Low-Complexity and Highly-Robust Chromatic Dispersion Estimation for Faster-than-Nyquist Coherent Optical Systems
<p>Frame structure diagram.</p> "> Figure 2
<p>Block diagram of the proposed CDE scheme consisting of two stages: (<b>a</b>) the first coarse stage using TSs, and (<b>b</b>) the second fine stage using optimized FrFT.</p> "> Figure 3
<p>Simulation platform for a 64Gbaud DP-16QAM FTN-WDM system with the proposed CD estimation scheme.</p> "> Figure 4
<p>Distribution of the mean value of the absolute CDE error using 4096 samples when the step size of the order scanning and the granularity of the CD scanning are (<b>a</b>) 0.002 and 100 ps/nm, and (<b>b</b>) 0.004 and 200 ps/nm.</p> "> Figure 5
<p>Distribution of the mean value of the absolute CDE error using 8192 samples when the step size of the order scanning and the granularity of the CD scanning are (<b>a</b>) 0.001 and 100 ps/nm, and (<b>b</b>) 0.002 and 200 ps/nm.</p> "> Figure 6
<p>The mean value of the absolute CDE error vs. different OSNRs.</p> "> Figure 7
<p>The mean value of the absolute CDE error vs. different <span class="html-italic">CD<sub>real</sub></span>.</p> "> Figure 8
<p>The mean value of the absolute CDE error vs. different DGD.</p> "> Figure 9
<p>Experimental setup for 60-GBaud FTN DP-QPSK/16QAM coherent transmission systems.</p> "> Figure 10
<p>Accumulated CD vs. the CD estimated in (<b>a</b>) DP-QPSK and (<b>b</b>) DP-16QAM systems.</p> "> Figure 11
<p>(<b>a</b>) The mean value of the absolute CDE error in (<b>a</b>) DP-QPSK and (<b>b</b>) DP-16QAM systems.</p> ">
Abstract
:1. Introduction
2. Principle of the CDE Scheme
Complexity Comparison with the Blind CD Estimation Method
3. Simulation and Discussion
3.1. Simulation Environment
3.2. Analysis of the Impact of the Algorithm Key Parameter
3.3. Evaluation of the CD Estimation Performance
4. Experimental Setup and Performance Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhou, G.; Jiang, T.; Xiang, Y.; Tang, M. FrFT based blind chromatic dispersion estimation mitigating large DGD induced uncertainty. In Proceedings of the Asia Communications and Photonics Conference 2020, Beijing, China, 24–27 October 2020; p. M4A.305. [Google Scholar]
- Jiang, H. Joint Time/Frequency Synchronization and Chromatic Dispersion Estimation with Low Complexity Based on a Superimposed FrFT Training Sequence. IEEE Photonics J. 2018, 10, 1–10. [Google Scholar]
- Wang, Y.; Liang, J.; Zhou, W.; Wang, W. Accurate chromatic dispersion estimation for Nyquist and Faster Than Nyquist Coherent Optical Systems. In Proceedings of the Asia Communications and Photonics Conference 2021, Shanghai, China, 24–27 October 2021; p. T4A.61. [Google Scholar]
- An, S.; Li, J.; Li, X.; Su, Y. FTN SSB 16-QAM Signal Transmission and Direct Detection Based on Tomlinson-Harashima Precoding with Computed Coefficients. J. Lightwave Technol. 2021, 39, 2059–2066. [Google Scholar] [CrossRef]
- Li, S.; Yuan, W.; Yuan, J.; Bai, B.; Wing Kwan Ng, D.; Hanzo, L. Time-Domain, vs. Frequency-Domain Equalization for FTN Signaling. IEEE Trans. Veh. Technol. 2020, 69, 9174–9179. [Google Scholar] [CrossRef]
- Ibrahim, A.; Bedeer, E.; Yanikomeroglu, H. A Novel Low Complexity Faster-than-Nyquist (FTN) Signaling Detector for Ultra High-Order QAM. IEEE Open J. Commun. Soc. 2021, 2, 2566–2580. [Google Scholar] [CrossRef]
- Hauske, F.N.; Geyer, J.; Kuschnerov, M.; Piyawanno, K.; Lankl, B.; Duthel, T.; Fludger, C.R.S.; van den Borne, D.; Schmidt, E.-D.; Spinnler, B. Optical performance monitoring from FIR filter coefficients in coherent receivers. In Proceedings of the Optical Fiber Communication Conference, San Diego, CA, USA, 24–28 February 2008; p. OThW2. [Google Scholar]
- Hauske, F.N.; Zhang, Z.; Li, C.; Xie, C.; Xiong, Q. Precise, robust and least complexity CD estimation. In Proceedings of the Optical Fiber Communication Conference, Los Angeles, CA, USA, 6–10 March 2011; p. JWA032. [Google Scholar]
- Malouin, C.; Thomas, P.; Zhang, B.; O’Neil, J.; Schmidt, T. Natural Expression of the Best-Match Search Godard Clock-Tone Algorithm for Blind Chromatic Dispersion Estimation in Digital Coherent Receivers. In Proceedings of the Photonics Congress, Colorado Springs, CO, USA, 19–21 June 2012; p. SpTh2B.4. [Google Scholar]
- Xie, C. Chromatic Dispersion Estimation for Single-Carrier Coherent Optical Communications. IEEE Photonics Technol. Lett. 2013, 25, 992–995. [Google Scholar] [CrossRef]
- Ospina, R.S.B.; dos Santos, L.F.D.; Mello, A.A.; Ferreira, F.M. Scanning-Based Chromatic Dispersion Estimation in Mode-Multiplexed Optical Systems. In Proceedings of the 21st International Conference on Transparent Optical Networks (ICTON), Angers, France, 9–13 July 2019; pp. 1–4. [Google Scholar]
- Pereira, F.C.; Rozental, V.N.; Camera, M. Experimental Analysis of the Power Auto-Correlation-Based Chromatic Dispersion Estimation Method. IEEE Photonics J. 2013, 5, 7901608. [Google Scholar] [CrossRef]
- Sui, Q.; Lau, A.P.T.; Lu, C. Fast and Robust Blind Chromatic Dispersion Estimation Using Auto-Correlation of Signal Power Waveform for Digital Coherent Systems. J. Lightwave Technol. 2013, 31, 306–312. [Google Scholar] [CrossRef]
- Zhou, H. A fast and robust blind chromatic dispersion estimation based on fractional fourier transformation. In Proceedings of the European Conference on Optical Communication (ECOC), Valencia, Spain, 27 September–1 October 2015; pp. 1–3. [Google Scholar]
- Sun, X.; Zuo, Z.; Su, S.; Tan, X. Blind Chromatic Dispersion Estimation Using Fractional Fourier Transformation in Coherent Optical Communications. In Proceedings of the IEEE International Conference on Artificial Intelligence and Information Systems (ICAIIS), Dalian, China, 20–22 March 2020; pp. 339–342. [Google Scholar]
- Zhou, H. Fractional Fourier Transformation-Based Blind Chromatic Dispersion Estimation for Coherent Optical Communications. J. Lightwave Technol. 2016, 34, 2371–2380. [Google Scholar] [CrossRef]
- Wang, W.; Qiao, Y.; Yang, A.; Guo, P. A Novel Noise-Insensitive Chromatic Dispersion Estimation Method Based on Fractional Fourier Transform of LFM Signals. IEEE Photonics J. 2017, 9, 1–12. [Google Scholar] [CrossRef]
- Do, C.C. Data-Aided Chromatic Dispersion Estimation for Polarization Multiplexed Optical Systems. IEEE Photonics J. 2012, 4, 2037–2049. [Google Scholar] [CrossRef]
- Ma, Y. Training Sequence-Based Chromatic Dispersion Estimation with Ultra-Low Sampling Rate for Optical Fiber Communication Systems. IEEE Photonics J. 2018, 10, 1–9. [Google Scholar] [CrossRef]
- Wu, F.; Guo, P.; Yang, A.; Qiao, Y. Chromatic Dispersion Estimation Based on CAZAC Sequence for Optical Fiber Communication Systems. IEEE Access 2019, 7, 139388–139393. [Google Scholar] [CrossRef]
- Li, J.; Wang, D.; Zhang, M. Low-Complexity Adaptive Chromatic Dispersion Estimation Scheme Using Machine Learning for Coherent Long-Reach Passive Optical Networks. IEEE Photonics J. 2019, 11, 1–11. [Google Scholar] [CrossRef]
- Tang, D.; Wang, X.; Zhuang, L.; Guo, P.; Yang, A.; Qiao, Y. Delay-Tap-Sampling-Based Chromatic Dispersion Estimation Method with Ultra-Low Sampling Rate for Optical Fiber Communication Systems. IEEE Access 2020, 8, 101004–101013. [Google Scholar] [CrossRef]
Algorithm | Real Multiplication | Real Addition |
---|---|---|
Conventional CDE based on FrFT | ||
Proposed two-stage CDE |
Sample | p | Granularity 100 ps/nm | Sample | p | Granularity 200 ps/nm | ||
---|---|---|---|---|---|---|---|
MECD | RCD | MECD | RCD | ||||
4096 | 0.002 | 29 | 2~95 | 4096 | 0.004 | 59 | 1~114 |
8192 | 0.001 | 26 | 1~57 | 8192 | 0.002 | 54 | 0~109 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, T.; Jiang, Y.; Wang, Y.; You, J.; Wang, L.; Chen, X. Low-Complexity and Highly-Robust Chromatic Dispersion Estimation for Faster-than-Nyquist Coherent Optical Systems. Photonics 2022, 9, 657. https://doi.org/10.3390/photonics9090657
Yang T, Jiang Y, Wang Y, You J, Wang L, Chen X. Low-Complexity and Highly-Robust Chromatic Dispersion Estimation for Faster-than-Nyquist Coherent Optical Systems. Photonics. 2022; 9(9):657. https://doi.org/10.3390/photonics9090657
Chicago/Turabian StyleYang, Tao, Yu Jiang, Yongben Wang, Jialin You, Liqian Wang, and Xue Chen. 2022. "Low-Complexity and Highly-Robust Chromatic Dispersion Estimation for Faster-than-Nyquist Coherent Optical Systems" Photonics 9, no. 9: 657. https://doi.org/10.3390/photonics9090657
APA StyleYang, T., Jiang, Y., Wang, Y., You, J., Wang, L., & Chen, X. (2022). Low-Complexity and Highly-Robust Chromatic Dispersion Estimation for Faster-than-Nyquist Coherent Optical Systems. Photonics, 9(9), 657. https://doi.org/10.3390/photonics9090657