Investigation of Magnesium-Potassium Phosphates as Potential Nuclear Waste Form for the Immobilization of Minor Actinides
"> Figure 1
<p>Compressive strength of MKP specimens with different M/P ratios.</p> "> Figure 2
<p>XRD pattern of pure MKP specimen.</p> "> Figure 3
<p>XRD patterns of MKP specimen with Sm<sub>2</sub>O<sub>3</sub> and Nd<sub>2</sub>O<sub>3</sub> additives and pure MKP specimen.</p> "> Figure 4
<p>XRD patterns of MKP specimen with Sm(NO<sub>3</sub>)<sub>3</sub>·6H<sub>2</sub>O and Nd(NO<sub>3</sub>)<sub>3</sub>·6H<sub>2</sub>O additives and pure MKP specimen.</p> "> Figure 5
<p>Raman spectra of obtained MKP-based materials: MKP/Nd—with Nd<sub>2</sub>O<sub>3</sub> additive, MKP/Sm—with Sm<sub>2</sub>O<sub>3</sub> additive, MKP/SmN—with Sm(NO<sub>3</sub>)<sub>3</sub>·6H<sub>2</sub>O additive.</p> "> Figure 6
<p>SEM image of MKP specimen with addition of Nd<sub>2</sub>O<sub>3</sub> (<b>a</b>) and Sm<sub>2</sub>O<sub>3</sub> (<b>b</b>).</p> "> Figure 7
<p>SEM high magnification image and EDS data of MKP specimen with adding of Nd<sub>2</sub>O<sub>3</sub>: (<b>a</b>) grey matrix, (<b>b</b>) light-colored agglomerate.</p> "> Figure 8
<p>SEM elemental mapping for MKP specimen with Nd<sub>2</sub>O<sub>3</sub> additive.</p> "> Figure 9
<p>SEM image for MKP specimen prepared via the addition of an aqueous solution of Sm(NO<sub>3</sub>)<sub>3</sub>·6H<sub>2</sub>O, the yellow box is the area for EDS analysis.</p> "> Figure 10
<p>SEM elemental mapping for MKP specimen prepared via the addition of an aqueous solution of Sm(NO<sub>3</sub>)<sub>3</sub>·6H<sub>2</sub>O additive.</p> "> Figure 11
<p>TEM image of a particle of MKP specimen prepared via the addition of an aqueous solution of Nd(NO<sub>3</sub>)<sub>3</sub>·6H<sub>2</sub>O and EDS spectra for areas (<b>a</b>,<b>b</b>).</p> "> Figure 12
<p>The pH value of hardened (28 d) MKP specimens during leaching test.</p> "> Figure 13
<p>Cumulative concentrations for Nd and Sm.</p> ">
Abstract
:1. Introduction
1.1. Magnesium—Potassium Phosphate Materials
1.2. Minor Actinides
2. Materials and Methods
2.1. Materials
2.2. Specimen Preparation
2.2.1. Addition of Nd/Sm as Oxide Powders
2.2.2. Addition of Nd/Sm as a Salt Solution
2.3. Characterization
2.3.1. Density
2.3.2. Electron Microscopy
2.3.3. XRD Analysis
Conventional Bragg–Brentano X-Ray Powder Diffraction Measurements
Evaluation of X-Ray Patterns
2.3.4. Raman Spectroscopy
2.3.5. Leaching Test
3. Results and Discussion
3.1. Preparing MKP Specimens and Determining Their Compressive Strength
3.2. Microstructural Analysis
3.2.1. XRD Measurements
M/P Effect
Specimens Fabricated with Addition of Oxides
Specimens Fabricated with Addition of Nitrate Salt Solutions
3.2.2. Raman Spectroscopy Measurements
3.2.3. SEM Analysis
Specimens Fabricated with Addition of Oxides
Specimens Fabricated with the Addition of Nitrate Salt Solutions
3.2.4. TEM Analysis
3.3. Leaching Test Results
3.3.1. pH Dependence
3.3.2. Leachability Indices
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Goel, A.; McCloy, J.S.; Pokorny, R.; Kruger, A.A. Challenges with Vitrification of Hanford High-Level Waste (HLW) to Borosilicate Glass—An Overview. J. Non-Cryst. Solids X 2019, 4, 100033. [Google Scholar] [CrossRef]
- Vinokurov, S.E.; Kulikova, S.A.; Myasoedov, B.F. Magnesium Potassium Phosphate Compound for Immobilization of Radioactive Waste Containing Actinide and Rare Earth Elements. Materials 2018, 11, 976. [Google Scholar] [CrossRef] [PubMed]
- Ewing, R.C.; Lutze, W. High-Level Nuclear Waste Immobilization with Ceramics. Ceram. Int. 1991, 17, 287–293. [Google Scholar] [CrossRef]
- Schlenz, H.; Neumeier, S.; Hirsch, A.; Peters, L.; Roth, G. 9. Phosphates as Safe Containers for Radionuclides. In Highlights in Applied Mineralogy; Walter de Gruyter GmbH: Berlin, Germany, 2017. [Google Scholar] [CrossRef]
- Ewing, R.C.; Wang, L. Phosphates as Nuclear Waste Forms. Rev. Mineral. Geochem. 2002, 48, 673–699. [Google Scholar] [CrossRef]
- Zhao, X.; Li, Y.; Teng, Y.; Yang, X.; Wu, L.; Wang, L.; Zhang, T. The Structure Properties, Defect Stability and Excess Properties in Am-Doped LnPO4 (Ln = La, Ce, Nd, Sm, Eu, Gd) Monazites. J. Alloys. Compd. 2019, 806, 113–119. [Google Scholar] [CrossRef]
- Zur Loye, H.-C.; Besmann, T.; Amoroso, J.; Brinkman, K.; Grandjean, A.; Henager, C.H.; Hu, S.; Misture, S.T.; Phillpot, S.R.; Shustova, N.B.; et al. Hierarchical Materials as Tailored Nuclear Waste Forms: A Perspective. Chem. Mater. 2018, 30, 4475–4488. [Google Scholar] [CrossRef]
- Tisdale, H.B.; Christian, M.S.; Morrison, G.; Besmann, T.M.; Sun, K.; Was, G.S.; zur Loye, H.-C. Investigation of Rare Earth-Containing Double Phosphates of the Type A3Ln(PO4)2 (Ln = Y, La, Pr, Nd, and Sm–Lu) as Potential Nuclear Waste Forms. Chem. Mater. 2022, 34, 3819–3830. [Google Scholar] [CrossRef]
- Roy, D.M. New Strong Cement Materials: Chemically Bonded Ceramics. Science 1987, 235, 651–658. [Google Scholar] [CrossRef]
- Wagh, A.S. Chemically Bonded Phosphate Ceramics, Twenty-First Century Materials with Diverse Applications, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Graeser, S.; Postl, W.; Bojar, H.B.; Armbruster, T.; Raber, T.; Ettinger, K.; Walter, F. Struvite (K), KMgPO46H2O, the Potassium Equivalent of Struvite a New Mineral. Eur. J. Mineral. 2008, 20, 629–633. [Google Scholar] [CrossRef]
- Banks, E.; Chianelli, R.; Korenstein, R. Crystal Chemistry of Struvite Analogs of the Type MgMPO4.6H2O (M+ = Potassium(1+), Rubidium(1+), Cesium (1+), Thallium(1+), Ammonium(1+). Inorg. Chem. 1975, 14, 1634–1639. [Google Scholar] [CrossRef]
- Seehra, S.S.; Gupta, S.; Kumar, S. Rapid Setting Magnesium Phosphate Cement for Quick Repair of Concrete Pavements—Characterisation and Durability Aspects. Cem. Concr. Res. 1993, 23, 254–266. [Google Scholar] [CrossRef]
- Qiao, F.; Chau, C.K.; Li, Z. Property Evaluation of Magnesium Phosphate Cement Mortar as Patch Repair Material. Constr. Build. Mater. 2010, 24, 695–700. [Google Scholar] [CrossRef]
- Mestres, G.; Aguilera, F.; Manzanares, N.; Sauro, S.; Osorio, R.; Toledano, M.; Ginebra, M.-P. Magnesium Phosphate Cements for Endodontic Applications with Improved Long-Term Sealing Ability. Int. Endod. J. 2013, 47, 127–139. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Zhu, J.; Wang, R. Assessment of Magnesium Potassium Phosphate Cement for Waste Sludge Solidification: Macro- and Micro-Analysis. J. Clean. Prod. 2021, 294, 126365. [Google Scholar] [CrossRef]
- Buj, I.; Torras, J.; Casellas, D.; Rovira, M.; de Pablo, J. Effect of Heavy Metals and Water Content on the Strength of Magnesium Phosphate Cements. J. Hazard. Mater. 2009, 170, 345–350. [Google Scholar] [CrossRef]
- Weng, Y.; Ruan, S.; Li, M.; Mo, L.; Unluer, C.; Tan, M.J.; Qian, S. Feasibility Study on Sustainable Magnesium Potassium Phosphate Cement Paste for 3D Printing. Constr. Build. Mater. 2019, 221, 595–603. [Google Scholar] [CrossRef]
- Zhao, Z.; Chen, M.; Xu, J.; Li, L.; Huang, Y.; Yang, L.; Zhao, P.; Lu, L. Mix Design and Rheological Properties of Magnesium Potassium Phosphate Cement Composites Based on the 3D Printing Extrusion System. Constr. Build. Mater. 2021, 284, 122797. [Google Scholar] [CrossRef]
- Le Rouzic, M.; Chaussadent, T.; Stefan, L.; Saillio, M. On the Influence of Mg/P Ratio on the Properties and Durability of Magnesium Potassium Phosphate Cement Pastes. Cem. Concr. Res. 2017, 96, 27–41. [Google Scholar] [CrossRef]
- Li, Y.; Shi, T.; Li, J. Effects of Fly Ash and Quartz Sand on Water-Resistance and Salt-Resistance of Magnesium Phosphate Cement. Constr. Build. Mater. 2016, 105, 384–390. [Google Scholar] [CrossRef]
- Hong, S.; Zhang, J.; Liang, H.; Xiao, J.; Huang, C.; Wang, G.; Hu, H.; Liu, Y.; Xu, Y.; Xing, F.; et al. Investigation on Early Hydration Features of Magnesium Potassium Phosphate Cementitious Material with the Electrodeless Resistivity Method. Cem. Concr. Compos. 2018, 90, 235–240. [Google Scholar] [CrossRef]
- Walling, S.A.; Provis, J.L. Magnesia-Based Cements: A Journey of 150 Years, and Cements for the Future? Chem. Rev. 2016, 116, 4170–4204. [Google Scholar] [CrossRef] [PubMed]
- Singh, D.; Wagh, A.S.; Cunnane, J.C.; Mayberry, J.L. Chemically Bonded Phosphate Ceramics for Low-level Mixed-waste Stabilization. J. Environ. Sci. Health Part A Environ. Sci. Eng. Toxicol. 1997, 32, 527–541. [Google Scholar] [CrossRef]
- Vinokurov, S.E.; Kulyako, Y.M.; Slyunchev, O.M.; Rovnyi, S.I.; Wagh, A.S.; Maloney, M.D.; Myasoedov, B.F. Magnesium potassium phosphate matrices for immobilization of high-level liquid wastes. Radiochemistry 2009, 51, 65–72. [Google Scholar] [CrossRef]
- Vinokurov, S.E.; Kulyako, Y.M.; Slyunchev, O.M.; Rovny, S.I.; Myasoedov, B.F. Low-temperature immobilization of actinides and other components of high-level waste in magnesium potassium phosphate matrices. J. Nucl. Mater. 2009, 385, 189–192. [Google Scholar] [CrossRef]
- Vinokurov, S.E.; Kulikova, S.A.; Krupskaya, V.V.; Myasoedov, B.F. Magnesium Potassium Phosphate Compound for Radioactive Waste Immobilization: Phase Composition, Structure, and Physicochemical and Hydrolytic Durability. Radiochemistry 2018, 60, 70–78. [Google Scholar] [CrossRef]
- Vinokurov, S.; Fimina, S.A.; Myasoedov, B. Magnesium potassium phosphate matrix for immobilization of actinide-containing radioactive waste. Prog. Nucl. Sci. Technol. 2018, 5, 148–152. [Google Scholar] [CrossRef]
- Kulikova, S.A.; Danilov, S.S.; Belova, K.Y.; Rodionova, A.A.; Vinokurov, S.E. Optimization of the Solidification Method of High-Level Waste for Increasing the Thermal Stability of the Magnesium Potassium Phosphate Compound. Energies 2020, 13, 3789. [Google Scholar] [CrossRef]
- Kononenko, O.A.; Milyutin, V.V.; Makarenkov, V.I.; Kozlitin, E.A. Immobilization of NPP evaporator bottom high salt-bearing liquid radioactive waste into struvite-based phosphate matrices. J. Hazard. Mater. 2021, 416, 125902. [Google Scholar] [CrossRef]
- Pyo, J.-Y.; Um, W.; Heo, J. Magnesium Potassium Phosphate Cements to Immobilize Radioactive Concrete Wastes Generated by Decommissioning of Nuclear Power Plants. Nucl. Eng. Technol. 2021, 53, 2261–2267. [Google Scholar] [CrossRef]
- Covill, A.; Hyatt, N.C.; Hill, J.; Collier, N.C. Development of Magnesium Phosphate Cements for Encapsulation of Radioactive Waste. Adv. Appl. Ceram. 2011, 110, 151–156. [Google Scholar] [CrossRef]
- Cau Dit Coumes, C.; Lambertin, D.; Lahalle, H.; Antonucci, P.; Cannes, C.; Delpech, S. Selection of a Mineral Binder with Potentialities for the Stabilization/Solidification of Aluminum Metal. J. Nucl. Mater. 2014, 453, 31–40. [Google Scholar] [CrossRef]
- Wagh, A.S.; Sayenko, S.Y.; Shkuropatenko, V.A.; Tarasov, R.V.; Dykiy, M.P.; Svitlychniy, Y.O.; Virych, V.D.; Ulybkina, E.A. Experimental Study on Cesium Immobilization in Struvite Structures. J. Hazard. Mater. 2016, 302, 241–249. [Google Scholar] [CrossRef] [PubMed]
- Zhenyu, L.; Hongtao, W.; Yang, H.; Tao, Y.; Zhongyuan, L.; Shuzhen, L.; Haibin, Z. Rapid Solidification of Highly Loaded High-Level Liquid Wastes with Magnesium Phosphate Cement. Ceram. Int. 2019, 45, 5050–5057. [Google Scholar] [CrossRef]
- Singh, D.; Mandalika, V.R.; Parulekar, S.J.; Wagh, A.S. Magnesium Potassium Phosphate Ceramic for 99Tc Immobilization. J. Nucl. Mater. 2006, 348, 272–282. [Google Scholar] [CrossRef]
- Buj, I.; Torras, J.; Rovira, M.; de Pablo, J. Leaching Behaviour of Magnesium Phosphate Cements Containing High Quantities of Heavy Metals. J. Hazard. Mater. 2010, 175, 789–794. [Google Scholar] [CrossRef]
- Gardner, L.J.; Corkhill, C.L.; Walling, S.A.; Vigor, J.E.; Murray, C.A.; Tang, C.C.; Provis, J.L.; Hyatt, N.C. Early Age Hydration and Application of Blended Magnesium Potassium Phosphate Cements for Reduced Corrosion of Reactive Metals. Cem. Concr. Res. 2021, 143, 106375. [Google Scholar] [CrossRef]
- Report on Synthesis of Formulation & Process Studies Results, Deliverable 5.2. February 2024. EU Project: Pre-Disposal Management of Radioactive Waste, p. 22. Available online: https://predis-h2020.eu/publications-and-reports/ (accessed on 1 September 2020).
- Chartier, D.; Sanchez-Canet, J.; Antonucci, P.; Esnouf, S.; Renault, J.-P.; Farcy, O.; Lambertin, D.; Parraud, S.; Lamotte, H.; Coumes, C.C.D. Behaviour of Magnesium Phosphate Cement-Based Materials under Gamma and Alpha Irradiation. J. Nucl. Mater. 2020, 541, 152411. [Google Scholar] [CrossRef]
- Fourth National Report for the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management; Report DOE/EM-0654, Rev. 3. September 2011. Available online: https://www.energy.gov/em/articles/fourth-national-report-joint-convention-safety-spent-fuel-management-and-safety (accessed on 1 October 2023).
- Clark, S.B.; Buchanan, M.V.; Wilmarth, B. Basic Research Needs for Environmental Management; Office of Scientific and Technical Information (OSTI): Washington, DC, USA, 2016. [CrossRef]
- Sayenko, S.Y.; Shkuropatenko, V.A.; Pylypenko, O.V.; Karsim, S.O.; Zykova, A.V.; Kutnii, D.V.; Wagh, A.S. Radioactive Waste Immobilization of Hanford Sludge in Magnesium Potassium Phosphate Ceramic Forms. Prog. Nucl. Energy 2022, 152, 104315. [Google Scholar] [CrossRef]
- ICDD. PDF-5+ 2024; International Centre for Diffraction Data: Newtown Square, PA, USA, 2023. [Google Scholar]
- Degen, T.; Sadki, M.; Bron, E.; König, U.; Nénert, G. The HighScore Suite. Powder Diffr. 2014, 29, S13–S18. [Google Scholar] [CrossRef]
- Rietveld, H.M. A Profile Refinement Method for Nuclear and Magnetic Structures. J. Appl. Crystallogr. 1969, 2, 65–71. [Google Scholar] [CrossRef]
- Bergmann, J.; Friedel, P.; Kleeberg, R. BGMN—A New Fundamental Parameters-Based Rietveld Program for Laboratory X-Ray Sources, Its Use in Quantitative Analysis and Structure Investigations. CPD Newsl. 1998, 20, 5–8. [Google Scholar]
- Bergmann, J.; Monecke, T.; Kleeberg, R. Alternative Algorithm for the Correction of Preferred Orientation in Rietveld Analysis. J. Appl. Crystallogr. 2001, 34, 16–19. [Google Scholar] [CrossRef]
- Doebelin, N.; Kleeberg, R. Profex: A Graphical User Interface for the Rietveld Refinement Program BGMN. J. Appl. Crystallogr. 2015, 48, 1573–1580. [Google Scholar] [CrossRef] [PubMed]
- ICSD Database. ICSD Database FIZ Karlsruhe. 2023. Available online: https://icsd.products.fiz-karlsruhe.de/ (accessed on 1 October 2023).
- ANSI/ANS-16.1; Measurement of Leachability in Solidified Low-Level Radioactive Waste by the Short-Term Procedure—An American National Standard. American Nuclear Society: Westmont, IL, USA, 2019.
- Lahalle, H.; Cau Dit Coumes, C.; Mercier, C.; Lambertin, D.; Cannes, C.; Delpech, S.; Gauffinet, S. Influence of the w/c Ratio on the Hydration Process of a Magnesium Phosphate Cement and on Its Retardation by Boric Acid. Cem. Concr. Res. 2018, 109, 159–174. [Google Scholar] [CrossRef]
- Xu, B.; Winnefeld, F.; Kaufmann, J.; Lothenbach, B. Influence of Magnesium-to-Phosphate Ratio and Water-to-Cement Ratio on Hydration and Properties of Magnesium Potassium Phosphate Cements. Cem. Concr. Res. 2019, 123, 105781. [Google Scholar] [CrossRef]
- Xu, B.; Ma, H.; Li, Z. Influence of Magnesia-to-Phosphate Molar Ratio on Microstructures, Mechanical Properties and Thermal Conductivity of Magnesium Potassium Phosphate Cement Paste with Large Water-to-Solid Ratio. Cem. Concr. Res. 2015, 68, 1–9. [Google Scholar] [CrossRef]
- Chhaiba, S.; Martinez-Sanchez, S.; Husillos-Rodriguez, N.; Palomo, Á.; Kinoshita, H.; Garcia-Lodeiro, I. Durability of Magnesium Potassium Phosphate Cements (MKPCs) under Chemical Attack. Materials 2024, 17, 4252. [Google Scholar] [CrossRef]
- Florez, R.; Loaiza, A.; Giraldo, C.H.C.; Colorado, H.A. Calcium Silicate Phosphate Cement with Samarium Oxide Additions for Neutron Shielding Applications in Nuclear Industry. Prog. Nucl. Energy 2021, 133, 103650. [Google Scholar] [CrossRef]
- Reddy, S.; Berchmans, L.; Sreedhar, G. Role of Surface Oxygen Vacancies and Lanthanide Contraction Phenomenon of Ln(OH)3 (Ln = La, Pr, and Nd) in Sulfide-Mediated Photoelectrochemical Water Splitting. ACS Omega 2018, 3, 6267–6278. [Google Scholar] [CrossRef]
- Frost, R.L.; Weier, M.L.; Martens, W.N.; Henry, D.A.; Mills, S.J. Raman Spectroscopy of Newberyite, Hannayite and Struvite. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2005, 62, 181–188. [Google Scholar] [CrossRef]
- Ishikawa, K.; Fujima, N.; Komura, H. First-order Raman Scattering in MgO Microcrystals. J. Appl. Phys. 1985, 57, 973–975. [Google Scholar] [CrossRef]
- Arunachalam, S.; Kirubasankar, B.; Murugadoss, V.; Vellasamy, D.; Angaiah, S. Facile Synthesis of Electrostatically Anchored Nd(OH)3 Nanorods onto Graphene Nanosheets as a High Capacitance Electrode Material for Supercapacitors. New J. Chem. 2018, 42, 2923–2932. [Google Scholar] [CrossRef]
- Cui, J.; Hope, G. Raman and Fluorescence Spectroscopy of CeO2, Er2O3, Nd2O3, Tm2O3, Yb2O3, La2O3, and Tb4O7. J. Spectrosc. 2015, 2015, 940172. [Google Scholar] [CrossRef]
- Adamczyk, A.; Handke, M. The Isotopic Effect and Spectroscopic Studies of Boron Orthophosphate (BPO4). J. Mol. Struct. 2000, 555, 159–164. [Google Scholar] [CrossRef]
- Zhou, Y.; Fang, C.; Fang, Y.; Zhu, F. Polyborates in Aqueous Borate Solution: A Raman and DFT Theory Investigation. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2011, 83, 82–87. [Google Scholar] [CrossRef]
- Sone, B.T.; Manikandan, E.; Gurib-Fakim, A.; Maaza, M. Sm2O3 Nanoparticles Green Synthesis via Callistemon Viminalis’ Extract. J. Alloys Compd. 2015, 650, 357–362. [Google Scholar] [CrossRef]
- Murugan, R.; Huang, P.J.; Ghule, A.; Chang, H. Studies on Thermal Hysteresis of KNO3 by Thermo-Raman Spectroscopy. Thermochim. Acta 2000, 346, 83–90. [Google Scholar] [CrossRef]
- Paceagiu, J.; Georgescu, M. The Influence of Curing Conditions on the Physical and Mechanical Properties of Magnesia Phosphate Cements. Rev. Chim. 2008, 59, 135. [Google Scholar] [CrossRef]
- Lahalle, H.; Cau Dit Coumes, C.; Mesbah, A.; Lambertin, D.; Cannes, C.; Delpech, S.; Gauffinet, S. Investigation of Magnesium Phosphate Cement Hydration in Diluted Suspension and Its Retardation by Boric Acid. Cem. Concr. Res. 2016, 87, 77–86. [Google Scholar] [CrossRef]
- Tech/Position. U.S. Nuclear Regulatory Commission, Technical Position on Waste Form. Washington D. C., 20555 Revision 1. Appendix A-7; 1991. Available online: www.nrc.gov/docs/ML0037/ML003752851.pdf (accessed on 24 January 1991).
- Motny, R.M.; Woods, M.E.; Phongikaroon, S. Assessment of Leaching Characteristics for Cerium and Cesium as Surrogates for Radioactive Materials. Nucl. Technol. 2020, 206, 1932–1944. [Google Scholar] [CrossRef]
Specimen | Unit Cell Parameters | |||
---|---|---|---|---|
a/nm | b/nm | c/nm | V/nm3 | |
MKP | 0.68753(2) | 0.61629(1) | 1.10941(3) | 0.47008 |
MKP/Nd | 0.68753(1) | 0.61630(1) | 1.10934(2) | 0.47005 |
MKP/Sm | 0.68760(1) | 0.61631(1) | 1.10951(1) | 0.47018 |
MKP/NdN | 0.68796(1) | 0.61651(1) | 1.10995(2) | 0.47077 |
MKP/SmN | 0.68773(1) | 0.61641(1) | 1.10964(1) | 0.47040 |
Element | Specimen | |||
---|---|---|---|---|
MKP/Nd | MKP/NdN | MKP/Sm | MKP/SmN | |
Nd | 19.55 | 19.78 | - | - |
Sm | - | - | 19.74 | 19.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
zur Loye, H.-C.; Vecernik, P.; Kiselova, M.; Kašpar, V.; Korenkova, H.; Miller, V.; Bezdicka, P.; Šubrt, J.; Murafa, N.; Shkuropatenko, V.; et al. Investigation of Magnesium-Potassium Phosphates as Potential Nuclear Waste Form for the Immobilization of Minor Actinides. Inorganics 2024, 12, 311. https://doi.org/10.3390/inorganics12120311
zur Loye H-C, Vecernik P, Kiselova M, Kašpar V, Korenkova H, Miller V, Bezdicka P, Šubrt J, Murafa N, Shkuropatenko V, et al. Investigation of Magnesium-Potassium Phosphates as Potential Nuclear Waste Form for the Immobilization of Minor Actinides. Inorganics. 2024; 12(12):311. https://doi.org/10.3390/inorganics12120311
Chicago/Turabian Stylezur Loye, Hans-Conrad, Petr Vecernik, Monika Kiselova, Vlastislav Kašpar, Hana Korenkova, Vlastimil Miller, Petr Bezdicka, Jan Šubrt, Natalija Murafa, Volodymyr Shkuropatenko, and et al. 2024. "Investigation of Magnesium-Potassium Phosphates as Potential Nuclear Waste Form for the Immobilization of Minor Actinides" Inorganics 12, no. 12: 311. https://doi.org/10.3390/inorganics12120311
APA Stylezur Loye, H.-C., Vecernik, P., Kiselova, M., Kašpar, V., Korenkova, H., Miller, V., Bezdicka, P., Šubrt, J., Murafa, N., Shkuropatenko, V., & Sayenko, S. (2024). Investigation of Magnesium-Potassium Phosphates as Potential Nuclear Waste Form for the Immobilization of Minor Actinides. Inorganics, 12(12), 311. https://doi.org/10.3390/inorganics12120311