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Abstract: In this study, the mechanochemical preparation of nanocrystalline CaF2:Sm3+ by ball
milling calcium acetate hydrate, samarium (III) acetate hydrate, and ammonium fluoride is reported.
The photoluminescence of the as-prepared CaF2:Sm3+ shows predominantly Sm3+ 4G5/2 → 6HJ(J
= 5/2, 7/2, 9/2, and 11/2) f-f luminescence, but intense electric dipole allowed 4f55d (T1u) →
4f6 7F1 (T1g) luminescence by Sm2+ was generated upon X-irradiation. In comparison with the
co-precipitated CaF2:Sm3+, the conversion of Sm3+ → Sm2+ in the ball-milled sample upon X-
irradiation is significantly lower. Importantly, the present results indicate that the crystallite size and
X-ray storage phosphor properties of the lanthanide-doped nanocrystalline CaF2 can be modified
by adjusting the ball milling time, dopant concentration and post-annealing treatment, yielding
crystallite sizes as low as 6 nm under specific experimental conditions.

Keywords: ball milling; dopant concentration; post-annealing treatment; calcium fluoride; samarium

1. Introduction

CaF2 belongs to the alkaline earth metal fluoride (MF2) compounds which crystallize
in the cubic structure with the Fm3m space group [1,2]. The Ca2+ ions lie at the nodes
in the face-centred lattice, while F- lies at the centre of the octants [3,4]. There has been
growing interest in studying the optical properties of lanthanide (Ln)-doped CaF2 due to its
high transmittance properties from the far-UV to the mid-IR range, and the high chemical
resistance and low refractive index of this host [5].

Nanocrystalline CaF2:Ln has been prepared by a wide variety of methods, such as
co-precipitation [6–8], the sol–gel process [9], hydrothermal synthesis [10,11], and thermal
decomposition of precursors [12]. In recent years, high-energy ball milling has increasingly
been applied to synthesize stoichiometric and non-stoichiometric solid solutions with
minimal or solvent free routes [13–16]. In this process, the mechanical energy caused by
the high speed collision of balls in the ball milling jar forces the reagents to react and
turn into fine powders that can be on the nanoscale [17]. This method has advantages of
increasing the material reactivity, and uniformity of the spatial distribution of elements,
and in reducing the possibility of multi-phase formation [18,19]. Heise et al. successfully
synthesized Eu3+-doped MF2 (M = Ca, Sr, and Ba) powders by ball milling M(OAc)2,
Eu(OAc)3 and NH4F, and crystallite sizes in the range of 12 to 18 nm were obtained [20].
Molaiyan and Witter also reported the preparation of the CaF2:Sm3+ electrolyte by ball
milling anhydrous CaF2 and SmF3 in stoichiometric compositions of Sm1−yCayF3−y (0
≤ y ≤ 0.15), using a Tanchen planetary ball mill [15]. Although ball milling is a facile
method for preparing nanocrystalline powders, this method has still not been widely
applied for the preparation of MF2:Ln materials for optical applications.
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We have previously reported that nanocrystalline CaF2:Sm3+ prepared by a co-precipitation
method can serve as a relatively efficient photoluminescent X-ray storage phosphor, with
the storage mechanism based on the reduction of Sm3+ to Sm2+ upon exposure to X-
irradiation [21]. It is worth noting that in this case about 65% of trivalent Sm was success-
fully converted to divalent Sm upon 850 Gy X-irradiation. Samarium-doped systems can be
highly sensitive to X-rays, and there is continued interest in identifying potential candidates
that display the fast X-ray conversion of Sm3+ to Sm2+ for applications in dosimetry and
computed radiography. In the present study, we report the mechanochemical synthesis
of nanocrystalline CaF2:Sm3+ by ball milling Ca(OAc)2, Sm(OAc)3, and NH4F at room
temperature. The synthesized powders were characterized by XRD, electron microscopy,
and luminescence spectroscopy. The effects of the ball milling time, Sm concentration,
and post-annealing on the generation of Sm2+ by X-ray were investigated in detail using
photoluminescence measurements.

2. Results and Discussion

The XRD patterns of nanocrystalline CaF2:0.1%Sm3+, which were prepared by ball
milling for periods of 1, 3, 5 and 8 h, are shown in Figure 1a. In Figure 1b, the XRD patterns
of CaF2:ySm3+ ball milled for 8 h with different concentrations of Sm3+ (0 ≤ y ≤ 5%) are
illustrated. Finally, in Figure 1c, the XRD patterns of CaF2:0.1%Sm3+ (8 h ball milling
period) annealed at temperatures of 200, 300, and 400 ◦C are shown. The patterns were
compared with the standard CaF2 data (PDF-1000043) taken from the Crystallography
Open Database [22]. Results from Rietveld refinements obtained by the MAUD 2.93 [23]
software package are summarized in Table 1. The goodness of fit G = Rwp/Rexp is <1.5 for
all refinements, i.e., implying good fits [24]. As follows from the figures, all the prominent
peaks could be indexed to the cubic CaF2 structure with the Fm3m space group [1,2].

As observed in Figure 1a, impurity peaks are still visible after 1 h of milling. A more
complete phase formation of nanocrystalline CaF2 can be observed after 3 h. Importantly,
prolonged ball milling broadened the diffractions peaks, and this was caused by the
decrease of the average crystallite size of CaF2:0.1%Sm3+ from 12 ± 1 to 8 ± 1 nm for
ball milling times of 1 to 8 h (Table 1a). A 0.14% expansion of the lattice parameter was
also observed with this decrease in the crystallite size. It is noted here that the use of
hydrated salts in ball milling may accelerate the formation of CaF2:ySm3+ due to the higher
mobility of ions and this was also previously observed in the preparation of nanocrystalline
BaFCl [25].

Interestingly, a reduction of the average crystallite size of CaF2:ySm3+ from 12 ± 1 to
6 ± 1 nm (Table 1b) was observed when the Sm3+ concentration was increased from 0 to 5%.
The lattice parameter also increased by 0.17% in this case. The latter is most likely caused
by the mechanism of charge compensation as Sm3+ substitutes Ca2+. The excess positive
charge must be compensated by defects such as O2− impurity ions, substituting F- in the
lattice, and/or interstitial F−. Also, the electronic repulsion of the ions may increase the
lattice parameter [26,27]. Importantly, Sm3+ can easily substitute Ca2+ in the Oh symmetry
with eightfold (bcc) coordination, due to their similar ionic radii (Sm3+ = 1.08 Å, compared
to Ca2+ = 1.12 Å) [28] and, importantly, phase purity is retained for Sm3+ concentrations up
to 5%.

As follows from Figure 1c, the annealing of CaF2:0.1% Sm3+ at 200, 300, and 400 ◦C
significantly narrowed the diffraction peaks. From the Rietveld refinements, average
crystallite sizes of 12, 22, and 46 ± 1 nm were obtained, respectively, for these annealing
temperatures (Table 1c). The crystallite size appeared to grow by ~T3.4 upon annealing up
to 400 ◦C. Notably, at the higher annealing temperature of 1100 ◦C, the crystallographic
phase purity of CaF2:0.1% Sm3+ is lost, and multiple additional phases are observed in the
XRD pattern.
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Figure 1. XRD patterns (semi-logarithmic plot) of (a) nanocrystalline CaF2:0.1% Sm3+ prepared by 
ball milling for 1, 3, 5 and 8 h, (b) nanocrystalline CaF2:ySm3+ with different concentrations of Sm3+ 
(0 ≤ y ≤ 5%) ball milled for 8 h, and (c) nanocrystalline CaF2:0.1%Sm3+ as prepared by ball milling for 

Figure 1. XRD patterns (semi-logarithmic plot) of (a) nanocrystalline CaF2:0.1% Sm3+ prepared by
ball milling for 1, 3, 5 and 8 h, (b) nanocrystalline CaF2:ySm3+ with different concentrations of Sm3+

(0 ≤ y ≤ 5%) ball milled for 8 h, and (c) nanocrystalline CaF2:0.1%Sm3+ as prepared by ball milling for
8 h and subsequently annealed at 200, 300, and 400 ◦C. Experimental data and Rietveld refinements
are shown as black and red lines, respectively. The standard data of cubic CaF2 (PDF-1000043) is
shown in blue. The green asterisks indicate impurity phases.
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Table 1. Summary of XRD results obtained from Rietveld refinements. Rwp and Rexp are the weighted-
profile R-factor and expected R-factor. G is the goodness of fit (Rwp/Rexp).

(a) Ball milling time
CaF2: 0.1% Sm 3+

Time (h) Average crystallite size
± 1 (nm)

Lattice parameter, a (Å)

Rietveld refinement

Rwp
%

Rexp
% G

1 12 5.4754 ± 0.0012 18.9 14.5 1.30

3 11 5.4763 ± 0.0010 19.0 15.1 1.26

5 9 5.4823 ± 0.0012 19.4 14.9 1.30

8 8 5.4832 ± 0.0013 18.5 14.9 1.24

(b) Concentration of Sm 3+

CaF2: ySm 3+, 8 h ball milling time

y% Average crystallite size
± 1 (nm)

Lattice parameter, a (Å)

Rietveld refinement

Rwp
%

Rexp
% G

0 12 5.4824 ± 0.0011 15.9 13.9 1.14

0.05 11 5.4826 ± 0.0012 16.8 13.8 1.22

0.1 9 5.4832 ± 0.0013 18.5 14.9 1.24

0.3 9 5.4838 ± 0.0012 17.4 14.4 1.21

0.5 8 5.4844 ± 0.0011 17.8 15.2 1.17

1 8 5.4864 ± 0.0010 17.3 14.6 1.18

3 7 5.4880 ± 0.0014 17.1 14.5 1.18

5 6 5.4915 ± 0.0017 17.2 14.6 1.18

(c) Annealing temperature
CaF2: 0.1% Sm 3+, 8 h ball milling time

Temp.
(◦C)

Average crystallite size
± 1 (nm)

Lattice parameter, a (Å)

Rietveld refinement

Rwp
%

Rexp
% G

as-pre 9 5.4774 ± 0.0011 20.9 15.0 1.39

200 12 5.4753 ± 0.0007 19.3 15.4 1.25

300 22 5.4701 ± 0.0004 18.7 15.3 1.22

400 45 5.4687 ± 0.0002 18.7 15.2 1.23

Typical TEM micrographs of CaF2:0.1%Sm3+ prepared by ball milling are displayed
in Figure 2. The observed particle size distribution was in qualitative agreement with the
average crystallite sizes obtained from the Rietveld refinements. In particular, annealing the
sample to 400 ◦C significantly increased the particle size. A micrograph of CaF2:0.5%Sm3+

prepared by co-precipitation [21] with an average crystallite size of 46 ± 1 nm is shown in
Figure 2e for comparison.

Photoluminescence spectra of nanocrystalline CaF2:0.1%Sm3+ prepared by ball milling
for 8 h before and after 360 Gy X-irradiation (Cu-Kα) are shown in Figure 3. Sm3+ emission
lines centred at 566, 604, 645 and 704 nm (Figure 3a) correspond to 4G5/2 → 6HJ (J = 5/2,
7/2, 9/2, and 11/2) f-f transitions, respectively [29–31]. Sm3+ 4G5/2 → 6H5/2 and 6H7/2
transitions contain magnetic and electric dipole contributions that obey the selection rules
∆J = 0, ±1, while the other two transitions 4G5/2 → 6H9/2 and 6H11/2 are purely electric
dipole transitions (∆J ≤ 6) [32]. The symmetry of the local environment of the trivalent 4f
ions can be identified by the relative intensity ratio of electric dipole to magnetic dipole
transitions (IR = 4G5/2 → 6H9/2/4G5/2 → 6H5/2) [33]. The present work indicates that most
of the Sm3+ ions occupied the inversion symmetry sites of the CaF2 host lattice, since the
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IR is <1 [33–35]. Note however that charge compensation will in principle lower the site
symmetry.
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nealed at (c) 200 ◦C, (d) 400 ◦C, and (e) nanocrystalline CaF2:0.5%Sm3+ prepared by co-precipitation.
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Figure 3. Photoluminescence spectra of nanocrystalline CaF2:0.1% Sm3+ prepared by ball milling for
8 h, before and after 360 Gy X-irradiation. (a) Region of Sm3+ luminescence at 293 K and (b) region of
the Sm2+ 4f55d (T1u) → 4f6 7F1 (T1g) emission at 27 K.

Upon 360 Gy X-irradiation, the luminescence of Sm3+ decreased, as is seen in Figure 3a,
accompanied by the rise in the electric dipole allowed Sm2+ 4f55d (T1u) → 4f6 7F1 (T1g)
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transition at 708.2 nm with vibronic side bands (transverse optical phonon mode of CaF2
due to the Oh

5 group symmetry) (Figure 3b) [36–38]. Note that the Sm2+ emission is
temperature-dependent and very broad at room temperature [39–41]. We stress here that
no Sm2+ luminescence was observed before X-irradiation, indicating that the Sm ions
entered the CaF2 host lattice in their +3 oxidation state. In contrast, Liu et al. reported
the presence of Sm2+ emission lines in the absence of X-irradiation in nanocrystalline
BaFCl:Sm3+ prepared by ball milling [25].

In Figure 4, the photoluminescence spectra of nanocrystalline CaF2:0.1%Sm3+ are
depicted as a function of ball milling time. As follows from Figure 4a, the luminescence
of Sm3+ increased with a longer milling time. In contrast, the generation of Sm2+ upon
X-irradiation gradually decreased with increasing ball milling time (Figure 4b). This may
be due to better embedding and charge compensation for longer ball milling times, e.g., the
closer proximity of the charge compensators to the Sm3+ ions. It is also possible that with
longer ball milling times, more defects are generated, facilitating efficient non-radiative
deactivation paths for the Sm2+.
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Figure 4. Photoluminescence spectra of nanocrystalline CaF2:0.1% Sm3+ prepared by ball milling
for 1, 3, 5, and 8 h (red, black, green and blue traces, respectively). (a) Sm3+ region at 293 K of the
as-prepared sample and (b) Sm2+ 4f55d (T1u) → 4f6 7F1 (T1g) region at 27 K after 135 Gy X-irradiation.
The insets show corresponding integrated intensities (red circles are data points; the blue dotted line
is a guide to the eye) as a function of ball milling time.

Photoluminescence spectra of nanocrystalline CaF2:ySm3+ doped with different con-
centrations of Sm3+ (0.05% ≤ y ≤ 5%), and ball milled for 8 h are shown in Figure 5. As is
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seen in Figure 5a, the intensity of the Sm3+ luminescence lines of the as-prepared sample
increased with the Sm3+ concentration for up to 1%, and then decreased with higher con-
centrations. Interestingly, the same trend was observed for the Sm2+ luminescence (upon
135 Gy X-irradiation) (Figure 5b). This concentration dependence is most likely due to
quenching for concentrations higher than 1%, induced by rapid excitation energy transfer
between the Sm ions that leads to non-radiative deactivation at trap sites [42].
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at 293 K of the as-prepared sample and (b) Sm2+ 4f55d (T1u) → 4f6 7F1 (T1g) at 27 K upon 135 Gy
X-irradiation. Integrated intensities of (a) Sm3+ 4G5/2 → 6H5/2 and (b) the Sm2+ emission band as a
function of Sm concentration are shown in the insets.

In Figure 6, the effect of post-annealing for 1 h at 200, 300, and 400 ◦C on the lumines-
cence of nanocrystalline CaF2:0.1%Sm3+ (ball milled for 8 h) is summarized. The figure
shows that both the Sm3+ luminescence of the as-prepared sample (Figure 6a) and the Sm2+

luminescence of the X-irradiated samples (Figure 6b) became significantly stronger with
increasing annealing temperature. The normalized photoluminescence intensity of the
Sm3+ and Sm2+ emissions followed a T2.4 and T2.6 power law, respectively. An increase in
the photoluminescence intensity of the Sm3+/2+ with increased temperature was previously
observed by Liu et al. for BaFCl:Sm3+ [43].
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In Figure 7 a comparison is shown between the Sm2+ luminescence of X-irradiated
(100 Gy) nanocrystalline CaF2:0.5%Sm3+ prepared by co-precipitation (CPT), and as-
prepared (as well as annealed at 400 ◦C) CaF2:0.5%Sm3+ prepared by 8 h of ball milling
(BM). As seen from the inset of this figure, the Sm2+ generation of BM CaF2:0.5%Sm3+

significantly increased by a factor of 23 after annealing at 400 ◦C, with crystallite size
increasing from 8 nm to 44 nm. In addition, both CPT CaF2:0.5%Sm3+ and annealed BM
CaF2:0.5%Sm3+ had similar average crystallite sizes of 46 nm and 44 nm, respectively.
However, in comparison with the CPT sample, the Sm2+ luminescence intensity of the
annealed BM sample was lowered by a factor of 3 after 100 Gy X-irradiation. This indicated
a faster Sm3+ → Sm2+ conversion upon X-irradiation in the CPT sample when compared to
the BM samples. In the BM sample the trivalent Sm3+ may be more stabilized by a charge
compensator due to the prolonged milling and annealing time, enabling ionic rearrange-
ments of the lattice [44]. However, multiple extra peaks in the Sm3+ luminescence were
noted in BM CaF2: 0.5% Sm3+ upon annealing at the higher temperature of 1100 ◦C. This
may be related to the extra phases observed in the XRD pattern, which are possibly due to
the generation of some oxyfluoride phases.
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Figure 7. Comparison of photoluminescence spectra of nanocrystalline CaF2:0.5%Sm3+ prepared by
co-precipitation (CPT) and as-prepared (as well as annealed at 400 ◦C) CaF2:0.5%Sm3+ prepared by
8 h of ball milling (BM). The inset shows a 3x magnification of BM CaF2:0.5%Sm3+.
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3. Experimental Methods

Nanocrystalline CaF2:ySm3+ (y = mol%) was prepared by ball milling Ca(OAc)2·H2O
(May & Baker Ltd., Essex, England), Sm(OAc)3.xH2O (Sigma Aldrich, Australia), and NH4F
(Sigma Aldrich) according to the following solid-state reaction:

(1–y)Ca(OAc)2·H2O + (y)Sm(OAc)3·xH2O + (2 + y)NH4F →
Ca1–ySmyF2+y + (2 + y)NH3 + (2 + y)HOAc + (1–y + xy)H2O

(1)

Reagents (with y = 0.1%) were premixed and ground using a mortar and pestle before
being transferred into a 12 mL zirconia ball mill jar with six 5 mm diameter zirconia balls.
The mixtures were then ball milled for 1, 3, 5 or 8 h to investigate the dependence of physical
properties on ball milling time. The ball milling was performed using a Planetary Mill
(Pulverisette 7 from Fritsch, Germany) at 10 Hz. The mixture obtained was dried overnight
in an oven (Labec, Model H323, Marrickville, Australia) at 60 ◦C. The final product was
then ground using a mortar and pestle to yield a homogenous nanocrystalline powder.
Nanocrystalline CaF2:ySm3+ powders with different Sm concentrations (y = 0, 0.05, 0.1, 0.3,
0.5, 1, 3, and 5%) were also prepared with a ball milling time of 8 h. Post-annealing by
using a muffle furnace (Labec, CEMLS-SD) was undertaken at temperatures of 200, 300,
and 400 ◦C in air.

The phase purity of samples was characterized by powder X-ray diffraction (XRD) on
a Rigaku MiniFlex-600 benchtop diffractometer with Cu-Kα radiation (λ = 0.154 nm, 40 kV
and 15 mA) with a scanning step and speed of 0.01◦ and 0.5◦/min, respectively. Data was
collected in the 2θ range of 10◦ to 100◦. TEM imaging was undertaken by a Tecnai G2 Spirit
transmission electron microscope (FEI, Oregon, USA).

Photoluminescence (PL) spectra of Sm3+ were measured by using a Horiba Jobin-
Yvon Spex FluoroMax-3 fluorometer (controlled by the FluorEssence software) at room
temperature with 405 nm excitation. Sm2+ luminescence spectra were recorded on a Spex
500 M monochromator (150 grooves/mm grating), equipped with an Andor iDus camera
(DV401A-BV Si CCD). A closed-cycle cryostat (CTI-Cryogenics Cryodyne model 22) was
used to cool the sample to 27 K. In this case, the samples were excited by a focused 635 nm
laser diode. The powders were manually pressed into a counterbore of 5 mm diameter and
0.5 mm depth on an aluminium holder.

The X-ray based reduction of Sm3+ to Sm2+ was undertaken on the Rigaku Miniflex-
600 benchtop powder XRD diffractometer at a 2θ angle of 30◦ (dose rate ~15 mGy s−1). The
X-ray dose was cross-calibrated against a Sirona (Erlangen, Germany) HELIODENT Plus
dental X-ray source.

4. Conclusions

We have reported a direct and facile mechanochemical preparation route for nanocrys-
talline CaF2:Sm3+ by ball milling Ca(OAc), Sm(OAc)2, and NH4F at room temperature. The
photoluminescence spectra of the as-prepared samples display the Sm3+ 4GJ → 6HJ lumi-
nescence lines, whereas X-irradiation generates Sm2+ with its characteristic luminescence
around 708 nm at low temperatures. A ball milling period of 3 to 4 h was found to result in
the best single phase, whereas shorter or longer ball milling times resulted in some impurity
phases. A longer ball milling period such as 8 h reduced the efficacy of Sm2+ generation by
X-irradiation. This is likely due to the stabilization of the trivalent state by embedding the
charge compensator in the vicinity of the Sm ion, as well as more effective non-radiative
deactivation by the introduction of more defects. Maximum luminescence was observed
for the sample with a 1 mol% Sm3+ concentration, and at a higher concentration quenching
was observed. Interestingly, post-annealing substantially increases the X-ray induced Sm3+

to Sm2+ conversion. It is noted here that attempts to anneal at higher temperatures such as
1100 ◦C (in air) generated extra phases in the XRD pattern with an associated change in
the Sm3+ luminescence spectrum. In comparison with the co-precipitation (CPT)-sample,
the Sm3+ ion in the ball milling sample (BM) is much more stable. The present results
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demonstrated that the X-ray storage efficiency of nanocrystalline CaF2 can be controlled
in the preparation process by varying parameters such as ball milling time, annealing
temperature and rare earth ion concentration. This study offers valuable insights into the
X-ray storage properties of ball-milled CaF2:Sm3+, particularly the accelerated reduction of
Sm ions, with potential applications in areas such as dosimetry and computed radiography.
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