Odd Magneto-Optical Linear Dichroism in a Magnetophotonic Crystal
<p>Configuration for observation of the odd magneto-optical linear dichroism. Red arrows indicate magnetization directions.</p> "> Figure 2
<p>A color plot for the transmittance calculated for different wavelengths and polarization angles <span class="html-italic">Ψ</span><sub>0</sub> of the arbitrary linearly (s + p) polarized light (<b>a</b>). Measured transmittance of MPC with positive orientation of magnetization <math display="inline"><semantics> <mrow> <mi>T</mi> <mo stretchy="false">(</mo> <mo>+</mo> <msub> <mi>M</mi> <mrow> <msub> <mi>z</mi> <mi>i</mi> </msub> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> </semantics></math> versus initial state of polarization <span class="html-italic">Ψ</span><sub>0</sub> (<b>b</b>). Measured (symbol) and simulated (lines) transmittance of MPC at resonance wavelength <span class="html-italic">λ</span><sub>R</sub> = 721 nm in configurations with opposite orientations of magnetization <math display="inline"><semantics> <mrow> <mi>T</mi> <mo stretchy="false">(</mo> <mo>+</mo> <msub> <mi>M</mi> <mrow> <msub> <mi>z</mi> <mi>i</mi> </msub> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>T</mi> <mo stretchy="false">(</mo> <mo>−</mo> <msub> <mi>M</mi> <mrow> <msub> <mi>z</mi> <mi>i</mi> </msub> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> </semantics></math> versus initial state of polarization <span class="html-italic">Ψ</span><sub>0</sub> (<b>c</b>). The arrows indicate the values of <span class="html-italic">Ψ</span><sub>0</sub> corresponding to the configurations in <a href="#photonics-10-01237-f004" class="html-fig">Figure 4</a>b.</p> "> Figure 3
<p>Simulated distribution of electric field intensity of p- and s-polarized light inside MPC (<b>a</b>) and measured (symbol) and simulated (lines) dependences of the <span class="html-italic">Q</span>-factor and its derivative <math display="inline"><semantics> <mrow> <msub> <msup> <mi>Q</mi> <mo>′</mo> </msup> <mrow> <msub> <mi>Ψ</mi> <mn>0</mn> </msub> </mrow> </msub> </mrow> </semantics></math> on the initial state of polarization <span class="html-italic">Ψ</span><sub>0</sub> at <span class="html-italic">λ</span><sub>R</sub> = 721 nm (<b>b</b>). The angle of incidence is <span class="html-italic">θ</span> = 60°.</p> "> Figure 4
<p>Measured (symbols) and simulated (lines) values of the odd magneto-optical linear dichroism <span class="html-italic">δ<sub>T</sub></span> of MPC: (<b>a</b>) at resonance wavelength <span class="html-italic">λ</span><sub>R</sub> = 721 nm versus initial state of polarization <span class="html-italic">Ψ</span><sub>0</sub>, (<b>b</b>) in the vicinity of resonance for different <span class="html-italic">Ψ</span><sub>0</sub>: 60° and 120°. The angle of incidence is <span class="html-italic">θ</span> = 60°.</p> "> Figure A1
<p>Spectra of transmittance of MPC at normal incidence <span class="html-italic">θ</span> = 0° for p- and s-polarized light and different scales: (<b>a</b>) in a wide spectral range showing a photonic bandgap, from 575 nm to 925 nm, and (<b>b</b>) in the vicinity of the resonant wavelength, from 760 nm to 790 nm. (<b>c</b>) Spectra of Faraday rotation angle of MPC for p- or s-polarized light at normal incidence <span class="html-italic">θ</span> = 0°.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Simulation
2.3. Optical and Magneto-Optical Measurements
3. Results
3.1. Model of Odd Magneto-Optical Linear Dichroism and Light Intensity Modulation in the Faraday Configuration
3.2. Simulation and Experimental Observation of the Odd Magneto-Optical Linear Dichroism
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Zvezdin, A.K.; Kotov, V.A. Modern Magnetooptics and Magnetooptical Materials; IOP Publishing: Bristol, PA, USA, 1997. [Google Scholar]
- Inoue, M.; Levy, M.; Baryshev, A. (Eds.) Magnetophotonics: From Theory to Applications; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Hu, S.; Guo, Z.; Dong, L.; Deng, F.; Jiang, H.; Chen, H. Enhanced Magneto-Optical Effect in Heterostructures Composed of Epsilon-Near-Zero Materials and Truncated Photonic Crystals. Front. Mater. 2022, 9, 843265. [Google Scholar] [CrossRef]
- Chernov, A.I.; Kozhaev, M.A.; Ignatyeva, D.O.; Beginin, E.N.; Sadovnikov, A.V.; Voronov, A.A.; Karki, D.; Levy, M.; Belotelov, V.I. All-Dielectric Nanophotonics Enables Tunable Excitation of the Exchange Spin Waves. Nano Lett. 2020, 20, 5259–5266. [Google Scholar] [CrossRef]
- Diaz-Valencia, B.F.; Mejía-Salazar, J.R.; Oliveira Osvaldo, N., Jr.; Porras-Montenegro, N.; Albella, P. Enhanced Transverse Magneto-Optical Kerr Effect in Magnetoplasmonic Crystals for the Design of Highly Sensitive Plasmonic (Bio)sensing Platforms. ACS Omega 2017, 2, 7682–7685. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Valencia, B.F.; Moncada-Villa, E.; Gómez Faustino, R.; Porras-Montenegro, N.; Mejía-Salazar, J.R. Bulk Plasmon Polariton Modes in Hyperbolic Metamaterials for Giant Enhancement of the Transverse Magneto-Optical Kerr Effect Molecules. Molecules 2022, 27, 5312. [Google Scholar] [CrossRef]
- Grunin, A.A.; Mukha, I.R.; Chetvertukhin, A.V.; Fedyanin, A.A. Refractive index sensor based on magnetoplasmonic crystals. J. Magn. Magn. Mater. 2016, 415, 72–76. [Google Scholar] [CrossRef]
- Wang, Q.; Yao, H.; Feng, Y.; Deng, X.; Yang, B.; Xiong, D.; He, M.; Zhang, W. Surface plasmon resonances boost the transverse magneto-optical Kerr effect in a CoFeB slab covered by a subwavelength gold grating for highly sensitive detectors. Opt. Express 2021, 29, 10546–10555. [Google Scholar] [CrossRef] [PubMed]
- Ignatyeva, D.O.; Kapralov, P.O.; Knyazev, G.A.; Sekatskii, S.K.; Dietler, G.; Nur-E-Alam, M.; Vasiliev, M.; Alameh, K.; Belotelov, V.I. High-Q surface modes in photonic crystal/iron garnet film heterostructures for sensor applications. JETP Lett. 2017, 104, 679–684. [Google Scholar] [CrossRef]
- Rizal, C.; Pisana, S.; Hrvoic, I. Improved Magneto-Optic Surface Plasmon Resonance Biosensors. Photonics 2018, 5, 15. [Google Scholar] [CrossRef]
- David, S.; Polonschii, C.; Luculescu, C.; Gheorghiu, M.; Gáspár, S.; Gheorghiu, E. Magneto-plasmonic biosensor with enhanced analytical response and stability. Biosens. Bioelectron. 2015, 63, 525–532. [Google Scholar] [CrossRef]
- Wu, J.; Qing, Y.M. Near-Perfect TMOKE in Photonic Crystal Structures for Sensing Devices with High Figure of Merit. IEEE Sens. J. 2022, 22, 19177–19182. [Google Scholar] [CrossRef]
- Borovkova, O.V.; Ignatyeva, D.O.; Sekatskii, S.K.; Karabchevsky, A.; Belotelov, V.I. High-Q surface electromagnetic wave resonance excitation in magneto-photonic crystals for super-sensitive detection of weak light absorption in near-IR. Photonics Res. 2020, 8, 57–63. [Google Scholar] [CrossRef]
- Rizal, C.; Manera, M.G.; Ignatyeva, D.O.; Mejía-Salazar, J.R.; Rella, R.; Belotelov, V.I.; Pineider, F.; Maccaferri, N. Magnetophotonics for sensing and magnetometry toward industrial applications. J. Appl. Phys. 2021, 130, 230901. [Google Scholar] [CrossRef]
- Ignatyeva, D.O.; Knyazev, G.A.; Kalish, A.N.; Chernov, A.I.; Belotelov, V.I. Vector magneto-optical magnetometer based on resonant all-dielectric gratings with highly anisotropic iron garnet films. J. Phys. D Appl. Phys. 2021, 54, 295001. [Google Scholar] [CrossRef]
- Ignatyeva, D.O.; Krichevsky, D.M.; Belotelov, V.I.; Royer, F.; Dash, S.; Levy, M. All-dielectric magneto-photonic metasurfaces. J. Appl. Phys. 2022, 132, 100902. [Google Scholar] [CrossRef]
- Belyaev, V.K.; Rodionova, V.V.; Grunin, A.A.; Inoue, M.; Fedyanin, A.A. Magnetic field sensor based on magnetoplasmonic crystal. Sci. Rep. 2020, 10, 7133. [Google Scholar] [CrossRef] [PubMed]
- Schafer, R.; Oppeneer, P.M.; Ognev, A.V.; Samardak, A.S.; Soldatov, I.V. Analyzer-free, intensity-based, wide-field magneto-optical microscopy. Appl. Phys. Rev. 2021, 8, 031402. [Google Scholar] [CrossRef]
- McCord, J. Progress in magnetic domain observation by advanced magneto-optical microscopy. J. Phys. D Appl. Phys. 2015, 48, 333001. [Google Scholar] [CrossRef]
- Wind, C.H. On the theory of magneto-optic phenomena. Phys. Rev. 1898, 6, 43. [Google Scholar] [CrossRef]
- Grunin, A.A.; Zhdanov, A.G.; Ezhov, A.A.; Ganshina, E.A.; Fedyanin, A.A. Surface-plasmon-induced enhancement of magneto-optical Kerr effect in all-nickel subwavelength nanogratings. Appl. Phys. Lett. 2010, 97, 261908. [Google Scholar] [CrossRef]
- Torrado, J.F.; González-Díaz, J.B.; González, M.U.; García-Martín, A.; Armelles, G. Magneto-optical effects in interacting localized and propagating surface plasmon modes. Opt. Express 2010, 18, 15635–15642. [Google Scholar] [CrossRef] [PubMed]
- Belotelov, V.I.; Kreilkamp, L.E.; Kalish, A.N.; Akimov, I.A.; Bykov, D.A.; Kasture, S.; Yallapragada, V.J.; Achanta, V.G.; Grishin, A.M.; Khartsev, S.I.; et al. Magnetophotonic intensity effects in hybrid metal-dielectric structures. Phys. Rev. B 2014, 89, 045118. [Google Scholar] [CrossRef]
- Belotelov, V.I.; Bykov, D.A.; Doskolovich, L.L.; Kalish, A.N.; Kotov, V.A.; Zvezdin, A.K. Giant Magnetooptical Orientational Effect in Plasmonic Heterostructures. Opt. Lett. 2009, 34, 398–400. [Google Scholar] [CrossRef]
- Halagacka, L.; Vanwolleghem, M.; Postava, K.; Dagens, B.; Pistora, J. Coupled mode enhanced giant magnetoplasmonics transverse Kerr effect. Opt. Express 2013, 21, 21741–21755. [Google Scholar] [CrossRef]
- Belotelov, V.I.; Zvezdin, A.K. Magnetooptics and extraordinary transmission of the perforated metallic films magnetized in polar geometry. J. Magn. Magn. Mater. 2006, 300, e260–e263. [Google Scholar] [CrossRef]
- Chai, H.; Lu, Y.; Zhang, W. Enhancement of transverse magneto-optical Kerr effects and high sensing performance in a trilayer structure with nanopore arrays. Results Phys. 2021, 31, 105049. [Google Scholar] [CrossRef]
- Barsukova, M.G.; Musorin, A.I.; Shorokhov, A.S.; Fedyanin, A.A. Enhanced magneto-optical effects in hybrid Ni-Si metasurfaces. APL Photon. 2019, 4, 016102. [Google Scholar] [CrossRef]
- Cichelero, R.; Oskuei, M.A.; Kataja, M.; Hamidi, S.M.; Herranz, G. Unexpected large transverse magneto-optic Kerr effect at quasi-normal incidence in magnetoplasmonic crystals. J. Magn. Magn. Mater. 2019, 47, 54–58. [Google Scholar] [CrossRef]
- Carvalho, W.O.F.; Moncada-Villa, E.; Oliveira, O.N., Jr.; Mejía-Salazar, J.R. Beyond plasmonic enhancement of the transverse magneto-optical Kerr effect with low-loss high-refractive-index nanostructures. Phys. Rev. B 2021, 103, 075412. [Google Scholar] [CrossRef]
- Maksymov, I.S.; Hutomo, J.; Kostylev, M. Transverse magneto-optical Kerr effect in subwavelength dielectric gratings. Opt. Express 2014, 22, 8720–8725. [Google Scholar] [CrossRef]
- Royer, F.; Varghese, B.; Gamet, E.; Neveu, S.; Jourlin, Y.; Jamon, D. Enhancement of Both Faraday and Kerr Effects with an All-Dielectric Grating Based on a Magneto-Optical Nanocomposite Material. ACS Omega 2020, 5, 2886–2892. [Google Scholar] [CrossRef]
- Ignatyeva, D.O.; Karki, D.; Voronov, A.A.; Kozhaev, M.A.; Krichevsky, D.M.; Chernov, A.I.; Levy, M.; Belotelov, V.I. All-dielectric magnetic metasurface for advanced light control in dual polarizations combined with high-Q resonances. Nat. Commun. 2020, 11, 5487. [Google Scholar] [CrossRef]
- Yang, W.; Liu, Q.; Wang, H.; Chen, Y.; Yang, R.; Xia, S.; Luo, Y.; Deng, L.; Qin, J.; Duan, H.; et al. Observation of optical gyromagnetic properties in a magneto-plasmonic metamaterial. Nat. Commun. 2022, 13, 1719. [Google Scholar] [CrossRef]
- Voronov, A.A.; Karki, D.; Ignatyeva, D.O.; Kozhaev, M.A.; Levy, M.; Belotelov, V.I. Magneto-optics of subwavelength all-dielectric gratings. Opt. Express 2020, 28, 17988–17996. [Google Scholar] [CrossRef]
- Xia, S.; Ignatyeva, D.O.; Liu, Q.; Wang, H.; Yang, W.; Qin, J.; Chen, Y.; Duan, H.; Luo, Y.; Novák, O.; et al. Circular displacement current induced anomalous magneto-optical effects in high index Mie resonators. Laser Photonics Rev. 2022, 16, 2200067. [Google Scholar] [CrossRef]
- Krinchik, G.S.; Chepurova, E.E.; Ehgamov, S.V. Magneto-optical intensity effects in ferromagnetic metals and dielectrics. Zhurnal Ehksperimental’noj I Teor. Fiz. 1978, 74, 375–378. [Google Scholar]
- Carey, R.; Thomas, B.W.J.; Viney, I.V.F.; Weaver, G.H. Magnetic birefringence in thin ferromagnetic films. J. Phys. D Appl. Phys. 1968, 1, 1679. [Google Scholar] [CrossRef]
- Krinchik, S.S.; Gushchin, V.S. Magnetooptical effect of change of electronic structure of a ferromagnetic metal following rotation of the magnetization vector. JETP Lett. 1969, 10, 24–26. [Google Scholar]
- Ignatyeva, D.O.; Belotelov, V.I. Bound states in the continuum enable modulation of light intensity in the Faraday configuration. Opt. Lett. 2020, 45, 6422–6425. [Google Scholar] [CrossRef] [PubMed]
- Grishin, A.M.; Khartsev, S.I. Waveguiding in All-Garnet Heteroepitaxial Magneto-Optical Photonic Crystals. JETP Lett. 2019, 109, 83–86. [Google Scholar] [CrossRef]
- Lyubchanskii, I.L.; Dadoenkova, N.N.; Lyubchanskii, M.I.; Shapovalov, E.A.; Zabolotin, A.E.; Lee, Y.P.; Rasing, T. Response of two-defect magnetic photonic crystals to oblique incidence of light: Effect of defect layer variation. J. Appl. Phys. 2006, 100, 096110. [Google Scholar] [CrossRef]
- Grishin, A.M. Amplifying magneto-optical photonic crystal, Appl. Phys. Lett. 2010, 97, 061116. [Google Scholar] [CrossRef]
- Dzibrou, D.O.; Grishin, A.M. Fitting transmission and Faraday rotation spectra of [Bi3Fe5O12/Sm3Ga5O12]m magneto-optical photonic crystals. J. Appl. Phys. 2009, 106, 043901. [Google Scholar] [CrossRef]
- Grishin, A.M.; Khartsev, S.I. Luminescent Magneto-Optical Photonic Crystals. J. Phys. Conf. Ser. 2012, 352, 012007. [Google Scholar] [CrossRef]
- Khartsev, S.I.; Grishin, A.M. High performance [Bi3Fe5O12/Sm3Ga5O12]m magneto-optical photonic crystals. J. Appl. Phys. 2007, 101, 053906. [Google Scholar] [CrossRef]
- Levy, M.; Borovkova, O.V.; Sheidler, C.; Blasiola, B.; Karki, D.; Jomard, F.; Kozhaev, M.A.; Popova, E.; Keller, N.; Belotelov, V.I. Faraday rotation in iron garnet films beyond elemental substitutions. Optica 2019, 6, 642–646. [Google Scholar] [CrossRef]
- Passler, N.C.; Paarmann, A. Generalized 4 × 4 matrix formalism for light propagation in anisotropic stratified media: Study of surface phonon polaritons in polar dielectric heterostructures. J. Opt. Soc. Am. B 2017, 34, 2128–2139. [Google Scholar] [CrossRef]
- Berreman, D.W. Optics in stratified and anisotropic media: 4 × 4-matrix formulation. J. Opt. Soc. Am. 1972, 62, 502–510. [Google Scholar] [CrossRef]
- Xu, W.; Wood, L.T.; Golding, T.D. Optical degeneracies in anisotropic layered media: Treatment of singularities in a 4 × 4 matrix formalism. Phys. Rev. B 2000, 61, 1740–1743. [Google Scholar] [CrossRef]
- Yeh, P. Electromagnetic propagation in birefringent layered media. J. Opt. Soc. Am. A 1979, 69, 742–756. [Google Scholar] [CrossRef]
- Passler, N.C.; Jeannin, M.; Paarmann, A. Layer-resolved absorption of light in arbitrarily anisotropic heterostructures. Phys. Rev. B 2020, 101, 165425. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mikhailova, T.V.; Ignatyeva, D.O.; Lyashko, S.D.; Berzhansky, V.N.; Belotelov, V.I. Odd Magneto-Optical Linear Dichroism in a Magnetophotonic Crystal. Photonics 2023, 10, 1237. https://doi.org/10.3390/photonics10111237
Mikhailova TV, Ignatyeva DO, Lyashko SD, Berzhansky VN, Belotelov VI. Odd Magneto-Optical Linear Dichroism in a Magnetophotonic Crystal. Photonics. 2023; 10(11):1237. https://doi.org/10.3390/photonics10111237
Chicago/Turabian StyleMikhailova, Tatiana V., Daria O. Ignatyeva, Sergey D. Lyashko, Vladimir N. Berzhansky, and Vladimir I. Belotelov. 2023. "Odd Magneto-Optical Linear Dichroism in a Magnetophotonic Crystal" Photonics 10, no. 11: 1237. https://doi.org/10.3390/photonics10111237
APA StyleMikhailova, T. V., Ignatyeva, D. O., Lyashko, S. D., Berzhansky, V. N., & Belotelov, V. I. (2023). Odd Magneto-Optical Linear Dichroism in a Magnetophotonic Crystal. Photonics, 10(11), 1237. https://doi.org/10.3390/photonics10111237