Picometer-Sensitivity Surface Profile Measurement Using Swept-Source Phase Microscopy
<p>Schematic diagram of phase noise: (<b>a</b>) two spectra with the same OPD under phase noise; (<b>b</b>) the functional relationship between phase and OPD without phase noise; (<b>c</b>) the functional relationship between phase and OPD with phase noise.</p> "> Figure 2
<p>Schematic diagram of the method proposed in this paper: (<b>a</b>) the raw spectrum and extracted envelope by spline interpolation; (<b>b</b>) the cosine terms with the same OPD under phase noise; (<b>c</b>) the cosine terms after eliminating phase noise; (<b>d</b>) the functional relationship between phase and distance without phase noise.</p> "> Figure 3
<p>SS-PM structure diagram. VCSEL: vertical-cavity surface-emitting laser; GL: guiding laser; FC: fiber coupler; Cir: circulator; L: lens; GM: galvanometric mirror; PD: photodetector.</p> "> Figure 4
<p>Phase Stability Evaluation: (<b>a</b>) phase fluctuations of the original spectra; (<b>b</b>) phase fluctuations of the spectra corrected by the presented method; (<b>c</b>) phase fluctuations of the spectra corrected by the inverse Fourier transform method; (<b>d</b>) phase fluctuations of the spectra corrected by the cross-correlation method.</p> "> Figure 5
<p>Change in the thickness of a 213 µm borosilicate coverslip as the water bath is cooled 1.2 °C.</p> "> Figure 6
<p>Measurement of sub-resolution position changes between slides: (<b>a</b>) sample configuration; (<b>b</b>) phase image from the original spectrum; (<b>c</b>) phase image from the corrected spectrum.</p> "> Figure 7
<p>(<b>a</b>) Image of resolution target by optical microscope; (<b>b</b>) reconstructed phase image of resolution target by the proposed method; (<b>c</b>) measuring result of resolution target by WLI; (<b>d</b>) cross-sectional surface curves corresponding to (<b>b</b>); (<b>c</b>) cross-sectional surface curves corresponding to (<b>e</b>).</p> "> Figure 8
<p>Influences of different types of noise on phase: (<b>a</b>) phase noise introduced by unstable interference systems; (<b>b</b>) shot noise introduced by photodetector.</p> "> Figure 9
<p>Phase fluctuations of the spectra acquired by the SD-PM system.</p> ">
Abstract
:1. Introduction
2. Methods
3. Setup and Experiment
3.1. Setup
3.2. Evaluation of Sensitivity in Different Phase Noise Suppression Methods
3.3. Experiment on Phase Noise Suppression
3.4. Surface Profile Measurement of Resolution Target
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, Y.; Xie, F.; Ma, S.; Dong, L. Review of surface profile measurement techniques based on optical interferometry. Opt. Lasers Eng. 2017, 93, 164–170. [Google Scholar] [CrossRef]
- Yue, J.; Ma, Z.; Jiang, H.; Ding, N.; Wang, Y.; Zhao, Y.; Yu, Y.; Liu, J.; Luan, J. High-Dynamic-Range, High-Precision, High-Speed Surface Profile Measurement Using Swept Source Optical Coherence Tomography. IEEE Sens. J. 2024, 24, 24238–24248. [Google Scholar] [CrossRef]
- Arintawati, P.; Sone, T.; Akita, T.; Tanaka, J.; Kiuchi, Y. The Applicability of ganglion cell complex parameters determined from SD-OCT images to detect glaucomatous eyes. Eur. J. Gastroenterol. Hepatol. 2013, 22, 713–718. [Google Scholar] [CrossRef] [PubMed]
- Shimada, Y.; Sadr, A.; Burrow, M.F.; Tagami, J.; Ozawa, N.; Sumi, Y. Validation of swept-source optical coherence tomography (SS-OCT) for the diagnosis of occlusal caries. J. Dent. 2010, 38, 655–665. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhu, L.; Zhou, H.; Zhao, Y.; Ma, Z. Quantitative phase imaging using spectral domain phase microscopy without phase wrapping ambiguity. Opt. Lett. 2018, 44, 151–154. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Ding, Z.; Shen, Y.; Chen, Z.; Zhao, C.; Ni, Y. High-sensitive and broad-dynamic-range quantitative phase imaging with spectral domain phase microscopy. Opt. Express 2013, 21, 25734–25743. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Rao, B.; Yu, L.; Chen, Z. High-dynamic-range quantitative phase imaging with spectral domain phase microscopy. Opt. Lett. 2009, 34, 3442–3444. [Google Scholar] [CrossRef] [PubMed]
- Vakoc, B.J.; Yun, S.H.; de Boer, J.F.; Tearney, G.J.; Bouma, B.E. Phase-resolved optical frequency domain imaging. Opt. Express 2005, 13, 5483–5493. [Google Scholar] [CrossRef] [PubMed]
- Cong, P.; Li, G.; Yi, S.; Xue-Guo, Y.; Zhi-Hua, D.; Peng, L. Phase correction method based on interfacial signal in swept source optical coherence tomography. Acta Phys. Sin. 2016, 65, 014201. [Google Scholar] [CrossRef]
- Adler, D.C.; Huber, R.; Fujimoto, J.G. Phase-sensitive optical coherence tomography at up to 370,000 lines per second using buffered Fourier domain mode-locked lasers. Opt. Lett. 2007, 32, 626–628. [Google Scholar] [CrossRef] [PubMed]
- Kuranov, R.V.; McElroy, A.B.; Kemp, N.; Baranov, S.; Taber, J.; Feldman, M.D.; Milner, T.E. Gas-cell referenced swept source phase sensitive optical coherence tomography. IEEE Photon-Technol. Lett. 2010, 22, 1524–1526. [Google Scholar] [CrossRef]
- Liu, G.; Tan, O.; Gao, S.S.; Pechauer, A.D.; Lee, B.; Lu, C.D.; Fujimoto, J.G.; Huang, D. Postprocessing algorithms to minimize fixed-pattern artifact and reduce trigger jitter in swept source optical coherence tomography. Opt. Express 2015, 23, 9824–9834. [Google Scholar] [CrossRef] [PubMed]
- Braaf, B.; Vermeer, K.A.; Sicam, V.A.D.; van Zeeburg, E.; van Meurs, J.C.; de Boer, J.F. Phase-stabilized optical frequency domain imaging at 1-µm for the measurement of blood flow in the human choroid. Opt. Express 2011, 19, 20886–20903. [Google Scholar] [CrossRef] [PubMed]
- Zi-Wei, S.; Yi, S.; Peng, L.; Zhi-Hua, D. Wavenumber calibration and phase measurement in swept source optical coherence tomography. Acta Phys. Sin. 2016, 65, 034201. [Google Scholar] [CrossRef]
- Tapia-Mercado, J.; Khomenko, A.; Garcia-Weidner, A. Precision and sensitivity optimization for white-light interferometric fiber-optic sensors. J. Light. Technol. 2001, 19, 70–74. [Google Scholar] [CrossRef]
- Shen, F.; Wang, A. Frequency-estimation-based signal-processing algorithm for white-light optical fiber Fabry–Perot interferometers. Appl. Opt. 2005, 44, 5206–5214. [Google Scholar] [CrossRef] [PubMed]
- Choma, M.A.; Ellerbee, A.K.; Yang, C.; Creazzo, T.L.; Izatt, J.A. Spectral-domain phase microscopy. Opt. Lett. 2005, 30, 1162–1164. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.T.; Tsai, M.T.; Lee, C.K. Two-level optical coherence tomography scheme for suppressing spectral saturation artifacts. Sensors 2014, 14, 13548–13555. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yue, J.; Cui, J.; Zheng, Z.; Liu, J.; Zhao, Y.; Cui, S.; Yu, Y.; Wang, Y.; Zhao, Y.; Luan, J.; et al. Picometer-Sensitivity Surface Profile Measurement Using Swept-Source Phase Microscopy. Photonics 2024, 11, 968. https://doi.org/10.3390/photonics11100968
Yue J, Cui J, Zheng Z, Liu J, Zhao Y, Cui S, Yu Y, Wang Y, Zhao Y, Luan J, et al. Picometer-Sensitivity Surface Profile Measurement Using Swept-Source Phase Microscopy. Photonics. 2024; 11(10):968. https://doi.org/10.3390/photonics11100968
Chicago/Turabian StyleYue, Jinyun, Jinze Cui, Zhaobo Zheng, Jianjun Liu, Yu Zhao, Shiwei Cui, Yao Yu, Yi Wang, Yuqian Zhao, Jingmin Luan, and et al. 2024. "Picometer-Sensitivity Surface Profile Measurement Using Swept-Source Phase Microscopy" Photonics 11, no. 10: 968. https://doi.org/10.3390/photonics11100968
APA StyleYue, J., Cui, J., Zheng, Z., Liu, J., Zhao, Y., Cui, S., Yu, Y., Wang, Y., Zhao, Y., Luan, J., Liu, J., & Ma, Z. (2024). Picometer-Sensitivity Surface Profile Measurement Using Swept-Source Phase Microscopy. Photonics, 11(10), 968. https://doi.org/10.3390/photonics11100968