Effect of Deposition Temperature and Thermal Annealing on the Properties of Sputtered NiOx/Si Heterojunction Photodiodes
<p>(<b>a</b>) Experimental Ψ and Δ dependences and the fitted curves for a layer deposited at 100 °C and subjected to RTA. Refractive index for: (<b>b</b>) As-deposited layers; (<b>c</b>) RTA annealed layers.</p> "> Figure 2
<p>(<b>a</b>) Transmittance of CG substrate and CG coated with NiO<span class="html-italic"><sub>x</sub></span> layers deposited at RT, 50 °C and 100 °C; (<b>b</b>) band gaps of the films determined by the Tauc plot method.</p> "> Figure 3
<p>AFM results of as-deposited NiO<span class="html-italic"><sub>x</sub></span> layers obtained at: (<b>a</b>) RT, (<b>b</b>) 50 °C and (<b>c</b>) 100 °C and of RTA annealed layers deposited at: (<b>d</b>) RT, (<b>e</b>) 50 °C and (<b>f</b>) 100 °C.</p> "> Figure 4
<p>Schematic diagram of the structure of the studied devices with definition of the bias voltage polarity.</p> "> Figure 5
<p><span class="html-italic">I-V</span> characteristics of photodiodes with NiO<span class="html-italic"><sub>x</sub></span> layers deposited at: (<b>a</b>) RT, (<b>b</b>) 50 °C and (<b>c</b>) 100 °C measured in the dark and under illumination with red, green, blue and UV light.</p> "> Figure 6
<p>Schematic energy band diagram of a p-NiO<span class="html-italic"><sub>x</sub></span>/n-Si diode under short-circuit conditions, <span class="html-italic">V</span> = 0 V.</p> "> Figure 7
<p><span class="html-italic">I-V</span> characteristics of photodiodes with NiO<span class="html-italic"><sub>x</sub></span> layers deposited at: (<b>a</b>) RT, (<b>b</b>) 50 °C and (<b>c</b>) 100 °C and subjected to RTA annealing. The dependences were measured in the dark and under illumination with red, green, blue and UV light. The inset in (<b>b</b>) shows a zoomed view of the current in the region of −0.5–0.5 V of a characteristic measured between 5 V and −10 V and then in the opposite direction.</p> "> Figure 8
<p><span class="html-italic">C-V</span> characteristics measured in the dark under reverse bias of: (<b>a</b>) diodes with as-deposited NiO<span class="html-italic"><sub>x</sub></span> layers; (<b>b</b>) diodes with RTA annealed layers.</p> "> Figure 9
<p>Time-dependent photoresponses of diodes with as-deposited NiO<span class="html-italic"><sub>x</sub></span> layers obtained at: (<b>a</b>) RT, (<b>b</b>) 50 °C, and (<b>c</b>) 100 °C, and of diodes with RTA annealed layers deposited at: (<b>d</b>) RT, (<b>e</b>) 50 °C, and (<b>f</b>) 100 °C. The switching curves of the diodes with as-deposited layers were measured at voltage pulses of −3 V, while the RTA diodes were measured at pulses of <span class="html-italic">V<sub>r</sub></span> = −8 V. The red, green, blue and violet color lines correspond to illumination with red, green, blue and UV LED, respectively.</p> "> Figure 10
<p>(<b>a</b>) <span class="html-italic">I</span>/<span class="html-italic">g</span> vs. <span class="html-italic">I</span> dependencies for diodes with as-deposited NiO<span class="html-italic"><sub>x</sub></span> layers prepared at RT, 50 °C and 100 °C. Higher line slope corresponds to higher <span class="html-italic">R<sub>s</sub></span>; (<b>b</b>) comparison of the <span class="html-italic">I</span>/<span class="html-italic">g</span> vs. <span class="html-italic">I</span> dependences for a diode with as-deposited NiO<span class="html-italic"><sub>x</sub></span> prepared at 100 °C (red line) and a RTA annealed diode with NiO<span class="html-italic"><sub>x</sub></span> layer deposited at RT (black line). Note the difference in <span class="html-italic">x</span>-axis scale.</p> "> Figure 11
<p>Responsivity of photodiodes with: (<b>a</b>) as-deposited NiO<span class="html-italic"><sub>x</sub></span> layers; (<b>b</b>) RTA annealed NiO<span class="html-italic"><sub>x</sub></span> layers.</p> ">
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Napari, M.; Huq, T.N.; Hoye, R.L.Z.; MacManus-Driscoll, J.L. Nickel oxide thin films grown by chemical deposition techniques: Potential and challenges in next-generation rigid and flexible device applications. InfoMat 2021, 3, 536–576. [Google Scholar] [CrossRef]
- Aivalioti, C.; Manidakis, E.G.; Pelekanos, N.T.; Androulidaki, M.; Tsagaraki, K.; Viskadourakis, Z.; Spanakis, E.; Aperathitis, E. Niobium-doped NiO as p-type nanostructured layer for transparent photovoltaics. Thin Solid Films 2023, 778, 139910. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, W.; Jia, J.; Chen, Y.; Chen, Z.; Wang, Z.; Zhang, L.; Ma, H. Improvement of electrochromic properties of NiO film doped with ZnO prepared by magnetron sputtering. J. Mater. Sci. Mater. Electron. 2024, 35, 455. [Google Scholar] [CrossRef]
- Li, C.; Choi, P.G.; Kim, K.; Masuda, Y. High performance acetone gas sensor based on ultrathin porous NiO nanosheet. Sens. Actuators B Chem. 2022, 367, 132143. [Google Scholar] [CrossRef]
- Peng, Y.; Jiang, D.; Zhao, M.; Duan, Y.; Wei, H.; Li, H.; Liang, Q.; Wang, S. High-performance UV–visible photodetectors based on ZnO/perovskite heterostructures. J. Alloys Compd. 2023, 965, 171372. [Google Scholar] [CrossRef]
- Chen, L.; Wang, Y.; Zhang, J.; Chen, L.; Zhai, J.; Song, J. Inorganic Semiconductor-Based Flexible UV Photodetector Arrays Achieved by Specific Flip-Chip Bonding. ACS Appl. Mater. Interfaces 2024, 16, 51089–51096. [Google Scholar] [CrossRef]
- Castillo-Saenz, J.R.; Nedev, N.; Valdez-Salas, B.; Bernechea, M.; Martínez-Guerra, E.; Mendivil-Palma, I.; Curiel-Alvarez, M.; Mateos, D.; Perez-Landeros, O. Effect of oxidation temperature on the properties of NiOx layers for application in optical sensors. Thin Solid Films 2021, 734, 138849. [Google Scholar] [CrossRef]
- Ahmed, A.A.; Hashim, M.R.; Qahtan, T.F.; Rashid, M. Preparation and characteristics study of self-powered and fast response p-NiO/n-Si heterojunction photodetector. Ceram. Int. 2022, 48, 20078–20089. [Google Scholar] [CrossRef]
- Wang, J.; Li, Q.; Mi, W.; Wang, D.; Xu, M.; Xiao, L.; Zhang, X.; Luan, C.; Zhao, J. Fast response self-powered solar-blind UV photodetector based on NiO/Ga2O3 p-n junction. Mater. Sci. Semicond. Process. 2025, 186, 109084. [Google Scholar] [CrossRef]
- Hwang, J.-D.; Cheng, Y.-A. Enhancing the Performance of NiO-Based Metal-Semiconductor-Metal Ultraviolet Photodetectors Using a MgO Capping Layer. IEEE Sens. J. 2021, 21, 27400–27404. [Google Scholar] [CrossRef]
- Caglar, M.; Sever, K.; Aktas, S.; Demiroglu, A. Improving the electrical performance of NiO based photodiode fabricated by sol-gel process with Al doping. Sens. Actuators A Phys. 2023, 350, 114099. [Google Scholar] [CrossRef]
- Pandit, B.; Parida, B.; Jang, H.-S.; Heo, K. Self-Powered Broadband Photodetector Based on NiO/Si Heterojunction Incorporating Graphene Transparent Conducting Layer. Nanomaterials 2024, 14, 551. [Google Scholar] [CrossRef] [PubMed]
- Wilson, R.L.; Macdonald, T.J.; Lin, C.-T.; Xu, S.; Taylor, A.; Knapp, C.E.; Guldin, S.; McLachlan, M.A.; Carmalt, C.J.; Blackman, C.S. Chemical vapour deposition (CVD) of nickel oxide using the novel nickel dialkylaminoalkoxide precursor [Ni(dmamp′)2] (dmamp′ = 2-dimethylamino-2-methyl-1-propanolate). RSC Adv. 2021, 11, 22199–22205. [Google Scholar] [CrossRef] [PubMed]
- Aydin, E.; Troughton, J.; Bastiani, M.D.; Ugur, E.; Sajjad, M.; Alzahrani, A.; Neophytou, M.; Schwingenschlögl, U.; Laquai, F.; Baran, D.; et al. Room-Temperature-Sputtered Nanocrystalline Nickel Oxide as Hole Transport Layer for p–i–n Perovskite Solar Cells. ACS Appl. Energy Mater. 2018, 1, 6227–6233. [Google Scholar] [CrossRef]
- Meng, X.; Gao, X.; Du, Y. Influence of O2/Ar flow ratio on the structure, optical and electrical properties of DC reactively magnetron-sputtered face-centered cubic NiO films at room temperature. Phys. Rev. B Condens. Matter 2020, 579, 411877. [Google Scholar] [CrossRef]
- Timoshnev, S.; Kazakin, A.; Shubina, K.; Andreeva, V.; Fedorenko, E.; Koroleva, A.; Zhizhin, E.; Koval, O.; Kurinnaya, A.; Shalin, A.; et al. Annealing Temperature Effect on the Physical Properties of NiO Thin Films Grown by DC Magnetron Sputtering. Adv. Mater. Interfaces 2024, 11, 2300815. [Google Scholar] [CrossRef]
- Wang, H.; Zhao, Y.; Li, X.; Zhen, Z.; Li, H.; Wang, J.; Tang, M. Effect of Sputtering Temperature on Structure and Optical Properties of NiO Films Fabricated by Magnetron Sputtering. J. Electron. Mater. 2017, 46, 4052–4056. [Google Scholar] [CrossRef]
- Jamal, M.S.; Shahahmadi, S.A.; Chelvanathan, P.; Alharbi, H.F.; Karim, M.R.; Dar, M.A.; Luqman, M.; Alharthi, N.H.; Al-Harthi, Y.S.; Aminuzzaman, M.; et al. Effects of growth temperature on the photovoltaic properties of RF sputtered undoped NiO thin films. Results Phys. 2019, 14, 102360. [Google Scholar] [CrossRef]
- Ahmed, A.A.; Hashim, M.R.; Rashid, M. Effect of RF power on structural, morphological and optical properties of NiO thin films. In Proceedings of the AIP Conference, Kelantan, Malaysia, 6 February 2019. [Google Scholar]
- Elmassi, S.; Narjis, A.; Nkhaili, L.; Elkissani, E.; Amiri, L.; Drissi, S.; Abali, A.; Bousseta, M.; Outzourhit, A. Effect of annealing on structural, optical and electrical properties of nickel oxide thin films synthesized by the reactive radio frequency sputtering. Phys. B Condens. Matter 2022, 639, 413980. [Google Scholar] [CrossRef]
- Abdur, R.; Choudhury, S.; Bashar, M.S.; Hossain, M.R.; Quddus, M.S.; Akhtar, U.S.; Shaikh, M.A.A.; Hossain, M. Enhancing perovskite solar cell performance: Investigating the impact of post-annealing on the optoelectrical and structural properties of RF-sputtered NiO films via SCAPS-1D device modeling. Sol. Energy 2024, 271, 112443. [Google Scholar] [CrossRef]
- Koushik, D.; Jošt, M.; Dučinskas, A.; Burgess, C.; Zardetto, V.; Weijtens, C.; Verheijen, M.A.; Kessels, W.M.M.; Albrecht, S.; Creatore, M. Plasma-assisted atomic layer deposition of nickel oxide as hole transport layer for hybrid perovskite solar cells. J. Mater. Chem. C 2019, 7, 12532–12543. [Google Scholar] [CrossRef]
- Abzieher, T.; Moghadamzadeh, S.; Schackmar, F.; Eggers, H.; Sutterlüti, F.; Farooq, A.; Kojda, D.; Habicht, K.; Schmager, R.; Mertens, A.; et al. Electronbeam-evaporated nickel oxide hole transport layers for perovskite-based photovoltaics. Adv. Energy Mater. 2019, 9, 1802995. [Google Scholar] [CrossRef]
- Hasan, M.R.; Xie, T.; Barron, S.C.; Liu, G.; Nguyen, N.V.; Motayed, A.; Rao, M.V.; Debnath, R. Self-powered p-NiO/n-ZnO heterojunction ultraviolet photodetectors fabricated on plastic substrates. APL Mater. 2015, 3, 10610. [Google Scholar] [CrossRef] [PubMed]
- Schroder, D.K. Semiconductor Material and Device Characterization, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2006; p. 187. [Google Scholar]
- Grilli, M.L.; Aydogan, S.; Yilmaz, M. A study on non-stoichiometric p-NiOx/n-Si heterojunction diode fabricated by RF sputtering: Determination of diode parameters. Superlattices Microstruct. 2016, 100, 924–933. [Google Scholar] [CrossRef]
- Mateos-Anzaldo, D.; Nedev, R.; Perez-Landeros, O.; Curiel-Alvarez, M.; Castillo-Saenz, J.; Arias-Leon, A.; Valdez-Salas, B.; Silva-Vidaurri, L.; Martinez-Guerra, E.; Osorio-Urquizo, E.; et al. High-performance broadband photodetectors based on sputtered NiOx/n-Si heterojunction diodes. Opt. Mater. 2023, 145, 114422. [Google Scholar] [CrossRef]
- Chen, X.; Ren, F.; Gu, S.; Ye, J. Review of gallium-oxide-based solar-blind ultraviolet photodetectors. Photonics Res. 2019, 7, 381–415. [Google Scholar] [CrossRef]
- Hammadi, O.A.; Khalaf, M.K.; Kadhim, F.J. Fabrication of UV Photodetector from Nickel Oxide Nanoparticles Deposited on Silicon Substrate by Closed-Field Unbalanced Dual Magnetron Sputtering Techniques. Opt. Quantum Electron. 2015, 47, 3805–3813. [Google Scholar] [CrossRef]
- Ahmed, A.A.; Hashim, M.R.; Qahtan, T.F.; Rashid, M. Multi—Wavelength Photodetectors Based on Porous Spin-Coated and Compact RF-Sputtered NiO Films Grown over Si Substrate: Effect of Surface Morphology. Optik 2022, 255, 168694. [Google Scholar] [CrossRef]
- Xu, J.; Cao, R.; Shi, S.; Li, L.; Zhu, K.; Su, Y. Self-Powered Ultraviolet Photodetectors Based on Match like Quasi One-Dimensional N-TiO2/P-NiO Core-Shell Heterojunction Arrays with NiO Layer Sputtered at Different Power. J. Alloys Compd. 2022, 928, 167126. [Google Scholar] [CrossRef]
- Enns, Y.; Timoshnev, S.; Kazakin, A.; Shubina, K.; Uvarov, A.; Vorobyev, A.; Nikitina, E.; Mizerov, A.; Andreeva, V.; Fedorenko, E.; et al. Characterization of the P-NiO/N-GaN Heterojunction and Development of Ultraviolet Photodiode. Mater. Sci. Semicond. Process. 2024, 181, 108624. [Google Scholar] [CrossRef]
- Ma, X.; Tang, L.; Jia, M.; Zhang, Y.; Zuo, W.; Cai, Y.; Li, R.; Yang, L.; Teng, K.S. Ultrahigh Performance UV Photodetector by Inserting an Al2O3 Nanolayer in NiO/N-Si. Adv. Electron. Mater. 2024, 10, 2300909. [Google Scholar] [CrossRef]
Temperature (°C) | Thickness (nm) | Deposition Rate (nm/min) | n | k |
---|---|---|---|---|
RT | 41.5 | 6.9 | 2.25 | 0.03 |
50 | 48.9 | 8.2 | 2.29 | 0.044 |
100 | 36.0 | 6.0 | 2.25 | 0.01 |
Light Color | ISC (A) | ||
---|---|---|---|
RT | 50 °C | 100 °C | |
Red | 1.30 × 10−7 | 1.50 × 10−8 | 7.85 × 10−9 |
Green | 5.70 × 10−8 | 6.70 × 10−9 | 9.15 × 10−9 |
Blue | 7.97 × 10−8 | 8.50 × 10−9 | 5.25 × 10−9 |
UV | 2.87 × 10−8 | 6.40 × 10−9 | 6.85 × 10−9 |
Wavelength (nm) | R (A/W), Self-Powered Mode | R (A/W), Vr = −4 V | ||||
---|---|---|---|---|---|---|
RT | 50 °C | 100 °C | RT | 50 °C | 100 °C | |
635 | 0.39 | 0.045 | 0.023 | 10.7 | 1.77 | 8.1 |
530 | 0.61 | 0.072 | 0.056 | 15.8 | 1.96 | 10.8 |
400 | 0.67 | 0.072 | 0.077 | 18.8 | 2.4 | 13.7 |
365 | 0.95 | 0.21 | 0.23 | 22.4 | 2.74 | 15.6 |
Device | R (A/W) | D (Jones) | Id (A) | On/Off Ratio | τr, τf (s) | Year [Ref.] |
---|---|---|---|---|---|---|
p-NiO/nSi | 4.8 × 10−3 (at 318 nm) | - | - | - | - | 2015 [29] |
p-NiO/nSi | 1.73, 1.81, 2.07 (at 5 V, 365, 625, 850 nm) | - | - | 31, 35, 41 (at 5 V, 365, 625, 850 nm) | 3.49/7.68 × 10−3 | 2022 [30] |
NiO/TiO2 | 0.074 (at 0 V, 380 nm) | - | 10−9 | 922 | 33.6/92.6 × 10−3 | 2022 [31] |
p-NiO/n-Si | 0.95, 0.67, 0.61, 0.39 (at 0 V, 365, 400, 530, 635 nm, PRF = 60 W) 22.4, 18.8, 15.8, 10.7 (at −4 V, 365, 400, 530, 635 nm) | 5.5 × 1010 (at 0 V, 365 nm) | 8.5 × 10−12 (at 0 V) 2.8 × 10−7 (at −4 V) | 3.4 × 103 (at 0 V, 365 nm, PRF = 60 W) | <0.1 | 2023 [27] |
p-NiO/n-GaN | 3.11 × 10−3 (at 0 V) | 8.69 × 109 | - | - | 2/47 × 10−3 | 2024 [32] |
NiO/Ga2O3 | 5.08 × 10−3 (at −10 V, 254 nm) | 3.19 × 1011 | 2.76 × 10−12 | 802.53 | 62/67 × 10−3 | 2024 [9] |
NiO/Al2O3/n-Si | 15.8 (at −5 V, 365 nm) | 1.14 × 1014 | 0.279 × 10−6 | - | 0.08/0.184 × 10−3 | 2024 [33] |
p-NiO/n-Si (100 °C) | 15.6 (at −4 V, 365 nm) 0.23 (at 0 V, 365 nm) | 8.41 × 1010 (at −4 V, 365 nm) 2.875 × 1011 (at 0 V, 365 nm) | 1.02 × 10−7 1.9 × 10−12 | 68.23 × 10−3 3.66 × 10−3 | <0.1 - | This work |
Color | Photon Wavelength/Energy (nm/eV) | Optical Power Intensity (mW/cm2) |
---|---|---|
Red | 635/1.95 | 3.71 |
Green | 530/2.34 | 1.03 |
Blue | 400/3.10 | 1.31 |
UV | 365/3.40 | 0.335 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nedev, R.; Mateos-Anzaldo, D.; Osuna-Escalante, E.; Perez-Landeros, O.; Curiel-Alvarez, M.; Osorio-Urquizo, E.; Castillo-Saenz, J.; Lopez-Medina, J.; Valdez-Salas, B.; Nedev, N. Effect of Deposition Temperature and Thermal Annealing on the Properties of Sputtered NiOx/Si Heterojunction Photodiodes. Inorganics 2025, 13, 11. https://doi.org/10.3390/inorganics13010011
Nedev R, Mateos-Anzaldo D, Osuna-Escalante E, Perez-Landeros O, Curiel-Alvarez M, Osorio-Urquizo E, Castillo-Saenz J, Lopez-Medina J, Valdez-Salas B, Nedev N. Effect of Deposition Temperature and Thermal Annealing on the Properties of Sputtered NiOx/Si Heterojunction Photodiodes. Inorganics. 2025; 13(1):11. https://doi.org/10.3390/inorganics13010011
Chicago/Turabian StyleNedev, Roumen, David Mateos-Anzaldo, Eddue Osuna-Escalante, Oscar Perez-Landeros, Mario Curiel-Alvarez, Esteban Osorio-Urquizo, Jhonathan Castillo-Saenz, Javier Lopez-Medina, Benjamin Valdez-Salas, and Nicola Nedev. 2025. "Effect of Deposition Temperature and Thermal Annealing on the Properties of Sputtered NiOx/Si Heterojunction Photodiodes" Inorganics 13, no. 1: 11. https://doi.org/10.3390/inorganics13010011
APA StyleNedev, R., Mateos-Anzaldo, D., Osuna-Escalante, E., Perez-Landeros, O., Curiel-Alvarez, M., Osorio-Urquizo, E., Castillo-Saenz, J., Lopez-Medina, J., Valdez-Salas, B., & Nedev, N. (2025). Effect of Deposition Temperature and Thermal Annealing on the Properties of Sputtered NiOx/Si Heterojunction Photodiodes. Inorganics, 13(1), 11. https://doi.org/10.3390/inorganics13010011