Grating Lobes in Higher-Order Correlation Functions of Arrays of Quantum Emitters: Directional Photon Bunching Versus Correlated Directions
<p>(<b>a</b>) Sketch of the geometry. An ensemble of <span class="html-italic">N</span> quantum emitters are located at positions <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="bold">r</mi> <mn>1</mn> </msub> <mo>,</mo> <mo>…</mo> <mo>,</mo> <msub> <mi mathvariant="bold">r</mi> <mi>N</mi> </msub> </mrow> </semantics></math>. They are modelled as two-level systems <math display="inline"><semantics> <mfenced separators="" open="{" close="}"> <mfenced open="|" close="〉"> <mi>e</mi> </mfenced> <mo>,</mo> <mfenced open="|" close="〉"> <mi>g</mi> </mfenced> </mfenced> </semantics></math>. All of these emitters are initially excited <math display="inline"><semantics> <mrow> <mfenced open="|" close="〉"> <mi>ψ</mi> </mfenced> <mo>=</mo> <mfenced separators="" open="|" close="〉"> <msub> <mi>e</mi> <mn>1</mn> </msub> <mo>⋯</mo> <msub> <mi>e</mi> <mi>N</mi> </msub> </mfenced> </mrow> </semantics></math> and decay by emitting photons. The photon emission occurs in correlated directions that depend on the geometry of the array. (<b>b</b>) Conceptual sketch of directional photon bunching. The average number of photons measured in a given direction has an isotropic emission pattern (solid red line), but each array decay process exhibits bunching of the photons along specific directions (dashed lines).</p> "> Figure 2
<p>(<b>a</b>) Sketch of the geometry. A linear array of <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math> uniformly spaced quantum emitters with position vectors <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="bold">r</mi> <mi>n</mi> </msub> <mo>=</mo> <mi>n</mi> <mi>d</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>3</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mi>d</mi> <mo>=</mo> <mn>1.5</mn> <msub> <mi>λ</mi> <mn>0</mn> </msub> </mrow> </semantics></math>, <math display="inline"><semantics> <msub> <mi>λ</mi> <mn>0</mn> </msub> </semantics></math> being the wavelength at their transition frequency, is oriented vertically along the Z-axis. (<b>b</b>) Sketch of three measurement outcomes with the same probability. Top-left: Three photons measured along the same direction <math display="inline"><semantics> <mrow> <msub> <mi>θ</mi> <mn>1</mn> </msub> <mo>=</mo> <msub> <mi>θ</mi> <mn>2</mn> </msub> <mo>=</mo> <msub> <mi>θ</mi> <mn>3</mn> </msub> <mo>=</mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> </mrow> </semantics></math>. Top-right: Two photons measured along this direction: <math display="inline"><semantics> <mrow> <msub> <mi>θ</mi> <mn>2</mn> </msub> <mo>=</mo> <msub> <mi>θ</mi> <mn>3</mn> </msub> <mo>=</mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> </mrow> </semantics></math>, and the remaining photon measured along the first grating lobe direction <math display="inline"><semantics> <mrow> <msub> <mi>θ</mi> <mn>1</mn> </msub> <mo>=</mo> <mi>acos</mi> <mrow> <mo stretchy="false">(</mo> <mi>cos</mi> <mfrac> <mi>π</mi> <mn>3</mn> </mfrac> <mo>−</mo> <mfrac> <mrow> <mn>2</mn> <mi>π</mi> </mrow> <mrow> <msub> <mi>k</mi> <mn>0</mn> </msub> <mi>d</mi> </mrow> </mfrac> <mo>≃</mo> <mn>0.55</mn> <mi>π</mi> <mo stretchy="false">)</mo> </mrow> </mrow> </semantics></math>. Bottom-center: Two photons measured along the direction <math display="inline"><semantics> <mrow> <msub> <mi>θ</mi> <mn>2</mn> </msub> <mo>=</mo> <msub> <mi>θ</mi> <mn>3</mn> </msub> <mo>=</mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> </mrow> </semantics></math>, and the remaining photon measured along the second grating lobe direction, <math display="inline"><semantics> <mrow> <msub> <mi>θ</mi> <mn>1</mn> </msub> <mo>=</mo> <mi>acos</mi> <mrow> <mo stretchy="false">(</mo> <mi>cos</mi> <mfrac> <mi>π</mi> <mn>3</mn> </mfrac> <mo>−</mo> <mfrac> <mrow> <mn>4</mn> <mi>π</mi> </mrow> <mrow> <msub> <mi>k</mi> <mn>0</mn> </msub> <mi>d</mi> </mrow> </mfrac> <mo>≃</mo> <mn>0.81</mn> <mi>π</mi> <mo stretchy="false">)</mo> </mrow> </mrow> </semantics></math>. For reference, the red line indicates the <math display="inline"><semantics> <msup> <mi>N</mi> <mi>th</mi> </msup> </semantics></math>-order array factor <math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mn>3</mn> </msub> <mrow> <mo stretchy="false">(</mo> <msub> <mi>θ</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>θ</mi> <mn>2</mn> </msub> <mo>,</mo> <msub> <mi>θ</mi> <mn>3</mn> </msub> <mo stretchy="false">)</mo> </mrow> </mrow> </semantics></math> as a function of <math display="inline"><semantics> <msub> <mi>θ</mi> <mn>1</mn> </msub> </semantics></math> and evaluated at <math display="inline"><semantics> <mrow> <msub> <mi>θ</mi> <mn>2</mn> </msub> <mo>=</mo> <msub> <mi>θ</mi> <mn>3</mn> </msub> <mo>=</mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> </mrow> </semantics></math>.</p> "> Figure 3
<p>Quantum array factor (normalized to its maximum value) for different observation angles and emitter separation distances for a vertical linear array of <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math> quantum emitters uniformly spaced along the Z-axis. The transition dipole moment of the emitters is assumed for the convenience to be oriented along the Z-axis, <math display="inline"><semantics> <mrow> <mi mathvariant="bold">p</mi> <mo>=</mo> <msub> <mi mathvariant="bold">u</mi> <mi>z</mi> </msub> <mspace width="0.166667em"/> <mi>p</mi> </mrow> </semantics></math>, in order to make the quantum array factor depend only on the elevation angle <math display="inline"><semantics> <mi>θ</mi> </semantics></math>. The normalized <math display="inline"><semantics> <mrow> <mo stretchy="false">(</mo> <mi>N</mi> <mo>=</mo> <mn>3</mn> <mo stretchy="false">)</mo> </mrow> </semantics></math>-order quantum array factor, <math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mn>3</mn> </msub> <mrow> <mo stretchy="false">(</mo> <msub> <mi>θ</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>θ</mi> <mn>2</mn> </msub> <mo>,</mo> <msub> <mi>θ</mi> <mn>3</mn> </msub> <mo stretchy="false">)</mo> </mrow> </mrow> </semantics></math>, is explicitly shown as a function of <math display="inline"><semantics> <msub> <mi>θ</mi> <mn>1</mn> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>θ</mi> <mn>2</mn> </msub> </semantics></math> for different values of <math display="inline"><semantics> <msub> <mi>θ</mi> <mn>3</mn> </msub> </semantics></math>: first column, <math display="inline"><semantics> <mrow> <msub> <mi>θ</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>0.5</mn> <mi>π</mi> </mrow> </semantics></math>; second column, <math display="inline"><semantics> <mrow> <msub> <mi>θ</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>0.3</mn> <mi>π</mi> </mrow> </semantics></math>; and third column, <math display="inline"><semantics> <mrow> <msub> <mi>θ</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>0.1</mn> <mi>π</mi> </mrow> </semantics></math>; and as a function of the emitter separation distance <span class="html-italic">d</span>: first row, <math display="inline"><semantics> <mrow> <mi>d</mi> <mo>=</mo> <mn>0.1</mn> <msub> <mi>λ</mi> <mn>0</mn> </msub> </mrow> </semantics></math>; second row, <math display="inline"><semantics> <mrow> <mi>d</mi> <mo>=</mo> <mn>1.0</mn> <msub> <mi>λ</mi> <mn>0</mn> </msub> </mrow> </semantics></math>; and third row, <math display="inline"><semantics> <mrow> <mi>d</mi> <mo>=</mo> <mn>2.5</mn> <msub> <mi>λ</mi> <mn>0</mn> </msub> </mrow> </semantics></math>, <math display="inline"><semantics> <msub> <mi>λ</mi> <mn>0</mn> </msub> </semantics></math> being the wavelength at the transition frequency of the quantum emitters.</p> ">
Abstract
:1. Introduction
2. Theoretical Framework
3. Evaluation of the -Order Directional Correlation Function
4. Directional Photon Bunching
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Dicke, R.H. Coherence in spontaneous radiation processes. Phys. Rev. 1954, 93, 99. [Google Scholar] [CrossRef]
- Gross, M.; Haroche, S. Superradiance: An essay on the theory of collective spontaneous emission. Phys. Rep. 1982, 93, 301–396. [Google Scholar] [CrossRef]
- Asenjo-Garcia, A.; Moreno-Cardoner, M.; Albrecht, A.; Kimble, H.J.; Chang, D.E. Exponential improvement in photon storage fidelities using subradiance and “Selective Radiance” in atomic arrays. Phys. Rev. X 2017, 7, 031024. [Google Scholar] [CrossRef]
- Liberal, I.; Engheta, N. Multiqubit subradiant states in N-port waveguide devices: epsilon-and-mu-near-zero waveguide hubs and nonreciprocal circulators. Phys. Rev. A 2018, 97, 022309. [Google Scholar] [CrossRef]
- Scully, M.O. Collective Lamb shift in single photon Dicke superradiance. Phys. Rev. Lett. 2009, 102, 143601. [Google Scholar] [CrossRef] [PubMed]
- Röhlsberger, R.; Schlage, K.; Sahoo, B.; Couet, S.; Rüffer, R. Collective Lamb shift in single-photon superradiance. Science 2010, 328, 1248–1251. [Google Scholar] [CrossRef] [PubMed]
- Milonni, P.W.; Knight, P.L. Retardation in the resonant interaction of two identical atoms. Phys. Rev. A 1974, 10, 1096. [Google Scholar] [CrossRef]
- Sáez-Blázquez, R.; Feist, J.; Fernández-Domínguez, A.I.; García-Vidal, F.J. Enhancing photon correlations through plasmonic strong coupling. Optica 2017, 4, 1363–1367. [Google Scholar] [CrossRef]
- Scully, M.O.; Zubairy, M.S. Quantum Optics; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- Delga, A.; Feist, J.; Bravo-Abad, J.; Garcia-Vidal, F.J. Quantum emitters near a metal nanoparticle: strong coupling and quenching. Phys. Rev. Lett. 2014, 112, 253601. [Google Scholar] [CrossRef] [PubMed]
- Awschalom, D.D.; Hanson, R.; Wrachtrup, J.; Zhou, B.B. Quantum technologies with optically interfaced solid-state spins. Nature Photonics 2018, 12, 516. [Google Scholar] [CrossRef]
- Senellart, P.; Solomon, G.; White, A. High-performance semiconductor quantum-dot single-photon sources. Nat. Nanotechnol. 2017, 12, 1026. [Google Scholar] [CrossRef] [PubMed]
- Aharonovich, I.; Englund, D.; Toth, M. Solid-state single-photon emitters. Nat. Photonics 2016, 10, 631. [Google Scholar] [CrossRef]
- Endres, M.; Bernien, H.; Keesling, A.; Levine, H.; Anschuetz, E.R.; Krajenbrink, A.; Senko, C.; Vuletic, V.; Greiner, M.; Lukin, M.D. Atom-by-atom assembly of defect-free one-dimensional cold atom arrays. Science 2016, aah3752. [Google Scholar] [CrossRef] [PubMed]
- Labuhn, H.; Barredo, D.; Ravets, S.; De Léséleuc, S.; Macrì, T.; Lahaye, T.; Browaeys, A. Tunable two-dimensional arrays of single Rydberg atoms for realizing quantum Ising models. Nature 2016, 534, 667–670. [Google Scholar] [CrossRef] [PubMed]
- Barredo, D.; Lienhard, V.; de Leseleuc, S.; Lahaye, T.; Browaeys, A. Synthetic three-dimensional atomic structures assembled atom by atom. Nature 2018, 561, 79–82. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Wu, T.Y.; Giraldo, F.; Weiss, D.S. Sorting ultracold atoms in a three-dimensional optical lattice in a realization of Maxwell’s demon. Nature 2018, 561, 83. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.L.; Lagoudakis, K.G.; Tzeng, Y.K.; Dory, C.; Radulaski, M.; Kelaita, Y.; Fischer, K.A.; Sun, S.; Shen, Z.X.; Melosh, N.A.; et al. Complete coherent control of silicon vacancies in diamond nanopillars containing single defect centers. Optica 2017, 4, 1317–1321. [Google Scholar] [CrossRef]
- Biccari, F.; Boschetti, A.; Pettinari, G.; La China, F.; Gurioli, M.; Intonti, F.; Vinattieri, A.; Sharma, M.; Capizzi, M.; Gerardino, A.; et al. Site-Controlled Single-Photon Emitters Fabricated by Near-Field Illumination. Adv. Mater. 2018, 30, 1705450. [Google Scholar] [CrossRef] [PubMed]
- Palacios-Berraquero, C.; Kara, D.M.; Montblanch, A.R.P.; Barbone, M.; Latawiec, P.; Yoon, D.; Ott, A.K.; Loncar, M.; Ferrari, A.C.; Mete, A. Large-scale quantum-emitter arrays in atomically thin semiconductors. Nat. Commun. 2017, 8, 15093. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Shepard, G.D.; Ardelean, J.V.; Rhodes, D.A.; Kim, B.; Barmak, K.; Hone, J.C.; Strauf, S. Deterministic coupling of site-controlled quantum emitters in monolayer WSe2 to plasmonic nanocavities. Nat. Nanotechnol. 2018, 561, 1137–1142. [Google Scholar] [CrossRef] [PubMed]
- Liberal, I.; Ederra, I.; Ziolkowski, R.W. Quantum antenna arrays: The role of quantum interference on direction-dependent photon statistics. Phys. Rev. A 2018, 97, 053847. [Google Scholar] [CrossRef]
- Balanis, C.A. Antenna Theory: Analysis and Design, 4th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2005. [Google Scholar]
- Hansen, R.C. Phased Array Antennas; John Wiley & Sons: Hoboken, NJ, USA, 2009; Volume 213. [Google Scholar]
- Mailloux, R.J. Phased Array Antenna Handbook, 3rd ed.; Artech House: Boston, CT, USA, 2005. [Google Scholar]
- Kildal, P.S. Foundations of Antenna Engineering: A Unified Approach for Line-of-sight and Multipath; Artech House: Boston, CT, USA, 2015. [Google Scholar]
- Oppel, S.; Wiegner, R.; Agarwal, G.; von Zanthier, J. Directional superradiant emission from statistically independent incoherent nonclassical and classical sources. Phys. Rev. Lett. 2014, 113, 263606. [Google Scholar] [CrossRef] [PubMed]
- Grankin, A.; Vasilyev, D.; Guimond, P.; Vermersch, B.; Zoller, P. A’Few-Atom’Quantum Optical Antenna. arXiv, 2018; arXiv:1802.05592. [Google Scholar]
- Petrosyan, D.; Saffman, M.; Mølmer, K. A deterministic free-space source of single photons using Rydberg atoms. Phys. Rev. Lett 2018, 121, 123605. [Google Scholar] [CrossRef] [PubMed]
- Mikhalychev, A.; Mogilevtsev, D.; Slepyan, G.Y.; Karuseichyk, I.; Buchs, G.; Boiko, D.; Boag, A. Synthesis of Quantum Antennas for Shaping Field Correlations. Phys. Rev. Appl. 2018, 9, 024021. [Google Scholar] [CrossRef]
- Gulfman, Q.U.A.; Ficek, Z. Highly directional photon superbunching from a few-atom chain of emitters. Phys. Rev. A 2018, 98, 063824. [Google Scholar]
- Glauber, R.J. Photon correlations. Phys. Rev. Lett. 1963, 10, 84. [Google Scholar] [CrossRef]
- Glauber, R.J. The quantum theory of optical coherence. Phys. Rev. 1963, 130, 2529. [Google Scholar] [CrossRef]
- Kelley, P.; Kleiner, W. Theory of electromagnetic field measurement and photoelectron counting. Phys. Rev. 1964, 136, A316. [Google Scholar] [CrossRef]
- Liberal, I.; Ederra, I.; Li, Y. Isotropic single-photon sources. Opt. Lett. 2018, 43, 2736–2739. [Google Scholar] [CrossRef] [PubMed]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liberal, I.; Ederra, I.; Ziolkowski, R.W. Grating Lobes in Higher-Order Correlation Functions of Arrays of Quantum Emitters: Directional Photon Bunching Versus Correlated Directions. Photonics 2019, 6, 14. https://doi.org/10.3390/photonics6010014
Liberal I, Ederra I, Ziolkowski RW. Grating Lobes in Higher-Order Correlation Functions of Arrays of Quantum Emitters: Directional Photon Bunching Versus Correlated Directions. Photonics. 2019; 6(1):14. https://doi.org/10.3390/photonics6010014
Chicago/Turabian StyleLiberal, Iñigo, Iñigo Ederra, and Richard W. Ziolkowski. 2019. "Grating Lobes in Higher-Order Correlation Functions of Arrays of Quantum Emitters: Directional Photon Bunching Versus Correlated Directions" Photonics 6, no. 1: 14. https://doi.org/10.3390/photonics6010014
APA StyleLiberal, I., Ederra, I., & Ziolkowski, R. W. (2019). Grating Lobes in Higher-Order Correlation Functions of Arrays of Quantum Emitters: Directional Photon Bunching Versus Correlated Directions. Photonics, 6(1), 14. https://doi.org/10.3390/photonics6010014