Cyclodextrins’ Internal Cavity Hydration: Insights from Theory and Experiment
<p>(<b>A</b>) Molecular structure of CDs; (<b>B</b>) Schematic representation of the shape of CDs; (<b>C</b>) M062X/6-31G(d,p) fully optimized non-hydrated CDs (top view from the narrow rim): “closed” configuration—structures with intramolecular hydrogen bonds at both rims with opposite mutual orientation: looking from the narrow rim side the orientation of the wide rim hydrogen bonds is clockwise, while the orientation of the narrow rim hydrogen bonds is counterclockwise, while the orientation of the narrow rim hydrogen bonds is counterclockwise; “open” configuration—the orientation of the wide rim hydrogen bonds is clockwise.</p> "> Figure 2
<p>Electron density of α-CD (isovalue: MO = 0.02, density = 0.0004), mapped with electrostatic potential (color scheme: red/yellow for negative surface map values and blue for positive ones).</p> "> Figure 3
<p>Schematic representation of CD–H<sub>2</sub>O complexes with water molecules/clusters located at three different positions, and M062X/6-311++G(d,p)//M062X/6-31G(d,p) calculated relative enthalpies of the respective complexes.</p> "> Figure 4
<p>Schematic representation of the energetically preferred α-CD–nH<sub>2</sub>O complexes (where n = 1–6).</p> "> Figure 5
<p>Structures of the most densely populated CD hydrates (α-CD—6H<sub>2</sub>O, β-CD—10H<sub>2</sub>O, and γ-CD—7H<sub>2</sub>O).</p> "> Figure 6
<p>Fully optimized geometries of selected β-CD assemblies with water and N<sub>2</sub>O (β-CD—nH2O—N<sub>2</sub>O denotes a complex between β-CD, n water molecules, and N<sub>2</sub>O), and the respective Gibbs free energies of complex formation (in kcal/mol). The hydrogen bond network is visualized in the β-CD—9H<sub>2</sub>O—N<sub>2</sub>O construct (in yellow).</p> "> Figure 7
<p>Thermogravimetric/TG (<b>a</b>) and DSC (<b>b</b>) analysis of as-received α-CD, β-CD, and γ-CD.</p> "> Figure 8
<p>Schematic representation of the possible crystal structure packs of CDs.</p> ">
Abstract
:1. Introduction
2. Quantum–Chemical Evaluations
2.1. Mechanism of Hydration—Number of Confined Water Molecules
2.2. Competition Between Confined Water Molecules and Other Guest Entities for the Host’s Interior
3. Monte Carlo (MC) and Molecular Dynamics (MD) Simulations
4. Experimental Evaluations
4.1. Measured Water Content
4.2. Cyclodextrins Structure—Water Relationship
- In Form I, the orientation of adjacent α-CD rings positions the O(2)…O(3) rim of one α-CD molecule over the cavity of the neighboring molecule. In contrast, in Form II, the O(6) rim is closer to the cavity of the adjacent molecule.
- This packing arrangement in Form II allows one of the O(6) hydroxyl groups to protrude into the neighboring cavity, resulting in the formation of a self-inclusion complex.
5. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lide, D.R. (Ed.) CRC Handbook of Chemistry and Physics, 76th ed.; CRC Press LCC: Boca Raton, FL, USA, 2004. [Google Scholar]
- Chakraborty, S.; Kumar, H.; Dasgupta, C.; Maiti, P.K. Confined Water: Structure, Dynamics, and Thermodynamics. Acc. Chem. Res. 2017, 50, 2139–2146. [Google Scholar] [CrossRef] [PubMed]
- Knight, A.W.; Kalugin, N.G.; Coker, E.; Ilgen, A.G. Water Properties under Nano-Scale Confinement. Sci. Rep. 2019, 9, 8246. [Google Scholar] [CrossRef] [PubMed]
- Szejtli, J. Introduction and General Overview of Cyclodextrin Chemistry. Chem. Rev. 1998, 98, 1743–1754. [Google Scholar] [CrossRef] [PubMed]
- Crini, G. Review: A History of Cyclodextrins. Chem. Rev. 2014, 114, 10940–10975. [Google Scholar] [CrossRef]
- Bilensoy, E. Cyclodextrins in Pharmaceutics, Cosmetics, and Biomedicine; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2011; ISBN 97804709268199780470474228. [Google Scholar]
- Lipkowitz, K.B. Applications of Computational Chemistry to the Study of Cyclodextrins. Chem. Rev. 1998, 98, 1829–1874. [Google Scholar] [CrossRef]
- Angelova, S.; Nikolova, V.; Pereva, S.; Spassov, T.; Dudev, T. α-Cyclodextrin: How Effectively Can Its Hydrophobic Cavity Be Hydrated? J. Phys. Chem. B 2017, 121, 9260–9267. [Google Scholar] [CrossRef]
- Pereva, S.; Nikolova, V.; Angelova, S.; Spassov, T.; Dudev, T. Water inside β-Cyclodextrin Cavity: Amount, Stability and Mechanism of Binding. Beilstein J. Org. Chem. 2019, 15, 1592–1600. [Google Scholar] [CrossRef]
- Pereva, S.; Dobrev, S.; Sarafska, T.; Nikolova, V.; Angelova, S.; Spassov, T.; Dudev, T. Deciphering the Mechanism of γ-Cyclodextrin’s Hydrophobic Cavity Hydration: An Integrated Experimental and Theoretical Study. Beilstein J. Org. Chem. 2024, 20, 2635–2643. [Google Scholar] [CrossRef]
- Liu, L.; Guo, Q.-X. The Driving Forces in the Inclusion Complexation of Cyclodextrins. J. Incl. Phenom. Macrocycl. Chem. 2002, 42, 1–14. [Google Scholar] [CrossRef]
- Connors, K.A. The Stability of Cyclodextrin Complexes in Solution. Chem. Rev. 1997, 97, 1325–1358. [Google Scholar] [CrossRef]
- Taulier, N.; Chalikian, T. V Hydrophobic Hydration in Cyclodextrin Complexation. J. Phys. Chem. B 2006, 110, 12222–12224. [Google Scholar] [CrossRef] [PubMed]
- Sandilya, A.A.; Natarajan, U.; Priya, M.H. Molecular View into the Cyclodextrin Cavity: Structure and Hydration. ACS Omega 2020, 5, 25655–25667. [Google Scholar] [CrossRef] [PubMed]
- Dudev, T.; Spassov, T. Inclusion Complexes between β-Cyclodextrin and Gaseous Substances—N2O, CO2, HCN, NO2, SO2, CH4 and CH3CH2CH3: Role of the Host’s Cavity Hydration. Inorganics 2024, 12, 110. [Google Scholar] [CrossRef]
- Manor, P.C.; Saenger, W. Topography of Cyclodextrin Inclusion Complexes. III. Crystal and Molecular Structure of Cyclohexaamylose Hexahydrate, the Water Dimer Inclusion Complex. J. Am. Chem. Soc. 1974, 96, 3630–3639. [Google Scholar] [CrossRef]
- Lindner, K.; Saenger, W. β-Cyclodextrin Dodecahydrate: Crowding of Water Molecules within a Hydrophobic Cavity. Angew. Chem. Int. Ed. Engl. 1978, 17, 694–695. [Google Scholar] [CrossRef]
- Georg, H.C.; Coutinho, K.; Canuto, S. A Look inside the Cavity of Hydrated α-Cyclodextrin: A Computer Simulation Study. Chem. Phys. Lett. 2005, 413, 16–21. [Google Scholar] [CrossRef]
- Tanada, S.; Nakamura, T.; Kawasaki, N.; Kurihara, T.; Umemoto, Y. Adsorption Behavior of Water Molecules onto α-, β-, and γ-Cyclodextrins and Branched α-Cyclodextrins. J. Colloid Interface Sci. 1996, 181, 326–330. [Google Scholar] [CrossRef]
- Sabadini, E.; Cosgrove, T.; Egídio, F.d.C. Solubility of Cyclomaltooligosaccharides (Cyclodextrins) in H2O and D2O: A Comparative Study. Carbohydr. Res. 2006, 341, 270–274. [Google Scholar] [CrossRef]
- Specogna, E.; Li, K.W.; Djabourov, M.; Carn, F.; Bouchemal, K. Dehydration, Dissolution, and Melting of Cyclodextrin Crystals. J. Phys. Chem. B 2015, 119, 1433–1442. [Google Scholar] [CrossRef]
- Bilal, M.; de Brauer, C.; Claudy, P.; Germain, P.; Létoffé, J.M. β-Cyclodextrin Hydration: A Calorimetric and Gravimetric Study. Thermochim. Acta 1995, 249, 63–73. [Google Scholar] [CrossRef]
- Nakai, Y.; Yamamoto, K.; Terada, K.; Kajizama, A.; Sasaki, I. Properties of Crystal Water of α-, β-, and γ-Cyclodextrin. Chem. Pharm. Bull. 1986, 34, 2178–2182. [Google Scholar] [CrossRef]
- Seidel, R.W.; Koleva, B.B. β-Cyclodextrin 10.41-Hydrate. Acta Crystallogr. Sect. E 2009, 65, o3162–o3163. [Google Scholar] [CrossRef] [PubMed]
- Pereva, S.; Sarafska, T.; Bogdanova, S.; Spassov, T. Efficiency of “Cyclodextrin-Ibuprofen” Inclusion Complex Formation. J. Drug Deliv. Sci. Technol. 2016, 35, 34–39. [Google Scholar] [CrossRef]
- Betzel, C.; Saenger, W.; Hingerty, B.E.; Brown, G.M. Topography of Cyclodextrin Inclusion Complexes, Part 20. Circular and Flip-Flop Hydrogen Bonding in Beta-Cyclodextrin Undecahydrate: A Neutron Diffraction Study. J. Am. Chem. Soc. 1984, 106, 7545–7557. [Google Scholar] [CrossRef]
- Lindner, K.; Saenger, W. Topography of Cyclodextrin Inclusion Complexes. XVI. Cyclic System of Hydrogen Bonds: Structure of {α}-Cyclodextrin Hexahydrate, Form (II): Comparison with Form (I). Acta Crystallogr. Sect. B 1982, 38, 203–210. [Google Scholar] [CrossRef]
- Saenger, W.; Jacob, J.; Gessler, K.; Steiner, T.; Hoffmann, D.; Sanbe, H.; Koizumi, K.; Smith, S.M.; Takaha, T. Structures of the Common Cyclodextrins and Their Larger AnaloguesBeyond the Doughnut. Chem. Rev. 1998, 98, 1787–1802. [Google Scholar] [CrossRef]
- Keutsch, F.N.; Saykally, R.J. Water Clusters: Untangling the Mysteries of the Liquid, One Molecule at a Time. Proc. Natl. Acad. Sci. USA 2001, 98, 10533–10540. [Google Scholar] [CrossRef]
- Pérez, C.; Muckle, M.T.; Zaleski, D.P.; Seifert, N.A.; Temelso, B.; Shields, G.C.; Kisiel, Z.; Pate, B.H. Structures of Cage, Prism, and Book Isomers of Water Hexamer from Broadband Rotational Spectroscopy. Science 2012, 336, 897–901. [Google Scholar] [CrossRef]
- Wang, Y.; Babin, V.; Bowman, J.M.; Paesani, F. The Water Hexamer: Cage, Prism, or Both. Full Dimensional Quantum Simulations Say Both. J. Am. Chem. Soc. 2012, 134, 11116–11119. [Google Scholar] [CrossRef]
- Foley, J.J.I.V.; Mazziotti, D.A. Cage versus Prism: Electronic Energies of the Water Hexamer. J. Phys. Chem. A 2013, 117, 6712–6716. [Google Scholar] [CrossRef]
- Mrázek, J.; Burda, J. V Can the PH Value of Water Solutions Be Estimated by Quantum Chemical Calculations of Small Water Clusters? J. Chem. Phys. 2006, 125, 194518. [Google Scholar] [CrossRef] [PubMed]
- Chesnut, D.B. Structures, Energies, and NMR Shieldings of Some Small Water Clusters on the Counterpoise Corrected Potential Energy Surface. J. Phys. Chem. A 2002, 106, 6876–6879. [Google Scholar] [CrossRef]
- Lee, C.; Chen, H.; Fitzgerald, G. Structures of the Water Hexamer Using Density Functional Methods. J. Chem. Phys. 1994, 101, 4472–4473. [Google Scholar] [CrossRef]
- Lee, C.; Chen, H.; Fitzgerald, G. Chemical Bonding in Water Clusters. J. Chem. Phys. 1995, 102, 1266–1269. [Google Scholar] [CrossRef]
- Kim, J.; Kim, K.S. Structures, Binding Energies, and Spectra of Isoenergetic Water Hexamer Clusters: Extensive Ab Initio Studies. J. Chem. Phys. 1998, 109, 5886–5895. [Google Scholar] [CrossRef]
- Losada, M.; Leutwyler, S. Water Hexamer Clusters: Structures, Energies, and Predicted Mid-Infrared Spectra. J. Chem. Phys. 2002, 117, 2003–2016. [Google Scholar] [CrossRef]
- Nascimento, C.S.; Dos Santos, H.F.; De Almeida, W.B. Theoretical Study of the Formation of the α-Cyclodextrin Hexahydrate. Chem. Phys. Lett. 2004, 397, 422–428. [Google Scholar] [CrossRef]
- Raffaini, G.; Ganazzoli, F. Hydration and Flexibility of α-, β-, γ- and δ-Cyclodextrin: A Molecular Dynamics Study. Chem. Phys. 2007, 333, 128–134. [Google Scholar] [CrossRef]
- Raffaini, G.; Ganazzoli, F.; Malpezzi, L.; Fuganti, C.; Fronza, G.; Panzeri, W.; Mele, A. Validating a Strategy for Molecular Dynamics Simulations of Cyclodextrin Inclusion Complexes through Single-Crystal X-Ray and NMR Experimental Data: A Case Study. J. Phys. Chem. B 2009, 113, 9110–9122. [Google Scholar] [CrossRef]
- Koehler, J.E.H.; Saenger, W.; van Gunsteren, W.F. A Molecular Dynamics Simulation of Crystalline α-Cyclodextrin Hexahydrate. Eur. Biophys. J. 1987, 15, 197–210. [Google Scholar] [CrossRef]
- Jana, M.; Bandyopadhyay, S. Hydration Properties of α-, β-, and γ-Cyclodextrins from Molecular Dynamics Simulations. J. Phys. Chem. B 2011, 115, 6347–6357. [Google Scholar] [CrossRef] [PubMed]
- Winkler, R.G.; Fioravanti, S.; Ciccotti, G.; Margheritis, C.; Villa, M. Hydration of β-Cyclodextrin: A Molecular Dynamics Simulation Study. J. Comput. Aided Mol. Des. 2000, 14, 659–667. [Google Scholar] [CrossRef]
- Hădărugă, N.G.; Bandur, G.N.; David, I.; Hădărugă, D.I. A Review on Thermal Analyses of Cyclodextrins and Cyclodextrin Complexes. Environ. Chem. Lett. 2019, 17, 349–373. [Google Scholar] [CrossRef]
- Manakov, A.Y.; Rodionova, T.V.; Aladko, L.S.; Villevald, G.V.; Lipkowski, J.S.; Zelenina, L.N.; Chusova, T.P.; Karpova, T.D. α-Cyclodextrin—Water Binary System. New Data on Dehydration of α-Cyclodextrin Hexahydrate. J. Chem. Thermodyn. 2016, 101, 251–259. [Google Scholar] [CrossRef]
- Bettinetti, G.; Novák, C.; Sorrenti, M. Thermal And Structural Characterization of Commercial α-, β-, and γ-Cyclodextrins. J. Therm. Anal. Calorim. 2002, 68, 517–529. [Google Scholar] [CrossRef]
- Betzel, C.; Hingerty, B.; Noltemeyer, M.; Weber, G.; Saenger, W.; Hamilton, J.A. (β-Cyclodextrin)2·KI7·9 H2O. Spatial Fitting of a Polyiodide Chain to a given Matrix. J. Incl. Phenom. 1983, 1, 181–191. [Google Scholar] [CrossRef]
- Giordano, F.; Novak, C.; Moyano, J.R. Thermal Analysis of Cyclodextrins and Their Inclusion Compounds. Thermochim. Acta 2001, 380, 123–151. [Google Scholar] [CrossRef]
- Harata, K. Crystal Structure of γ-Cyclodextrin at Room Temperature. Chem. Lett. 1984, 13, 641–644. [Google Scholar] [CrossRef]
- Duchêne, D.; Bochot, A. Thirty Years with Cyclodextrins. Int. J. Pharm. 2016, 514, 58–72. [Google Scholar] [CrossRef]
- Szejtli, J. Past, Present and Futute of Cyclodextrin Research. Pure Appl. Chem. 2004, 76, 1825–1845. [Google Scholar] [CrossRef]
- Poulson, B.G.; Alsulami, Q.A.; Sharfalddin, A.; El Agammy, E.F.; Mouffouk, F.; Emwas, A.-H.; Jaremko, L.; Jaremko, M. Cyclodextrins: Structural, Chemical, and Physical Properties, and Applications. Polysaccharides 2022, 3, 1–31. [Google Scholar] [CrossRef]
- Saenger, W.; Steiner, T. Cyclodextrin Inclusion Complexes: Host–Guest Interactions and Hydrogen-Bonding Networks. Acta Crystallogr. Sect. A 1998, 54, 798–805. [Google Scholar] [CrossRef]
- Klar, B.; Hingerty, B.; Saenger, W. Topography of Cyclodextrin Inclusion Complexes. XII. Hydrogen Bonding in the Crystal Structure of α-Cyclodextrin Hexahydrate: The Use of a Multicounter Detector in Neutron Diffraction. Acta Crystallogr. Sect. B 1980, 36, 1154–1165. [Google Scholar] [CrossRef]
- Lindner, K.; Saenger, W. Crystal and Molecular Structure of Cyclohepta-Amylose Dodecahydrate. Carbohydr. Res. 1982, 99, 103–115. [Google Scholar] [CrossRef]
- Gatiatulin, A.K.; Ziganshin, M.A.; Gorbatchuk, V. V Guest Inclusion by Native Cyclodextrins in Solid State and Solutions: A Review. Carbohydr. Polym. 2025, 349, 122962. [Google Scholar] [CrossRef]
- Puliti, R.; Mattia, C.A.; Paduano, L. Crystal Structure of a New α-Cyclodextrin Hydrate Form. Molecular Geometry and Packing Features: Disordered Solvent Contribution. Carbohydr. Res. 1998, 310, 1–8. [Google Scholar] [CrossRef]
- Ripmeester, J.A. Crystalline β-Cyclodextrin Hydrate Is Non-Stoichiometric with 10.5–12 Waters per Cyclodextrin Molecule. Supramol. Chem. 1993, 2, 89–91. [Google Scholar] [CrossRef]
- Steiner, T.; Koellner, G. Crystalline Beta-Cyclodextrin Hydrate at Various Humidities: Fast, Continuous, and Reversible Dehydration Studied by X-Ray Diffraction. J. Am. Chem. Soc. 1994, 116, 5122–5128. [Google Scholar] [CrossRef]
- Maclennan, J.M.; Stezowski, J.J. The Crystal Structure of Uncomplexed-Hydrated Cyclooctaamylose. Biochem. Biophys. Res. Commun. 1980, 92, 926–932. [Google Scholar] [CrossRef]
- Harata, K. The Structure of the Cyclodextrin Complex. XX. Crystal Structure of Uncomplexed Hydrated γ-Cyclodextrin. Bull. Chem. Soc. Jpn. 1987, 60, 2763–2767. [Google Scholar] [CrossRef]
- Linert, W.; Han, L.; Lukovits, I. The Use of the Isokinetic Relationship and Molecular Mechanics to Investigate Molecular Interactions in Inclusion Complexes of Cyclodextrins. Chem. Phys. 1989, 139, 441–455. [Google Scholar] [CrossRef]
Molecule | Maximum Number of Water Molecules | Method Used | References |
---|---|---|---|
α-CD | 5 | MC | Georg et al. [18] |
2.3–3.1 | MD | Sandilya et al. [14] | |
3.6 | MD | Raffaini et al. [40,41] | |
2 | MD | Koehler et al. [42] | |
4 | MD | Jana et al. [43] | |
2 | DFT | Nascimento et al. [39] | |
6 | DFT | Angelova et al. [8] | |
β-CD | 4.6–7.5 | MD | Sandilya et al. [14] |
6.5 | MD | Winkler et al. [44] | |
6.3 | MD | Raffaini et al. [40] | |
8–4 | MD | Jana et al. [43] | |
10 | DFT | Pereva et al. [9] | |
γ-CD | 8.6–15.5 | MD | Sandilya et al. [14] |
8.9 | MD | Raffaini et al. [40] | |
11 | MD | Jana et al. [43] | |
7 | DFT | Pereva et al. [10] |
Molecule | Water Content | ΔH | Methods | References |
---|---|---|---|---|
α-CD | 6–7.5 | 338 J/g | DSC, TG, DTA | Hădărugă et al. [45] |
6–9 (44% HD) 3 (3% HD) | μDSC, TGA, XRD | Specogna et al. [21] | ||
6 overall: 2 H2O in 4 out of the cavity forming HB | Powder XRD | Manor et al. [16] Lindner et al. [27] | ||
6 | DTA, DSC, TG, EGA, STA | Angelova et al. [8] Manakov et al. [46] Bettinetti et al. [47] | ||
5.1 | 304 °C: 258 J/g 341 °C: 27 J/g | DTA | Manakov et al. [46] | |
β-CD | 10 | μDSC, TGA, XRD | Specogna et al. [21] | |
9.6 | DSC, TG, XRD | Sabadini et al. [20] | ||
10–12 | 302 J/g | TG, DSC, | Bilal et al. [22] Nakai et al. [23] | |
10 | DSC, TG | Pereva et al. [9] | ||
10.41 | XRD | Seidel and Koleva [24] | ||
9.4–12 | XRD | Betzel et al. [48] | ||
γ-CD | 7 | DSC, TG | Pereva et al. [10] | |
7.6 | μDSC, TGA, XRD | Specogna et al. [21] | ||
5–17 | DTA, DSC, TG | Giordano et al. [49] | ||
13.3 5.3 in 13 sites | XRD | Harata [50] |
α-CD Hydrate | T Peak Max, °C | ΔH J/g |
---|---|---|
α-CD·5.1H2O as-received, open pan | ≈66°, 101°, 110° | Total = 258.0 |
α-CD·5.1H2O as-received, sealed pan | 86° | 27.4 |
α-CD·5.1H2O as-received, sealed pan upon heating to T ≈ 100° | 76–77° | 27.7 |
RH % | α-CD | β-CD | γ-CD |
---|---|---|---|
initial | 9.7 | 13.6 | 9 |
90 | 10.15 | 15.2 | 18.2 |
3 | 5.3 | 2.9–3 | 4.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Angelova, S.; Pereva, S.; Dudev, T.; Spassov, T. Cyclodextrins’ Internal Cavity Hydration: Insights from Theory and Experiment. Inorganics 2025, 13, 28. https://doi.org/10.3390/inorganics13010028
Angelova S, Pereva S, Dudev T, Spassov T. Cyclodextrins’ Internal Cavity Hydration: Insights from Theory and Experiment. Inorganics. 2025; 13(1):28. https://doi.org/10.3390/inorganics13010028
Chicago/Turabian StyleAngelova, Silvia, Stiliyana Pereva, Todor Dudev, and Tony Spassov. 2025. "Cyclodextrins’ Internal Cavity Hydration: Insights from Theory and Experiment" Inorganics 13, no. 1: 28. https://doi.org/10.3390/inorganics13010028
APA StyleAngelova, S., Pereva, S., Dudev, T., & Spassov, T. (2025). Cyclodextrins’ Internal Cavity Hydration: Insights from Theory and Experiment. Inorganics, 13(1), 28. https://doi.org/10.3390/inorganics13010028