Bifunctional Electromagnetic Manipulation of Surface Waves Using Metasurfaces Under One Circularly Polarized Incidence
<p>Schematic principle of proposed metasurfaces. Schematic of the designed bifunctional metasurface for near-field SW manipulations in both co- and cross-polarized output channels, as shined using single-helicity circularly polarized (CP) waves. The output SWs can achieve an arbitrary functionality, such as SWs with a focusing wavefront in the co-polarized output channel and SWs with a deflecting wavefront in the cross-polarized output channel.</p> "> Figure 2
<p>Characterization of the designed meta−atoms and plasmonic metal. (<b>a</b>) Geometry of the designed meta−atom (sized 7 × 7 mm<sup>2</sup>) composed of the metallic Jerusalem cross structure array and a flat metal mirror separated by a 1.5 mm thick dielectric spacer. (<b>b</b>) Finite element method (FEM) −simulated dispersion relation (red line) of the eigen SWs supported by the plasmonic metal, as depicted in the inset. (<b>c</b>,<b>d</b>) Pseudocolor maps of simulated (<b>c</b>) <math display="inline"><semantics> <mrow> <mn>0.5</mn> <mo>∆</mo> <mi mathvariant="sans-serif">φ</mi> </mrow> </semantics></math> and (<b>d</b>) <math display="inline"><semantics> <mrow> <mn>0.5</mn> <mi mathvariant="sans-serif">Σ</mi> <mi mathvariant="sans-serif">φ</mi> </mrow> </semantics></math> for the structure of (<b>a</b>) in a parameter space spanned by <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>l</mi> </mrow> <mrow> <mi>x</mi> </mrow> </msub> <mfenced separators="|"> <mrow> <msub> <mrow> <mi>l</mi> </mrow> <mrow> <mi>x</mi> </mrow> </msub> <mo>=</mo> <msub> <mrow> <mi>l</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mrow> <mi>b</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> </mrow> </mfenced> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>l</mi> </mrow> <mrow> <mi>y</mi> </mrow> </msub> <mfenced separators="|"> <mrow> <msub> <mrow> <mi>l</mi> </mrow> <mrow> <mi>y</mi> </mrow> </msub> <mo>=</mo> <msub> <mrow> <mi>l</mi> </mrow> <mrow> <mn>2</mn> </mrow> </msub> <mo>+</mo> <msub> <mrow> <mi>b</mi> </mrow> <mrow> <mn>2</mn> </mrow> </msub> </mrow> </mfenced> </mrow> </semantics></math> at 10 GHz. The purple lines indicate <math display="inline"><semantics> <mrow> <mn>0.5</mn> <mo>∆</mo> <mi>φ</mi> <mo>=</mo> <mrow> <mrow> <mi>π</mi> </mrow> <mo>/</mo> <mrow> <mn>4</mn> </mrow> </mrow> </mrow> </semantics></math>.</p> "> Figure 3
<p>Structural details of the designed bifunctional meta−device. (<b>a</b>) The proposed meta-device for generating SWs with both hyperbolic and linear phase profiles dictated under LCP wave illumination. (<b>b</b>−<b>d</b>) Distributions of (<b>b</b>) <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>l</mi> </mrow> <mrow> <mi>x</mi> </mrow> </msub> <mfenced separators="|"> <mrow> <mi>x</mi> <mo>,</mo> <mi>y</mi> </mrow> </mfenced> </mrow> </semantics></math>, (<b>c</b>) <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>l</mi> </mrow> <mrow> <mi>y</mi> </mrow> </msub> <mfenced separators="|"> <mrow> <mi>x</mi> <mo>,</mo> <mi>y</mi> </mrow> </mfenced> </mrow> </semantics></math>, and (<b>d</b>) <math display="inline"><semantics> <mrow> <mi>θ</mi> <mfenced separators="|"> <mrow> <mi>x</mi> <mo>,</mo> <mi>y</mi> </mrow> </mfenced> </mrow> </semantics></math> of the designed bifunctional meta-device.</p> "> Figure 4
<p>Bifunctional meta−device for near−field SW manipulations. (<b>a</b>) FEM−simulated near-field Re[<span class="html-italic">Ez</span>] patterns in the whole system, as the meta−device is illuminated by an LCP wave. (<b>b</b>) The near-field <math display="inline"><semantics> <mrow> <mrow> <mrow> <msup> <mrow> <mfenced open="|" close="|" separators="|"> <mrow> <msub> <mrow> <mi>E</mi> </mrow> <mrow> <mi>y</mi> </mrow> </msub> </mrow> </mfenced> </mrow> <mrow> <mn>2</mn> </mrow> </msup> </mrow> <mo stretchy="true">/</mo> <mrow> <msup> <mrow> <mfenced open="|" close="|" separators="|"> <mrow> <msub> <mrow> <mi>E</mi> </mrow> <mrow> <mi>y</mi> <mn>0</mn> </mrow> </msub> </mrow> </mfenced> </mrow> <mrow> <mn>2</mn> </mrow> </msup> </mrow> </mrow> </mrow> </semantics></math> distribution of the SWs at the focal length position versus the y coordinate with <span class="html-italic">F</span> = 196 mm. The inset shows part of the SW focusing in the co−polarized output channel. (<b>c</b>) The simulated near-field Re[<span class="html-italic">Ez</span>] profiles of the SW deflection in the cross−polarized output channel. Here, the frequency is fixed at 10 GHz.</p> ">
Abstract
:1. Introduction
2. The Physical Concept
3. The Meta-Atom Designs
4. Meta-Device Realizations: Microwave Simulations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Raether, H. Surface Plasmons on Smooth and Rough Surfaces and on Gratings; Springer: Berlin/Heidelberg, Germany, 1988. [Google Scholar]
- Barnes, W.L.; Dereux, A.; Ebbesen, T.W. Surface plasmon subwavelength optics. Nature 2003, 424, 824–830. [Google Scholar] [CrossRef] [PubMed]
- Pendry, J.B.; Martín-Moreno, L.; Garcia-Vidal, F.J. Mimicking surface plasmons with structured surfaces. Science 2004, 305, 847–848. [Google Scholar] [CrossRef]
- Maier, S.A.; Andrews, S.R.; Martín-Moreno, L.; García-Vidal, F.J. Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires. Phys. Rev. Lett. 2006, 97, 176805. [Google Scholar] [CrossRef]
- Gan, Q.; Fu, Z.; Ding, Y.J.; Bartoli, F.J. Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures. Phys. Rev. Lett. 2008, 100, 256803. [Google Scholar] [CrossRef] [PubMed]
- Lockyear, M.; Hibbins, A.; Sambles, J. Microwave surface-plasmon-like modes on thin metamaterials. Phys. Rev. Lett. 2009, 102, 73901. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.C.; Liu, S.; Shen, X.; Chen, L.H.; Li, L.; Cui, T.J. Broadband amplification of spoof surface plasmon polaritons at microwave frequencies. Laser Photonics Rev. 2015, 9, 83–90. [Google Scholar] [CrossRef]
- Sun, S.; He, Q.; Xiao, S.; Xu, Q.; Li, X.; Zhou, L. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. Nat. Mater. 2012, 11, 426–431. [Google Scholar] [CrossRef] [PubMed]
- Ni, X.; Emani, N.K.; Kildishev, A.V.; Boltasseva, A.; Shalaev, V.M. Broadband light bending with plasmonic nanoantennas. Science 2012, 335, 427. [Google Scholar] [CrossRef]
- Yu, N.; Genevet, P.; Kats, M.A.; Aieta, F.; Tetienne, J.-P.; Capasso, F.; Gaburro, Z. Light propagation with phase discontinuities: Generalized laws of reflection and refraction. Science 2011, 334, 333–337. [Google Scholar] [CrossRef] [PubMed]
- Kowerdziej, R.; Ferraro, A.; Zografopoulos, D.C.; Caputo, R. Soft-Matter-Based Hybrid and Active Metamaterials. Adv. Opt. Mater. 2022, 10, 2200750. [Google Scholar] [CrossRef]
- Lio, G.E.; Ferraro, A.; Zappone, B.; Parka, J.; Schab-Balcerzak, E.; Umeton, C.P.; Riboli, F.; Kowerdziej, R.; Caputo, R. Unlocking Optical Coupling Tunability in Epsilon-Near-Zero Metamaterials Through Liquid Crystal Nanocavities. Adv. Opt. Mater. 2023, 12, 2302483. [Google Scholar] [CrossRef]
- Li, S.; Dong, S.; Yi, S.; Pan, W.; Chen, Y.; Guan, F.; Guo, H.; Wang, Z.; He, Q.; Zhou, L.; et al. Broadband and high-efficiency spin-polarized wave engineering with PB metasurfaces. Opt. Express 2020, 28, 15601–15610. [Google Scholar] [CrossRef] [PubMed]
- Bomzon, Z.; Biener, G.; Kleiner, V.; Hasman, E. Space-variant Pancharatnam-Berry phase optical elements with computer-generated subwavelength gratings. Opt. Lett. 2002, 27, 1141–1143. [Google Scholar] [CrossRef] [PubMed]
- Shitrit, N.; Bretner, I.; Gorodetski, Y.; Kleiner, V.; Hasman, E. Optical Spin Hall Effects in Plasmonic Chains. Nano Lett. 2011, 11, 2038–2042. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Yang, K.Y.; Wang, C.M.; Juan, T.-K.; Chen, W.T.; Liao, C.Y.; He, Q.; Xiao, S.; Kung, W.-T.; Guo, G.-Y.; et al. High efficiency broadband anomalous reflection by gradient meta-surfaces. Nano Lett. 2012, 12, 6223–6229. [Google Scholar] [CrossRef] [PubMed]
- Grady, N.K.; Heyes, J.E.; Chowdhury, D.R.; Zeng, Y.; Reiten, M.T.; Azad, A.K.; Taylor, A.J.; Dalvit, D.A.R.; Chen, H.-T. Terahertz Metamaterials for Linear Polarization Conversion and Anomalous Refraction. Science 2013, 340, 1304–1307. [Google Scholar] [CrossRef]
- Yin, X.; Ye, Z.; Rho, J.; Wang, Y.; Zhang, X. Photonic Spin Hall Effect at Metasurfaces. Science 2013, 339, 1405–1407. [Google Scholar] [CrossRef] [PubMed]
- Luo, W.; Xiao, S.; He, Q.; Sun, S.; Zhou, L. Photonic Spin Hall Effect with Nearly 100% Efficiency. Adv. Opt. Mater. 2015, 3, 1102–1108. [Google Scholar] [CrossRef]
- Luo, W.; Sun, S.; Xu, H.X.; He, Q.; Zhou, L. Transmissive Ultrathin Pancharatnam-Berry Metasurfaces with Nearly 100% Efficiency. Phys. Rev. Appl. 2017, 7, 044033. [Google Scholar] [CrossRef]
- Zheng, G.; Mühlenbernd, H.; Kenney, M.; Li, G.; Zentgraf, T.; Zhang, S. Metasurface Holograms Reaching 80% Efficiency. Nat. Nanotechnol. 2015, 10, 308–312. [Google Scholar] [CrossRef]
- Chen, W.T.; Yang, K.; Wang, C.; Huang, Y.-W.; Sun, G.; Chiang, I.-D.; Liao, C.Y.; Hsu, W.-L.; Lin, H.T.; Sun, S.; et al. High-Efficiency Broadband Meta-Hologram with Polarization-Controlled Dual Images. Nano Lett. 2014, 14, 225–230. [Google Scholar] [CrossRef]
- Deng, Z.-L.; Deng, J.; Zhuang, X.; Wang, S.; Li, K.; Wang, Y.; Chi, Y.; Ye, X.; Xu, J.; Wang, G.P.; et al. Diatomic Metasurface for Vectorial Holography. Nano Lett. 2018, 18, 2885–2892. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Huang, L.; Mühlenbernd, H.; Li, G.; Bai, B.; Tan, Q.; Jin, G.; Qiu, C.-W.; Zhang, S.; Zentgraf, T. Dual-polarity plasmonic metalens for visible light. Nat. Commun. 2012, 3, 1198. [Google Scholar] [CrossRef]
- Ding, X.; Monticone, F.; Zhang, K.; Zhang, L.; Gao, D.; Burokur, S.N.; de Lustrac, A.; Wu, Q.; Qiu, C.-W.; Alù, A. Ultrathin Pancharatnam-Berry metasurface with maximal cross-polarization efficiency. Adv. Mater. 2015, 27, 1195–1200. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Tsakmakidis, K.L.; Jiang, T.; Shen, Q.; Zhang, H.; Yan, J.; Sun, S.; Shen, L. Unidirectional guided-wave-driven metasurfaces for arbitrary wavefront control. Nat. Commun. 2024, 15, 5992. [Google Scholar] [CrossRef]
- Genevet, P.; Yu, N.; Aieta, F.; Kats, M.A.; Blanchard, R.; Gaburro, Z.; Capasso, F. Ultra-thin plasmonic optical vortex plate based on phase discontinuities. Appl. Phys. Lett. 2012, 100, 013101. [Google Scholar] [CrossRef]
- Wang, Z.; Dong, S.; Luo, W.; Jia, M.; Liang, Z.; He, Q.; Sun, S.; Zhou, L. High-efficiency generation of Bessel beams with transmissive metasurfaces. Appl. Phys. Lett. 2018, 112, 191901. [Google Scholar] [CrossRef]
- Pfeiffer, C.; Grbic, A. Controlling vector Bessel beams with metasurfaces. Phys. Rev. Appl. 2014, 2, 044012. [Google Scholar] [CrossRef]
- Mehmood, M.Q.; Mei, S.; Hussain, S.; Huang, K.; Siew, S.Y.; Zhang, L.; Zhang, T.; Ling, X.; Liu, H.; Teng, J.; et al. Visible-frequency metasurface for structuring and spatially multiplexing optical vortices. Adv. Mater. 2016, 28, 2533–2539. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Xiao, T.; Chen, S.; Xie, Z.; Zheng, J.; Zhu, J.; Su, Y.; Chen, W.; Liu, K.; Tang, M.; et al. All-optical controlled-NOT logic gate achieving directional asymmetric transmission based on metasurface doublet. Opto-Electron. Adv. 2023, 6, 220073. [Google Scholar] [CrossRef]
- Zhang, F.; Pu, M.; Li, X.; Ma, X.; Guo, Y.; Gao, P.; Yu, H.; Gu, M.; Luo, X. Extreme-Angle Silicon Infrared Optics Enabled by Streamlined Surfaces. Adv. Mater. 2021, 33, 2008157. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Guo, Y.; Pu, M.; Chen, L.; Xu, M.; Liao, M.; Li, L.; Li, X.; Ma, X.; Luo, X. Meta-optics empowered vector visual cryptography for high security and rapid decryption. Nat. Commun. 2023, 14, 1946. [Google Scholar] [CrossRef] [PubMed]
- Dong, S.; Li, S.; Ling, X.; Hu, G.; Li, Y.; Zhu, H.; Zhou, L.; Sun, S. Broadband spin-unlocked metasurfaces for bifunctional wavefront manipulations. Appl. Phys. Lett. 2022, 120, 180404. [Google Scholar] [CrossRef]
- Yuan, Y.; Sun, S.; Chen, Y.; Zhang, K.; Ding, X.; Ratni, B.; Wu, Q.; Burokur, S.N.; Qiu, C.-W. A fully phase-modulated metasurface as an energy-controllable circular polarization router. Adv. Sci. 2020, 7, 2001437. [Google Scholar] [CrossRef] [PubMed]
- Yu, N.; Genevet, P.; Aieta, F.; Kats, M.A.; Blanchard, R.; Aoust, G.; Tetienne, J.-P.; Gaburro, Z.; Capasso, F. Flat optics: Controlling wavefronts with optical antenna metasurfaces. IEEE J. Sel. Top. Quantum Electron. 2013, 19, 4700423. [Google Scholar]
- Huang, L.; Chen, X.; Bai, B.; Tan, Q.; Jin, G.; Zentgraf, T.; Zhang, S. Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity. Light Sci. Appl. 2013, 2, e70. [Google Scholar] [CrossRef]
- Pors, A.; Nielsen, M.G.; Bernardin, T.; Weeber, J.C.; Bozhevolnyi, S.I. Efficient unidirectional polarization-controlled excitation of surface plasmon polaritons. Light Sci. Appl. 2014, 3, e197. [Google Scholar] [CrossRef]
- Sun, W.; He, Q.; Sun, S.; Zhou, L. High-efficiency surface plasmon meta-couplers: Concept and microwave-regime realizations. Light Sci. Appl. 2016, 5, e16003. [Google Scholar] [CrossRef]
- Li, S.; Wang, Z.; Dong, S.; Yi, S.; Guan, F.; Chen, Y.; Guo, H.; He, Q.; Zhou, L.; Sun, S. Helicity-Delinked Manipulations on Surface Waves and Propagating Waves by Metasurfaces. Nanophotonics 2020, 9, 3473–3481. [Google Scholar] [CrossRef]
- Wang, Z.; Li, S.; Zhang, X.; Feng, X.; Wang, Q.; Han, J.; He, Q.; Zhang, W.; Sun, S.; Zhou, L. Excite spoof surface plasmons with tailored wavefronts using high-efficiency terahertz metasurfaces. Adv. Sci. 2020, 7, 2000982. [Google Scholar] [CrossRef]
- Li, S.; Tu, W.; Zhang, H.; Yan, J.; Shen, L. Surface wave control via unidirectional surface magnetoplasmon waveguide arrays. Opt. Mater. Express 2024, 14, 996–1007. [Google Scholar] [CrossRef]
- Dong, S.; Zhang, Y.; Guo, H.; Duan, J.; Guan, F.; He, Q.; Zhao, H.; Zhou, L.; Sun, S. Highly Efficient Wave-Front Reshaping of Surface Waves with Dielectric Metawalls. Phys. Rev. Appl. 2018, 9, 4032. [Google Scholar] [CrossRef]
- Sievenpiper, D.; Broas, R.F.J.; Alexopoulos, N.G.; Yablonovitch, E. High-Impedance Electromagnetic Surfaces with a Forbidden Frequency Band. Microw. Theory Tech. IEEE Trans. 1999, 47, 2059. [Google Scholar] [CrossRef]
- Hao, J.M.; Zhou, L.; Chan, C.T. An effective-medium model for high-impedance surfaces. Appl. Phys. A 2007, 87, 281–284. [Google Scholar] [CrossRef]
- Kong, J.A. Electromagnetic Wave Theory; EMW Publishing: Boston, MA, USA, 2008. [Google Scholar]
- Duan, J.; Guo, H.; Dong, S.; Cai, T.; Luo, W.; Liang, Z.; He, Q.; Zhou, L.; Sun, S. High-efficiency chirality-modulated spoof surface plasmon meta-coupler. Sci. Rep. 2017, 7, 1354. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, M.; Chen, L.; Qin, S.; Ma, L.; Rui, A.; Li, S. Bifunctional Electromagnetic Manipulation of Surface Waves Using Metasurfaces Under One Circularly Polarized Incidence. Photonics 2025, 12, 91. https://doi.org/10.3390/photonics12010091
Kang M, Chen L, Qin S, Ma L, Rui A, Li S. Bifunctional Electromagnetic Manipulation of Surface Waves Using Metasurfaces Under One Circularly Polarized Incidence. Photonics. 2025; 12(1):91. https://doi.org/10.3390/photonics12010091
Chicago/Turabian StyleKang, Min, Lixing Chen, Shuaipeng Qin, Liang Ma, Aoxiang Rui, and Shiqing Li. 2025. "Bifunctional Electromagnetic Manipulation of Surface Waves Using Metasurfaces Under One Circularly Polarized Incidence" Photonics 12, no. 1: 91. https://doi.org/10.3390/photonics12010091
APA StyleKang, M., Chen, L., Qin, S., Ma, L., Rui, A., & Li, S. (2025). Bifunctional Electromagnetic Manipulation of Surface Waves Using Metasurfaces Under One Circularly Polarized Incidence. Photonics, 12(1), 91. https://doi.org/10.3390/photonics12010091