Random Emission and Control of Whispering Gallery Mode Using Flexible Optical Fiber
<p>Schematic of the experimental setup. BS, beam splitter. PM, power meter. OBJ, objective. The green lines represent the pump light trajectory, while the portion of the laser output received by the spectrometer (the upper half of the inset within the red box is the actual image of the sample, and the lower half is a schematic diagram for sample).</p> "> Figure 2
<p>Output of sample I, the regular WGM laser. (<b>a</b>) Output spectra at different pump intensity (the inset shows experimental image of sample I with an average spacing of 150 μm between neighbor fibers); (<b>b</b>) output power (orange) and linewidth (purple) of the WGM lasing versus pump intensity (solid circles represent experimental data, and the solid line indicates the fitting result); (<b>c</b>) output spectrum when pump intensity is 3.7 mJ/cm<sup>2</sup> (the purple bidirectional arrow represents FSR, and the orange dashed lines represents FWHM); (<b>d</b>) PFT diagram of the WGM laser (the vertical axis is on a normalized logarithmic scale).</p> "> Figure 3
<p>Output of sample II, the random WGM laser. (<b>a</b>) Output spectra at different pump intensity (the inset shows experimental image of sample II with an average spacing of less than 10 μm, as indicated by the dashed box); (<b>b</b>) output power (orange) and linewidth (purple) of the R-WGM lasing versus pump intensity (solid circles represent experimental data, and the solid line indicates the fitting result); (<b>c</b>) output spectrum when pump intensity is 3.55 mJ/cm<sup>2</sup>; (<b>d</b>) PFT diagram of the R-WGM laser (the vertical axis is on a normalized logarithmic scale).</p> "> Figure 4
<p>Stability analysis of the output spectra in different pulse periods. (<b>a</b>) Regular WGM emission of different shots of pulses; (<b>b</b>) R-WGM output of different shot of pulses; (<b>c</b>) detailed comparison of regular WGM output between different shots of pulses (mode-overlap positions are marked by dashed lines); (<b>d</b>) detailed comparison of R-WGM output between different shots of pulses (mode-overlap positions are marked by dashed lines, deviations by triangles, and mode splitting by elliptical dashed lines).</p> "> Figure 5
<p>The PFT of two specific spectra of the R-WGM output (the vertical axis is on a normalized logarithmic scale). (<b>c</b>) and (<b>d</b>) represent two different random WGM states, while (<b>a</b>,<b>b</b>) are magnified views of the orange dashed portions of (<b>c</b>,<b>d</b>), respectively. The green dashed line indicates the region where the peaks are collectively concentrated.</p> "> Figure 6
<p>RSA authentication application based on the R-WGM.</p> ">
Abstract
:1. Introduction
2. Experimental Setup
3. Results
3.1. Regular WGM Lasing
3.2. Random WGM Lasing
3.3. Comparison Between the Two Lasing Regimes
4. Encryption Application Based on the R-WGM
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vahala, K.J. Optical Microcavities. Nature 2003, 424, 839–846. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.-F.; Gong, Q. Optical Microcavity: From Fundamental Physics to Functional Photonics Devices. Sci. Bull. 2016, 61, 185–186. [Google Scholar] [CrossRef]
- Ge, L.; Feng, L.; Schwefel, H.G.L. Optical Microcavities: New Understandings and Developments. Photon. Res. 2017, 5, OM1. [Google Scholar] [CrossRef]
- Yang, K.Y.; Oh, D.Y.; Lee, S.H.; Yang, Q.-F.; Yi, X.; Shen, B.; Wang, H.; Vahala, K. Bridging Ultrahigh-Q Devices and Photonic Circuits. Nat. Photon. 2018, 12, 297–302. [Google Scholar] [CrossRef]
- Huang, S.-H.; Su, H.-P.; Chen, C.-Y.; Lin, Y.-C.; Yang, Z.; Shi, Y.; Song, Q.; Wu, P.C. Microcavity-Assisted Multi-Resonant Metasurfaces Enabling Versatile Wavefront Engineering. Nat. Commun. 2024, 15, 9658. [Google Scholar] [CrossRef]
- Fu, W.; Wu, H.; Feng, M. Superconducting Processor Modulated VCSELs for 4K High-Speed Optical Data Link. IEEE J. Quantum Electron. 2022, 58, 1–8. [Google Scholar] [CrossRef]
- Cao, X.; Yang, H.; Wu, Z.-L.; Li, B.-B. Ultrasound Sensing with Optical Microcavities. Light. Sci. Appl. 2024, 13, 159. [Google Scholar] [CrossRef]
- Hao, Y.-Z.; Sheng, M.-W.; Zhang, Z.-N.; Li, J.-C.; Xiao, J.-L.; Yang, Y.-D.; Huang, Y.-Z. High-Speed Directly Modulated Widely Tunable Hybrid Square/Rhombus-Rectangular Coupled Cavity Lasers. J. Light. Technol. 2023, 41, 5668–5674. [Google Scholar] [CrossRef]
- Wu, Y.; Duan, B.; Li, C.; Yang, D. Multimode Sensing Based on Optical Microcavities. Front. Optoelectron. 2023, 16, 29. [Google Scholar] [CrossRef]
- Yu, D.; Humar, M.; Meserve, K.; Bailey, R.C.; Chormaic, S.N.; Vollmer, F. Whispering-Gallery-Mode Sensors for Biological and Physical Sensing. Nat. Rev. Methods Primers 2021, 1, 1–22. [Google Scholar] [CrossRef]
- Chen, Z.; Xu, Q.; Zhang, K.; Wong, W.-H.; Zhang, D.-L.; Pun, E.Y.-B.; Wang, C. Efficient Erbium-Doped Thin-Film Lithium Niobate Waveguide Amplifiers. Opt. Lett. 2021, 46, 1161. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Zhou, H.; Liu, C.; Gu, Z.; Zhang, N. Mode Selection and Unidirectional Emission in Multiple-Deformed Microcavity through Dynamic Tunneling. Opt. Laser Technol. 2024, 169, 110070. [Google Scholar] [CrossRef]
- Li, M.; Tian, M.; Lin, C.; Chen, S.; Feng, Z.; Tan, Y. Microcavity Raman Laser-Based FMCW LiDAR with Enhanced Echo Sensitivity. ACS Photonics 2024, 11, 801–809. [Google Scholar] [CrossRef]
- Yang, J.; Qin, T.; Zhang, F.; Chen, X.; Jiang, X.; Wan, W. Multiphysical Sensing of Light, Sound and Microwave in a Microcavity Brillouin Laser. Nanophotonics 2020, 9, 2915–2925. [Google Scholar] [CrossRef]
- Zhu, H.Y.; Zhang, J.C.; Zhang, W.L. Photothermal Effect Controlled Complex Lasing for Decentralized Key Distribution. ACS Photonics 2022, 9, 3600–3608. [Google Scholar] [CrossRef]
- Bitarafan, M.; DeCorby, R. On-Chip High-Finesse Fabry-Perot Microcavities for Optical Sensing and Quantum Information. Sensors 2017, 17, 1748. [Google Scholar] [CrossRef]
- Robinson, J.T.; Chen, L.; Lipson, M. On-Chip Gas Detection in Silicon Optical Microcavities. Opt. Express 2008, 16, 4296–4301. [Google Scholar] [CrossRef]
- Wachter, G.; Kuhn, S.; Minniberger, S.; Salter, C.; Asenbaum, P.; Millen, J.; Schneider, M.; Schalko, J.; Schmid, U.; Felgner, A.; et al. Silicon Microcavity Arrays with Open Access and a Finesse of Half a Million. Light. Sci. Appl. 2019, 8, 37. [Google Scholar] [CrossRef]
- Chen, Y.; Yin, Y.; Ma, L.; Schmidt, O.G. Recent Progress on Optoplasmonic Whispering-Gallery-Mode Microcavities. Adv. Opt. Mater. 2021, 9, 2100143. [Google Scholar] [CrossRef]
- Houghton, M.C.; Kashanian, S.V.; Derrien, T.L.; Masuda, K.; Vollmer, F. Whispering-Gallery Mode Optoplasmonic Microcavities: From Advanced Single-Molecule Sensors and Microlasers to Applications in Synthetic Biology. ACS Photonics 2024, 11, 892–903. [Google Scholar] [CrossRef]
- Duan, R.; Zhang, Z.; Xiao, L.; Zhao, X.; Thung, Y.T.; Ding, L.; Liu, Z.; Yang, J.; Ta, V.D.; Sun, H. Ultralow-Threshold and High-Quality Whispering-Gallery-Mode Lasing from Colloidal Core/Hybrid-Shell Quantum Wells. Adv. Mater. 2022, 34, 2108884. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Tang, S.-J.; Meng, J.-W.; Zhang, P.-J.; Chen, Y.-L.; Xiao, Y.-F. Phase-Transition Microcavity Laser. Nano Lett. 2023, 23, 3048–3053. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; He, Z.; Zhu, H.; Zhang, W. Spectrally Programmable Fiber Microcavity Laser with Dye-Doped Liquid Crystals. Opt. Laser Technol. 2023, 158, 108860. [Google Scholar] [CrossRef]
- Wang, P.; Wang, Y.; Yang, Z.; Guo, X.; Lin, X.; Yu, X.-C.; Xiao, Y.-F.; Fang, W.; Zhang, L.; Lu, G.; et al. Single-Band 2-nm-Line-Width Plasmon Resonance in a Strongly Coupled Au Nanorod. Nano Lett. 2015, 15, 7581–7586. [Google Scholar] [CrossRef]
- Fu, Y.; Qing, Y.M.; Li, Z.; Zayats, A.V.; Lei, D. Tale of Two Resonances: Waveguide–Plasmon Coupling and High Q.-Factor Engineering on the Nanoscale. ACS Photonics 2023, 10, 2–12. [Google Scholar] [CrossRef]
- Yang, X.; Gong, C.; Zhang, C.; Wang, Y.; Yan, G.-F.; Wei, L.; Chen, Y.-C.; Rao, Y.-J.; Gong, Y. Fiber Optofluidic Microlasers: Structures, Characteristics, and Applications. Laser Photonics Rev. 2022, 16, 2100171. [Google Scholar] [CrossRef]
- Zhu, S.; Shi, L.; Xiao, B.; Zhang, X.; Fan, X. All-Optical Tunable Microlaser Based on an Ultrahigh-Q. Erbium-Doped Hybrid Microbottle Cavity. ACS Photonics 2018, 5, 3794–3800. [Google Scholar] [CrossRef]
- Kong, L. Room-Temperature near-Infrared Whispering-Gallery-Mode Lasing from Two-Dimensional CdSe Microplates. J. Mater. Chem. C 2021, 9, 9222–9228. [Google Scholar] [CrossRef]
- Salehzadeh, O.; Djavid, M.; Tran, N.H.; Shih, I.; Mi, Z. Optically Pumped Two-Dimensional MoS2 Lasers Operating at Room-Temperature. Nano Lett. 2015, 15, 5302–5306. [Google Scholar] [CrossRef]
- Zhu, H.; He, Z.; Wang, J.; Zhang, W.; Pei, C.; Ma, R.; Zhang, J.; Wei, J.; Liu, W. Microcavity Complex Lasers: From Order to Disorder. Ann. Phys. 2024, 536, 2400112. [Google Scholar] [CrossRef]
- Peccianti, M.; Pasquazi, A.; Park, Y.; Little, B.E.; Chu, S.T.; Moss, D.J.; Morandotti, R. Demonstration of a Stable Ultrafast Laser Based on a Nonlinear Microcavity. Nat. Commun. 2012, 3, 765. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Liu, S.; Liu, Y.; Xiao, S.; Wang, Z.; Fan, Y.; Han, J.; Ge, L.; Song, Q. Direct Observation of Chaotic Resonances in Optical Microcavities. Light. Sci. Appl. 2021, 10, 135. [Google Scholar] [CrossRef] [PubMed]
- Makhonin, M.; Delphan, A.; Song, K.W.; Walker, P.; Isoniemi, T.; Claronino, P.; Orfanakis, K.; Rajendran, S.K.; Ohadi, H.; Heckötter, J.; et al. Nonlinear Rydberg Exciton-Polaritons in Cu2O Microcavities. Light. Sci. Appl. 2024, 13, 47. [Google Scholar] [CrossRef] [PubMed]
- Yi, X.; Yang, Q.-F.; Yang, K.Y.; Vahala, K. Imaging Soliton Dynamics in Optical Microcavities. Nat. Commun. 2018, 9, 3565. [Google Scholar] [CrossRef]
- Liu, W.; Tang, S.-J.; Xiao, Y.-F. Nonlinear Optical Microcavities Towards Single-Molecule Sensing. In Single Molecule Sensing Beyond Fluorescence; Bowen, W., Vollmer, F., Gordon, R., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 97–123. ISBN 978-3-030-90339-8. [Google Scholar]
- Chen, N.; Liu, C.; Lu, Z.; Tao, W.; Peng, M. Femtosecond Laser Processing for a High Sensitivity Fiber MZI Microcavity. Opt. Express 2022, 30, 12397–12408. [Google Scholar] [CrossRef]
- Di Donato, A.; Pietrangelo, T.; Anzellotti, A.; Monti, T.; Morini, A.; Farina, M. Infrared Imaging in Liquid through an Extrinsic Optical Microcavity. Opt. Lett. 2013, 38, 5094. [Google Scholar] [CrossRef]
- Di Donato, A.; Criante, L.; LoTurco, S.; Farina, M. Optical Microcavity Scanning 3D Tomography. Opt. Lett. 2014, 39, 5495. [Google Scholar] [CrossRef]
- Guo, J.; Rao, Y.; Zhang, W.; Cui, Z.; Liu, A.; Yan, Y. Dental Imaging With Near-Infrared Transillumination Using Random Fiber Laser. Photonic Sens. 2020, 10, 333–339. [Google Scholar] [CrossRef]
- Hu, Z.; Zhang, Q.; Miao, B.; Fu, Q.; Zou, G.; Chen, Y.; Luo, Y.; Zhang, D.; Wang, P.; Ming, H.; et al. Coherent Random Fiber Laser Based on Nanoparticles Scattering in the Extremely Weakly Scattering Regime. Phys. Rev. Lett. 2012, 109, 253901. [Google Scholar] [CrossRef]
- Lin, J.-H.; Huang, J.-W.; Wu, J.-J.; Tsay, S.-Y.; Chen, Y.-H. Electrically Controllable Random Lasing from Dye-Doped Nematic Liquid Crystals within a Capillary Fiber. Opt. Mater. Express 2018, 8, 2910. [Google Scholar] [CrossRef]
- Wang, Z.; Cao, M.; Shao, G.; Zhang, Z.; Yu, H.; Chen, Y.; Zhang, Y.; Li, Y.; Xu, B.; Wang, Y.; et al. Coherent Random Lasing in Colloidal Quantum Dot-Doped Polymer-Dispersed Liquid Crystal with Low Threshold and High Stability. J. Phys. Chem. Lett. 2020, 11, 767–774. [Google Scholar] [CrossRef] [PubMed]
- Tabassum, R.; Kant, R. Recent Trends in Surface Plasmon Resonance Based Fiber–Optic Gas Sensors Utilizing Metal Oxides and Carbon Nanomaterials as Functional Entities. Sens. Actuators B Chem. 2020, 310, 127813. [Google Scholar] [CrossRef]
- Krasnokutska, I.; Tambasco, J.-L.J.; Peruzzo, A. Tunable Large Free Spectral Range Microring Resonators in Lithium Niobate on Insulator. Sci. Rep. 2019, 9, 11086. [Google Scholar] [CrossRef] [PubMed]
- Hofstetter, D.; Thornton, R.L. Loss Measurements on Semiconductor Lasers by Fourier Analysis of the Emission Spectra. Appl. Phys. Lett. 1998, 72, 404–406. [Google Scholar] [CrossRef]
- Bañuelos Prieto, J.; López Arbeloa, F.; Martínez Martínez, V.; Arbeloa López, T.; López Arbeloa, I. Photophysical Properties of the Pyrromethene 597 Dye: Solvent Effect. J. Phys. Chem. A 2004, 108, 5503–5508. [Google Scholar] [CrossRef]
- Tanaka, N.; Sisk, W.N. The Photodegradation of Pyrromethene 567 and Pyrromethene 597 by Pyrromethene 546. J. Photochem. Photobiol. A Chem. 2005, 172, 109–114. [Google Scholar] [CrossRef]
- Kaliski, B. RSA Digital Signature Scheme. In Encyclopedia of Cryptography and Security; van Tilborg, H.C.A., Ed.; Springer: Boston, MA, USA, 2005; pp. 527–531. ISBN 978-0-387-23483-0. [Google Scholar]
- Abedin, K.M.; Al Jabri, A.R.; Mujibur Rahman, S.M. Power Stability of Different Lasers and Its Effect on the Outcome of Phase-Stepping Shearography Experiments. Results Opt. 2023, 12, 100490. [Google Scholar] [CrossRef]
- Vahlbruch, H.; Wilken, D.; Mehmet, M.; Willke, B. Laser Power Stabilization beyond the Shot Noise Limit Using Squeezed Light. Phys. Rev. Lett. 2018, 121, 173601. [Google Scholar] [CrossRef]
- Niu, L.; Li, X.; Fang, Z.; Zhang, W.; Xie, K.; Zhang, T.; Huang, H.; Wang, G.; Zhang, J.; Hu, Z.; et al. Random Lasers with Controlled Emission Modes by Colloidal Semiconductor Quantum Dots Coupled to Plasmonic Nanorod Arrays. Opt. Laser Technol. 2025, 180, 111430. [Google Scholar] [CrossRef]
- Boschetti, A.; Taschin, A.; Bartolini, P.; Tiwari, A.K.; Pattelli, L.; Torre, R.; Wiersma, D.S. Spectral Super-Resolution Spectroscopy Using a Random Laser. Nat. Photonics 2020, 14, 177–182. [Google Scholar] [CrossRef]
- Gomes, A.S.L.; Moura, A.L.; De Araújo, C.B.; Raposo, E.P. Recent Advances and Applications of Random Lasers and Random Fiber Lasers. Prog. Quantum Electron. 2021, 78, 100343. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, B.; He, Z.; Zhang, W. Random Emission and Control of Whispering Gallery Mode Using Flexible Optical Fiber. Photonics 2025, 12, 29. https://doi.org/10.3390/photonics12010029
Cao B, He Z, Zhang W. Random Emission and Control of Whispering Gallery Mode Using Flexible Optical Fiber. Photonics. 2025; 12(1):29. https://doi.org/10.3390/photonics12010029
Chicago/Turabian StyleCao, Bingyang, Zhen He, and Weili Zhang. 2025. "Random Emission and Control of Whispering Gallery Mode Using Flexible Optical Fiber" Photonics 12, no. 1: 29. https://doi.org/10.3390/photonics12010029
APA StyleCao, B., He, Z., & Zhang, W. (2025). Random Emission and Control of Whispering Gallery Mode Using Flexible Optical Fiber. Photonics, 12(1), 29. https://doi.org/10.3390/photonics12010029