIH4 Destabilized by MnFe2O4 Nanoparticles. J. Phys. Chem. C 2012, 116, 11939–11945. [Google Scholar] [CrossRef]
- Ahmad, M.A.N.; Sazelee, N.A.; Ali, N.A.; Ismail, M. Enhancing the Dehydrogenation Properties of LiAlH4 using K2NiF6 as Additive. Int. J. Hydrogen Energy 2022, 47, 24843–24851. [Google Scholar] [CrossRef]
- Varin, R.A.; Parviz, R. The Effects of the Micrometric and Nanometric Iron (Fe) Additives on the Mechanical and Thermal Dehydrogenation of Lithium Alanate (LiAlH4), its Self-Discharge at Low Temperatures and Rehydrogenation. Int. J. Hydrogen Energy 2012, 37, 9088–9102. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chu, Y.; Fang, S.; Chen, Y.; Zhang, X.; Zheng, J.; Li, Z.; Du, W.; Cui, W.; Miao, J.; Yang, Y.; et al. Direct Synthesis of LiAlH4 from Ti-Doped Active LiAl Alloy. Inorganics 2025, 13, 74. https://doi.org/10.3390/inorganics13030074
Chu Y, Fang S, Chen Y, Zhang X, Zheng J, Li Z, Du W, Cui W, Miao J, Yang Y, et al. Direct Synthesis of LiAlH4 from Ti-Doped Active LiAl Alloy. Inorganics. 2025; 13(3):74. https://doi.org/10.3390/inorganics13030074
Chicago/Turabian StyleChu, Yan, Shiwei Fang, Yingjue Chen, Xiaoqi Zhang, Jie Zheng, Zhenglong Li, Wubin Du, Wengang Cui, Jian Miao, Yaxiong Yang, and et al. 2025. "Direct Synthesis of LiAlH4 from Ti-Doped Active LiAl Alloy" Inorganics 13, no. 3: 74. https://doi.org/10.3390/inorganics13030074
APA StyleChu, Y., Fang, S., Chen, Y., Zhang, X., Zheng, J., Li, Z., Du, W., Cui, W., Miao, J., Yang, Y., Liu, Y., Gao, M., & Pan, H. (2025). Direct Synthesis of LiAlH4 from Ti-Doped Active LiAl Alloy. Inorganics, 13(3), 74. https://doi.org/10.3390/inorganics13030074