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Abstract: This paper presents a novel optoelectronic transimpedance amplifier (OTA) for short-range
LiDAR sensors used in 180 nm CMOS technology, which consists of a main transimpedance amplifier
(m-TIA) with an on-chip P+/N-well/Deep N-well avalanche photodiode (P+/NW/DNW APD) and
a replica TIA with another on-chip APD, not only to acquire circuit symmetry but to also obtain
concurrent automatic gain control (AGC) function within a narrow single pulse-width duration. In
particular, for concurrent AGC operations, 3-bit PMOS switches with series resistors are added in
parallel with the passive feedback resistor in the m-TIA. Then, the PMOS switches can be turned
on or off in accordance with the DC output voltage amplitudes of the replica TIA. The post-layout
simulations reveal that the OTA extends the dynamic range up to 74.8 dB (i.e., 1 µApp~5.5 mApp)
and achieves a 67 dBΩ transimpedance gain, an 830 MHz bandwidth, a 16 pA/√Hz noise current
spectral density, a −31 dBm optical sensitivity for a 10−12 bit error rate, and a 6 mW power dissipation
from a single 1.8 V supply. The chip occupies a core area of 200 × 120 µm2.

Keywords: AGC; APD; CMOS; LiDAR; optoelectronic; sensors

1. Introduction

Light detection and ranging (LiDAR) technologies are widely utilized in various
fields, including autonomous vehicles, robotics, indoor mapping, and home monitoring
systems [1–4]. Especially in long-term care facilities for elders with senile dementia, it is
crucial to have compact, low-power, and cost-effective sensors that can monitor elders in
real time with no violation of their portrait rights and alert caregivers in urgent situations
or emergencies, such as falls or abnormal movements. Owing to the global and rapid
increase in the number of aging societies, the maintenance costs associated with protecting
elderly individuals from injuries (i.e., falls) have been exponentially increasing [5]. LiDAR
sensors are quite advantageous in these scenarios, as they can maintain privacy via blurred
images while delivering accurate data on activities, like movement and even breathing
rates. In addition, they are less affected by ambient RF interferences when compared to
conventional RF-based sensors.

Typically, these systems are based on the pulsed time-of-flight (ToF) principle, which
emits light pulses toward a target and captures the reflected signals to determine the dis-
tance based on the time interval between the transmitted and received pulses. Particularly
for indoor applications such as home monitoring, these sensors’ effective range spans from
a few centimeters to several meters, thus employing a dynamic range that can handle
various signal intensities and ensure a quick response. However, a wider dynamic range
allows for more precise detection and, hence, a novel receiver circuit design is mandatory
to obtain these wide dynamic range characteristics.

For this purpose, automatic gain control (AGC) circuits have been frequently ex-
ploited in optical receivers, and various architectures of AGC mechanisms have been
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suggested [6–11]. Figure 1a shows a block diagram of a typical optical receiver, where the
AGC loop consists of a variable-gain amplifier (VGA), an equalizer (EQ), an output buffer
(OB), a peak detector, and an error amplifier. Therefore, the peak voltages of the output
pulses are detected and amplified to control the gain of the VGA, extending the dynamic
range. However, due to this long feedback loop, it is impossible to detect and control the
amplitude of a single narrow pulse properly. Very often, the transimpedance amplifier
(TIA) output signals must pass through a passive low-pass filter before connecting to the
gain control switches, thus introducing a significant delay and, hence, failing to achieve
single pulse detection.
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Figure 1. Block diagram of (a) a traditional optical receiver with AGC and (b) a previously reported
MCC-TIA with a single-pulse AGC [11].

Figure 1b presents a block diagram of the previously reported current-mode TIA
with a single-pulse AGC function [11], where a mirrored current conveyor (MCC) input
stage is inserted to monitor the incoming photocurrents, and the output voltages (IB_O)
of the MCC stage are detected at the feedforward control-voltage generator (FCG) circuit.
Then, the DC voltages of the FCG circuit are directly connected to the NMOS switches
during the inverter transimpedance stage (INV-TIS) for gain control, thereby achieving
AGC operations within a single pulse width. However, the MCC input stage includes five
symmetric current-conveyor input buffers (SCC-IBs), giving rise to a large noise current
spectral density, and thus deteriorating the optical sensitivity considerably.

In this paper, a novel TIA topology is proposed to overcome the aforementioned
issues in the application of short-range LiDAR sensors. Here, a rather simpler and more
cost-effective AGC mechanism is realized by exploiting dual on-chip CMOS avalanche
photodiodes (APDs). Figure 2 presents a block diagram of the proposed optoelectronic
transimpedance amplifier (OTA). It features a main transimpedance amplifier (m-TIA) with
an on-chip APD and a replica TIA with another on-chip APD. The latter yields low DC
voltages (VDC,AGC) to control the 3-bit PMOS switches in the m-TIA concurrently. Thereby,
it reduces the transimpedance gain with respect to the amplitudes of the replica TIA output
(Vout,r) during a narrow single pulse width (typ. 3~10 ns). The dual APDs are located
very close to each other, and thus the optical pulses reflected from the target enter these
two APDs simultaneously. Then, the output of the replica TIA becomes lower by the
action of the cascaded common-source amplifiers (M7, M8), depending upon the incoming
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photocurrents. Hence, the AGC function can be conducted concurrently with the narrow
input pulse signals.
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This paper is organized as follows. Section 2 describes the operational principles
of the proposed OTA in more detail. Section 3 provides the chip layout and post-layout
simulation results. Then, the conclusion follows.

2. Circuit Description

TIAs are very crucial for analog front-end (AFE) receivers, as they determine the
system’s overall performance. It is well known that conventional voltage-mode TIAs face
limitations, such as a gain-bandwidth design tradeoff and a narrow input dynamic range,
which might result in severe signal distortions, especially when large input photocurrents
are entered. Although AGC circuits can be equipped in these voltage-mode TIAs, the
signal recovery of a narrow LiDAR pulse is still very challenging. In addition, the delays
introduced by feedback loops in traditional AGC mechanisms should be either avoided or
reduced to enhance TIA performance; otherwise, this would lead to another challenge for
circuit designs.

2.1. Proposed TIA with Concurrent AGC

In this work, we propose a novel AGC circuit that can eliminate the inevitable need
for delayed feedback loops. Instead, the proposed ‘concurrent AGC’ circuit employs dual
on-chip APDs at both input nodes of the m-TIA and the replica TIA, thereby enabling the
control of the 3-bit PMOS switches in the m-TIA by the DC output voltages of the replica
TIA, as described in Figure 2. This dual on-chip APD configuration helps the proposed
OTA to not only achieve circuit symmetry, but also to guarantee a fast AGC function within
a narrow single pulse width.

Figure 3 shows a schematic diagrams of an m-TIA equipped with the proposed
concurrent AGC circuit and the replica TIA. Here, the m-TIA comprises an on-chip APD, a
voltage-mode common-source amplifier (M1) with a feedback resistor array, and a PMOS
transistor load (M2) with a cross-coupled NMOS source follower (M3 and RS). Therefore,
the incoming optical pulses are converted into electrical currents (ipd) by the on-chip APD,
and these signals are then fed into the m-TIA. Particularly, the cross-coupled NMOS source
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follower is exploited together with the PMOS load, hence enabling the output peak voltages
to reach the supply voltage (VDD) [12]. Also, the feedback resistor array (RF and RFi(i=1~3))
is connected in parallel and operated by the PMOS switch transistors. For this purpose,
the gate voltage (VC) is generated from the output of the replica TIA (M4~M6), followed
by the cascaded common-source amplifiers (M7, M8) before entering the gates of the
PMOS switches in the m-TIA. When substantial input currents enter the m-TIA, the VC
increases and effectively adjusts the equivalent feedback resistance by varying the parallel
combination of resistors. Namely, this mechanism enables AGC functioning by modulating
the feedback resistance in response to the amplitudes of the input currents.
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2.2. On-Chip APD

Optical receivers with off-chip photodetectors face significant challenges due to the
signal distortions that occur from the variable bond-wire inductance. Also, the inevitable on-
chip electrostatic discharge (ESD) protection diodes add to the parasitic capacitance, thereby
shrinking the bandwidth considerably. Therefore, the on-chip integration of photodetectors
helps to mitigate these issues, despite their deficient sensitivity in CMOS technologies,
and also offers several advantages, including their compact size and low cost. Particularly,
on-chip APDs are preferred to p-i-n photodiodes, even with their noisier characteristics,
due to their ability to generate substantial photocurrents, which is suitable for short-range
LiDAR sensor applications. Also, a P+/N-well/Deep N-well APD (P+/NW/DNW APD)
architecture is incorporated into this work since it can be facilely optimized for better
responsivity and a wider bandwidth than other topologies (typ. P+/NW APD). Figure 4a
presents a cross-sectional view of the P+/NW/DNW APD, where avalanche multiplication
is initiated by holes at the P+/NW junction, with shallow trench insulators (STIs) preventing
premature edge breakdown. The incorporation of the DNW layer enhances the near-
infrared sensitivity by reducing the number of holes penetrating into the p-substrate.
In addition, the built-in potential barrier between the DNW and the p-substrate blocks
the photocurrents generated in the p-substrate effectively, thus further improving the
APD performance.

Figure 4b depicts an APD layout that adopts an octagonal shape to minimize the
risk of edge breakdown. The P+ source and the drain regions are covered with a salicide
blocking layer to form an optical window, hence ensuring that the high resistivity contacts
remain exposed to reduce the contact resistivity [13]. The optical window, with a diagonal
length of 40 µm, results in a total depletion capacitance (CPD) of 470 fF and a photodetection
bandwidth of 1.7 GHz at a reverse bias of 10.25 V.
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2.3. Tester Circuits: A2V and T2V Converters

In order to test the feasibility of the proposed OTA as the AFE circuit in short-range
LiDAR sensors, the combination of analog-to-voltage (A2V) and time-to-voltage (T2V)
converters is added to the OTA subsequently. These two converters can replace a compli-
cated time-to-digital converter (TDC) circuit. The A2V converter can handle input currents
up to 200 µApp, making it suitable for detecting signals reflected from targets located up
to 10.2 m away, while the T2V converter takes on the TDC’s role in dealing with larger
currents by converting the time interval between the emitted pulse and the reflected pulse
into an output voltage. Then, the T2V converter can effectively accommodate a wider range
of signal strengths, hence extending the minimum detection range to close to 30 cm.

Figure 5a shows a block diagram of the tester circuit, where the A2V converter consists
of a post-amplifier (PA) and a peak detect and hold (PDH) circuit. The voltage signals
converted by the m-TIA are further amplified by the PA, and then the amplified signals
enter the PDH circuit that can detect and maintain the peak voltages. The operation of
the PDH circuit is divided into two phases, i.e., a write mode and a read mode. In the
‘write-mode’, the output voltage from the PA exceeds the reference voltage (A2V_OUT)
and transistor M7 is turned on, thereby allowing the capacitor C to charge up to the voltage
of PAOUT. As the PAOUT voltage begins to decrease from its peak, M7 is turned off and,
therefore, the capacitor C retains the value of the peak voltage, thus transitioning the circuit
into the ‘read-mode’. In this mode, the stored peak voltage can be read and utilized for
further processing. The resistor R2 is introduced to enhance the stability of the PDH circuit,
which creates a zero in the loop gain. This dual-mode operation ensures accurate peak
voltage detection and retention, which is crucial for reliable signal processing in optical
communication systems, such as LiDAR sensors.

The T2V converter enhances the input dynamic range of the whole LiDAR receiver by
converting the time-of-flight (ToF) information into their corresponding output voltages. It
is particularly effective for measuring the reflection of light pulses from objects at varying
distances. Figure 6a shows a block diagram of the T2V converter, which consists of a latch,
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a control block, a charging circuit, and a PDH circuit. In this T2V converter, the output
signals from the PA are directly connected to the input latch comparator that converts the
signals into digital pulses. Figure 6b presents a schematic diagram of the latch comparator.
Specifically, the latch generates an output of ‘1’ if a pulse above the reference voltage is
detected, and an output of ‘0’ otherwise. This latch output is fed into the control block along
with the emitted signal (a.k.a. START) from the transmitter. This control block maintains
an output of ‘0’ between the START and the receiving (a.k.a. STOP) of rising edges, when
this output (CtrlOUT) drives the charging circuit to generate a triangular waveform. Upon
detecting a latch output pulse (i.e., the rising edge of the STOP pulse), the control block
switches the output to ‘1’ . The duration between the START and STOP of the rising edges
determines the rising time of the charging circuit, hence directly correlating it with the
time-of-flight (ToF) information. Once the output from the control block returns to ‘1’ ,
the charging circuit halts the voltage increment, thereby preserving the peak voltage. The
charging circuit consists of an operational amplifier, a capacitor for charging through a load,
and an NMOS transistor for reset functionality. Then, the output of this charging circuit is
maintained by the PDH until the next reset signal arrives.
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Meanwhile, the T2V converter ensures precise range detection by converting the ToF
into a proportional voltage. Digital circuits, including the latch and control block, help
mitigate notorious walk errors by generating accurate STOP pulses. Previously, various
TDCs have been suggested to achieve precise time-interval measurements [14–16]. Yet,
they mostly require complex algorithms. However, the proposed simple T2V converter
provides a more simplified solution for accurate time-interval measurement, effectively
replacing previous TDCs. In addition, the output levels can be mapped onto binary codes
using a thermometer-to-binary circuit, which can then be used with an FPGA for further
post-processing.
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3. Chip Layout and Post-Layout Simulation Results

The post-layout simulations were performed by using the parameters of a standard
180 nm CMOS technology with the simulation software ‘Cadence 6.1.6 Spectre’. During
these simulations, the on-chip APDs were modeled as equivalent electrical lumped ele-
ments, incorporating a series resistance of 25 Ω and a parasitic capacitance of 490 fF. Figure 7
shows the layout of the proposed LiDAR receiver, which includes two integrated on-chip
P+/NW/DNW APDs and covers a core area of 200 × 120 µm2. The DC simulations reveal
that the whole receiver dissipates 6 mW power consumption from a single 1.8 V supply.
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Figure 8a shows the simulated frequency responses of the proposed OTA, achieving a
transimpedance gain of 67 dBΩ, a bandwidth of 830 MHz, and an average noise current
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spectral density of 16 pA/
√

Hz that corresponds to an optical sensitivity of −31 dBm for a
10−12 bit error rate (BER), with the assumption of 4.16 A/W APD responsivity [17].
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Figure 8b depicts the gain variation in the OTA by the action of the proposed concur-
rent AGC circuit, hence turning on the switches in the m-TIA by the output voltages of
the replica TIA. These results prove the functionality of the concurrent AGC to maintain
consistent gains across a wide range of input current levels.

Figure 9 depicts the simulated pulse response of the OTA, in which the input currents
vary within the range from 1 µApp to 5.5 mApp, and the corresponding output voltages
are observed with negligible distortions. Also, it can be clearly seen that the amplitudes
of the output voltages change almost linearly for input currents from 1 µApp to 200 µApp,
and then the output voltages remain constant at ~500 mVpp for input currents beyond
200 µApp. Although the output voltage signals evidently exhibit distortions for input
currents larger than 4 mApp, these slight distortions can be effectively eliminated by
subsequently exploiting the T2V converter (shown below in Figure 10).
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The above results confirm the tester abilities of the A2V and T2V converters for short-
range LiDAR sensors. The A2V converter detects the difference in the amplitudes and is
suitable for signals reflected from relatively longer distances that correspond to small input
currents. Conversely, the T2V converter measures the time interval between the START
and STOP signals and is adequate for short-range detection. In other words, particularly
in the pulse simulations, the A2V converter is effective in the linear region, while the T2V
converter is applicable in the region where the amplitudes can be saturated.
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(b) the T2V converter for various time intervals.

Figure 10a shows the simulated transient response of the A2V converter with variations
in the input currents ranging from 5 µApp to 200 µApp, where the voltages converted by
the m-TIA pass through the PA (in gray) and subsequently the PDH (represented in color).
The relationship between the target distance (x) and the incoming photocurrent (iPD) is
given by

x =
1
2

√
R × POPT,TX

iPD
,

where R is the responsivity of the on-chip APD, and P3dB is the transmitted optical power,
with the assumption of 0 dBm (i.e., 1 mW). The A2V converter can be utilized to detect
the distance ranging up to 10.2 m. Yet, it should also be noted here that the proposed A2V
converter, as a tester circuit, cannot fully detect and recover input currents smaller than
5 µApp, which might be attributed to the slightly deficient resolution of the PDH circuit.

Figure 10b presents the simulated results of the T2V converter, where peak detection
is achieved by the charging process in accordance with the time intervals between the
rising edges of the START and STOP pulses. While the A2V converter can detect up to
200 µApp, the T2V converter operates effectively from 200 µApp up to a maximum current
of 5.5 mApp that corresponds to the nearest detection range of 30 centimeters. Hence, a
total dynamic range of 74.8 dB can be achieved by complementarily operating the A2V and
T2V converters over widely various input currents.
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Table 1 summarizes the performance deviations due to the process, voltage, and
temperature (PVT) variations for three worst-case scenarios: (a) SS, 1.62 V and −45 ◦C;
(b) TT, 1.8 V and 27 ◦C; and (c) FF, 1.98 V and 125 ◦C. The simulation results indicate that
the proposed OTA exhibits a transimpedance (TZ) gain variation of less than 6.7%, with
a bandwidth deviation of no more than 10.8% from the nominal value of 830 MHz. Also,
the noise current spectral density varies by a maximum of 29%. The transient responses
of the A2V converter demonstrate an output voltage swing variation of within 28% for
input currents below 200 µApp. The maximum deviation of the ToF detection range is
35 centimeters. Similarly, the T2V converter output varies by 28% in case (a) for an input
current of 5.5 mApp with a time-interval deviation (∆T) of 2.4 ns. In this case, the maximum
deviation of the detection range is 8.4 centimeters. Hence, these results confirm the stable
operation of the proposed LiDAR receiver.

Table 1. PVT variation simulations of the proposed LiDAR receiver.

Parameters SS
1.62 V, −45 ◦C

TT
1.8 V, 27 ◦C

FF
1.98 V, 125 ◦C

OTA
TZ gain (dBΩ) 69 (+3.1%) 66.9 62.4 (−6.7%)

Bandwidth (MHz) 740 (−10.8%) 830 758 (−8.67%)
Noise current spectral density (pA/

√
Hz) 12.4 (−21.5%) 15.8 20.4 (+29%)

A2V
Output voltage amplitude (Vpp)

@ 5 µApp input current 0.94 (−17%) 1.13 1.35 (+19%)

Output voltage amplitude (Vpp)
@ 200 µApp input current 1.25 (+11%) 1.12 1.44 (+28%)

T2V
Output voltage amplitude (Vpp)

@ 200 µApp (∆t = 10.7 ns) input current 0.92 (−14%) 1.07 1.16 (+8.4%)

Output voltage amplitude (Vpp)
@ 5.5 mApp (∆t = 2.4 ns) input current 0.36 (−28%) 0.505 0.54 (+6.9%)

Table 2 compares the performance of the proposed LiDAR receiver with prior sensors.

Table 2. Performance comparison with previously reported LiDAR sensors.

Parameters [18] [19] [20] [21] [22] This Work

CMOS technology (nm) 180 130 180 180 180 180

APD

Type Off chip Off chip Off chip Off chip On chip On chip
Cpd (pF) 1 2 3 1.2 0.5 0.5

Responsivity (A/W) 32 32 N/A 50 2.72 4.16
Wavelength (nm) N/A N/A N/A 905 850 850

Max. TZ gain (dBΩ) 106 78 100 87 95.1 67
Gain control Yes Yes Yes Yes No Yes

Bandwidth (MHz) 150 640 180 230 608 830
Min. detectable current (µApp) 0.5 5.6 5.0 0.6 3.4 1.0
Max. detectable current (mApp) 1.0 9.0 2.0 5.0 N/A 5.5

Linearity Linear Linear N/A Linear N/A Linear ξ

Dynamic range (dB) 66 64 52 96 N/A 74.8
Power dissipation per channel (mW) 165 * 114 49.3/10.5 66 20.9 6

Chip area (mm2) 0.9 (1ch †) 0.6 (1ch †) 5 (8ch †) 0.33(1ch †) 0.23 (1ch
†)

0.95 (Rx 2ch †)
0.24 (core)

† ch = channel; * 3.3 V VDD; ξ with A2V converter handling up to 200 µApp.

Ref. [18] realized a resistive feedback TIA with a replica circuit followed by a cascaded
variable-gain amplifier for the gain control mechanism. It also employed a timing discrim-
inator with differential voltage shifters to compensate for the walk errors. However, it
required a large power consumption. Ref. [19] presented a wideband receiver for a 3D
ranging LiDAR system that exploited a series resistor array with PMOS switches, hence
extending the dynamic range up to 64 dB. However, the control signals of the switches were
generated by using multiple comparators, where an external DC voltage was required for
manual gain control. Also, the proposed wideband receiver dissipated a large amount of
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power. Ref. [20] suggested an eight-channel receiver array that operated with two modes,
i.e., either a parallel mode or a selectable mode to save power dissipation. In addition,
a p-i-n photodiode was exploited for the high-gain mode while an APD was employed
for the low-gain mode. However, utilizing these two photodetectors increased the imple-
mentation costs and might cause difficulties when integrating with a PC board. Moreover,
the dynamic range was considerably narrower when compared to that of other works.
Ref. [21] demonstrated a dual-mode AFE preamplifier which could be configured as a
charge-sensitive amplifier (CSA) or as a gated active load-assisted (GALA) TIA, depending
upon the intensity of the input current, thereby extending the dynamic range to 96dB.
Yet, the bandwidth shrunk down to 98 MHz in CSA mode from 230 MHz in GALA-TIA.
Also, the power dissipation was still large owing to the dual-mode operations. On the
contrary, this work shows competent performance despite the comparatively lower re-
sponsivity of the on-chip CMOS APDs and the lower transimpedance gain characteristics.
In particular, this sensor can achieve a wide dynamic range with the aid of the proposed
concurrent AGC methodology, and also provide very low power dissipation and small core
area characteristics.

4. Conclusions

We presented an OTA using a concurrent AGC mechanism realized using a 180 nm
CMOS technology, comprising a main transimpedance amplifier with an on-chip P+/NW/DNW
APD and a replica TIA with another on-chip APD to render the concurrent AGC function
feasible within a narrow single pulse width. The post-layout simulations revealed that the
OTA can extend the dynamic range up to 74.8 dB (i.e., 1 µApp~5.5 mApp) and achieve a
67 dBΩ transimpedance gain, an 830 MHz bandwidth, a −31 dBm optical sensitivity for a
10−12 BER with the assumption of 4.61 A/W APD responsivity, and a 6 mW power dissipa-
tion. Conclusively, the proposed OTA can be a highly efficient solution for application to
low-power, low-cost, short-range LiDAR sensors.
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