A Comprehensive Analysis of Characteristics of Hydrogen Operation as a Preparation for Retrofitting a Compression Ignition Engine to a Hydrogen Engine
<p>Main characteristics of compared fuels (on the basis of [<a href="#B26-processes-13-00718" class="html-bibr">26</a>]) ((1) at pressure 1.013 bar; (2) at temperature 0 °C; (3) at temperature 25 °C; (4) at λ = 1; (5) in air; (6) at pressure 250 bar and at temperature 280 K).</p> "> Figure 2
<p>Combustion processes can be implemented with hydrogen (on the basis of [<a href="#B38-processes-13-00718" class="html-bibr">38</a>]) (HCCI stands for homogenaous charge compression ignition).</p> "> Figure 3
<p>A typical pressure function during the pre-ignition process [<a href="#B41-processes-13-00718" class="html-bibr">41</a>] (black line—backfire, dash line—normal process) (reproduced with permission from Verhelst, S., and Wallner, T., Progress in Energy and Combustion Science, Elsevier, 2009).</p> "> Figure 4
<p>Pressure functions over the crankshaft angle in the cylinder and in the intake manifold in case of a backfire (black line—backfire, dash line—normal process) [<a href="#B41-processes-13-00718" class="html-bibr">41</a>] (reproduced with permission from Verhelst, S., and Wallner, T., Progress in Energy and Combustion Science, Elsevier, 2009).</p> "> Figure 5
<p>Frequency curves of low- and high-intensity knocking [<a href="#B59-processes-13-00718" class="html-bibr">59</a>] (reproduced with permission from Luo, Q. H., and Sun, B. G., International Journal of Hydrogen Energy, Elsevier, 2016).</p> "> Figure 6
<p>Drawing of a spark plug registered at the Deutsches Patent und Markenamt (Patent number: DE 10 2006 041 161 A1) [<a href="#B65-processes-13-00718" class="html-bibr">65</a>].</p> "> Figure 7
<p>Combustion chambers of the Erren hydrogen engine (<b>left</b>) and the MAN small-series hydrogen engine (<b>right</b>) (on the basis of [<a href="#B26-processes-13-00718" class="html-bibr">26</a>]).</p> "> Figure 8
<p>Cross-section of a hydrogen-fuelled research engine [<a href="#B74-processes-13-00718" class="html-bibr">74</a>].</p> "> Figure 9
<p>Meshed model of the combustion chamber [<a href="#B76-processes-13-00718" class="html-bibr">76</a>] (Blue color lines form the mesh) (reproduced with permission from Yuan, C. et al., International Journal of Hydrogen Energy, Elsevier, 2016).</p> "> Figure 10
<p>Combustion chamber of the VW hydrogen engine (on the basis of [<a href="#B30-processes-13-00718" class="html-bibr">30</a>]).</p> "> Figure 11
<p>Counter drawing of the main combustion chamber (on the basis of [<a href="#B78-processes-13-00718" class="html-bibr">78</a>]).</p> "> Figure 12
<p>CAD model of engine combustion chamber including intake and exhaust ducts, valves and spark plug [<a href="#B84-processes-13-00718" class="html-bibr">84</a>].</p> "> Figure 13
<p>The Heron combustion chamber of Volvo 900/700 [<a href="#B87-processes-13-00718" class="html-bibr">87</a>] (yellow—combustion chamber; blue—other engine parts).</p> "> Figure 14
<p>Chamber geometries: simple design (<b>top left</b>), Heron-type geometry (<b>top right</b>), MR-type geometry (<b>bottom left</b>), plate-type geometry (<b>bottom right</b>) [<a href="#B88-processes-13-00718" class="html-bibr">88</a>].</p> "> Figure 15
<p>Engine model in GT-Power (<b>left side</b>) and cylinder pressure functions at different hydrogen mixing ratios (<b>right side</b>) [<a href="#B95-processes-13-00718" class="html-bibr">95</a>] (explanation of model color marking: blue arrows—fluid flow between engine components; yellow—yellow—physical spaces, spatial connections; green—model inputs and outputs; red—notation of the author of the original article about each component) (reproduced with permission from Cho, J., and Song, S., Applied Thermal Engineering, Elsevier, 2020).</p> ">
Abstract
:1. Introduction
1.1. Engines That Appeared on the Market Earlier in Small Series
1.2. The Aim of the Study
2. Physical and Chemical Properties of Diesel and Hydrogen Related to Mixture Formation and Combustion
3. Possibilities for Formatting Mixture
3.1. Injectors to Be Placed and Timing of Injections
3.2. Additional Considerations of Mixture Formation and Injection Valves
- The temperature of the introduced hydrogen (ambient temperature/extremely low temperature);
- Method of ignition introduction (external ignition/compression ignition);
- Partial load control (throttling → quantity control/without throttling → quality control);
- According to the state of cylinder filling (naturally aspirated/turbocharged);
- According to the design of the mixture (homogeneous/stratified).
3.3. Mixture Formation and Combustion Process
4. Pre-Ignition, Backfiring, Knocking
4.1. Pre-Ignition
4.2. Backfiring
4.3. Knocking
5. Spark Plug and Ignition System
6. Designing the Combustion Chamber of the Engine
6.1. Pure Hydrogen Engines
6.2. Hydrogen Is Part of the Fuel Mix
6.2.1. Diesel–Hydrogen and Combustion Chamber
6.2.2. Methane-Hydrogen and Combustion Chamber
6.3. The Heron Combustion Chamber
7. Examined Combustion-Related Characteristics in Simulation Works
8. Some Other Aspects of Such a Retrofitting
9. Conclusions
- The ICE-relevant properties of hydrogen can be advantageous if handled well from the engine side. A low ignition temperature, wide flammability limit, high flame speed, and high energy content can all be beneficial, but only if properly managed. If the control of these properties is not preserved, they only cause disadvantages;
- The best performance, efficiency and controllability can be obtained with diffuse combustion, which can be induced by the direct high-pressure injection of hydrogen. That is the most complicated and expensive system. The financial and infrastructural possibilities available to us allow the opposite of the most straightforward intake port injection mode by installing a spark plug in the cylinder head;
- Pre-ignition, backfiring, and knocking are all types of abnormal combustion, which must be eliminated in the case of hydrogen, especially during indirect injection. The three processes are related, and as such they can be the root causes of each other. The distance from the injection valve to the intake valve, the diameter of the needle, the operating pressure of the valve, the injection strategy, the intake valve control strategy, the speed of the incoming air, and the thermal condition of the metal parts are all influencing factors affecting abnormal processes;
- The ignition system to be applied must undoubtedly be a quick discharge condenser energy storage ignition system. The essential requirements for the spark plug are a cold start and the appropriate geometrical design of the electrodes;
- Regarding the design of the combustion chamber, the experiments can be divided into two parts. In experiments containing pure hydrogen or natural gas, the piston’s combustion space (chamber) is such that its lower part is a flat surface connected to the piston roof, with some contours. These are Heron-like combustion chambers. We want to convert the original piston of the experimental engine into this type of combustion chamber. We thus need more simulation results to determine its exact ideal geometric properties;
- The simulation of hydrogen combustion has been carried out in many studies in the GT-Suite environment, but scientific publications in which a pure hydrogen engine is investigated are different. The typical research (simulation and experimental) focuses on adding hydrogen to the traditional fuel of the given engines in small amounts, and they try to simulate and validate this change. The most critical parameter examined is cylinder pressure, from which many other parameters and phenomena can be derived. Examples include heat release and abnormal combustion phenomena.
Author Contributions
Funding
Conflicts of Interest
References
- Zoldy, M.; Csete, M.S.; Kolozsi, P.P.; Bordas, P.; Torok, A. Cognitive Sustainability. Cogn. Sustain. 2022, 1, 1–7. [Google Scholar] [CrossRef]
- Zöldy, M.; Baranyi, P. The Cognitive Mobility Concept. Infocommunications J. Spec. Issue Internet Digit. Cogn. Realities 2023, 35–40. [Google Scholar] [CrossRef]
- Łuczyszyn, K. Sustainable transport—Development and goals. Cogn. Sustain. 2024, 3. [Google Scholar] [CrossRef]
- Zöldy, M. Potential future renewable fuel challanges for internal combustion engine. Jármûvek Mobilgépek II Évf. 2009, 397–403. (In Hungarian) [Google Scholar]
- Bernalte, D.P. Technical end economic viability of hydrogen road vehicles in Valencia, Spain. Cogn. Sustain. 2023, 2. [Google Scholar] [CrossRef]
- International Energy Agency. World Energy Outlook 2023. Available online: https://www.iea.org/reports/world-energy-outlook-2023 (accessed on 15 August 2024).
- Shell plc. Energy Transition Strategy 2024. Available online: https://www.shell.com/sustainability/our-climate-target/shell-energy-transition-strategy/_jcr_content/root/main/section/promo_copy_copy/links/item0.stream/1722418051447/2c3f9065f2886e789ac196789f137dbca49473e8/shell-ets24.pdf (accessed on 15 August 2024).
- Hydrogen Europe. Long-Term Outlook on Zero-Emission Mobility. Available online: https://hydrogeneurope.eu/wp-content/uploads/2024/02/2024.02.14-Long-term-outlook-on-zero-emission-mobility_Report_14-02-2024_DIGITAL.pdf (accessed on 19 August 2024).
- Luo, Q.H.; Hu, J.B.; Sun, B.G.; Liu, F.S.; Wang, X.; Li, C.; Bao, L.Z. Experimental investigation of combustion characteristics and NOx emission of a turbocharged hydrogen internal combustion engine. Int. J. Hydrogen Energy 2019, 44, 5573–5584. [Google Scholar] [CrossRef]
- Stępień, Z. Analysis of the prospects for hydrogen-fuelled internal combustion engines. Combust. Engines 2024, 197, 32–41. [Google Scholar] [CrossRef]
- Deutz, A.G. Innovation für Nachhaltige Mobilität. Available online: https://www.deutz.com/de/produkte/wasserstoffmotoren/ (accessed on 16 August 2024). (In Germany).
- ISO 14687:2019; Hydrogen Fuel Quality—Product Specification. International Organization for Standardization (ISO): Geneva, Switzerland, 2019.
- NOW GmbH. Wasserstoff Verbrennungsmotor Als Alternativer Antrieb Metastudie. Available online: https://www.now-gmbh.de/aktuelles/pressemitteilungen/metastudie-zu-wasserstoffverbrennungsmotor-veroeffentlicht/ (accessed on 15 August 2024). (In Germany).
- Auto Motor und Sport. Brennstoffzelle Oder Wasserstoff-Verbrenner? Available online: https://www.auto-motor-und-sport.de/tech-zukunft/unterschied-wasserstoff-brennstoffzelle-verbrennungsmotor/ (accessed on 15 August 2024). (In Germany).
- Auto Bild. Bosch-Wasserstoffmotor Soll Noch 2024 Kommen. Available online: https://www.autobild.de/artikel/wasserstoff-motor-von-bosch-kommt-2024-25100011.html (accessed on 15 August 2024). (In Germany).
- H2 News. MAN Präsentiert Wasserstoff-Verbrennungsmotor für Offroad-Anwendungen. 2024. Available online: https://h2-news.de/wirtschaft-unternehmen/man-praesentiert-wasserstoff-verbrennungsmotor-fuer-offroad-anwendungen/ (accessed on 15 August 2024). (In Germany).
- Toyota. Prototype Corolla Cross Hydrogen Concept. Available online: https://www.toyota-europe.com/news/2022/prototype-corolla-cross-hydrogen-concept (accessed on 16 August 2024). (In Germany).
- Garrett Motion Inc. Hydrogen Internal Combustion Engine (H2ICE). Available online: https://www.garrettmotion.com/emission-reduction/hydrogen-internal-combustion-engine/ (accessed on 16 August 2024).
- Technische Universität Braunschweig. Wasserstoff im Tank. Available online: https://magazin.tu-braunschweig.de/m-post/wasserstoff-im-tank/ (accessed on 18 August 2024). (In Germany).
- Wu, Y.; Yuan, Y.; Xia, C.; Alahmadi, T.A.; Alharbi, S.A.; Sekar, M.; Pugazhendhi, A. Production of waste tyre pyrolysis oil as the replacement for fossil fuel for diesel engines with constant hydrogen injection via air intake manifold. Fuel 2024, 355, 129458. [Google Scholar] [CrossRef]
- Sekar, M.; Selim, M.Y.; Saleh, H.E.; Elgendi, M. Utilization of hydrogen and methane as energy carriers with exhaust gas recirculation for sustainable diesel engines. Energy Convers. Manag. X 2024, 23, 100618. [Google Scholar] [CrossRef]
- Arsie, I.; Battistoni, M.; Brancaleoni, P.P.; Cipollone, R.; Corti, E.; Di Battista, D.; Millo, F.; Occhicone, A.; Paradisi, B.P.; Rolando, L.; et al. A new generation of hydrogen-fueled hybrid propulsion systems for the urban mobility of the future. Energies 2023, 17, 34. [Google Scholar] [CrossRef]
- Baldinelli, A.; Francesconi, M.; Antonelli, M. Hydrogen, E-Fuels, Biofuels: What Is the Most Viable Alternative to Diesel for Heavy-Duty Internal Combustion Engine Vehicles? Energies 2024, 17, 4728. [Google Scholar] [CrossRef]
- Bortnowska, M.; Zmuda, A. The Possibility of Using Hydrogen as a Green Alternative to Traditional Marine Fuels on an Offshore Vessel Serving Wind Farms. Energies 2024, 17, 5915. [Google Scholar] [CrossRef]
- Bibiloni, S.; Irimescu, A.; Martinez-Boggio, S.; Merola, S.; Curto-Risso, P. Mild Hybrid Powertrain for Mitigating Loss of Volumetric Efficiency and Improving Fuel Economy of Gasoline Vehicles Converted to Hydrogen Fueling. Machines 2024, 12, 355. [Google Scholar] [CrossRef]
- Eichlseder, H.; Klell, M. Wasserstoff in der Fahrzeugtechnik: Erzeugung, Speicherung, Anwendung; Springer: Berlin, Germany, 2010; (In Germany). [Google Scholar] [CrossRef]
- List of Hydrogen Internal Combustion Engine Vehicles. Available online: https://en.wikipedia.org/wiki/List_of_hydrogen_internal_combustion_engine_vehicles (accessed on 19 August 2024).
- Motor Trend Group. First Drive: Hydrogen-Powered Mazda RX-8 and Premacy. Available online: https://www.motortrend.com/cars/mazda/rx-8/2010/hydrogen-mazda-rx-8-premacy/ (accessed on 19 August 2024).
- BMW Group. BMW Group Clean Energy: The Hydrogen-Powered BMW 750hL to Appear at New York International Auto Show. Available online: https://www.press.bmwgroup.com/deutschland/article/detail/T0005613DE/bmw-wasserstoffmotor-erreicht-spitzenwirkungsgrad (accessed on 17 August 2024).
- Willand, J.; Grote, A.; Dingel, O. Der Volkswagen-Wasserstoff-Verbrennungsmotor für Flurförderzeuge. ATZoffhighway 2008, 1, 24–35. (In Germany) [Google Scholar] [CrossRef]
- United Nations Economic Commission for Europe. Uniform Provisions Concerning the Measures to be Taken against the Emission of Gaseous and Particulate Pollutants from Compression Ignition Engines and Positive Ignition Engines for use in Vehicles; United Nations Economic Commission for Europe: Geneva, Switzerland, 2023; Available online: https://unece.org/fileadmin/DAM/trans/main/wp29/wp29regs/2013/R049r6e.pdf (accessed on 16 August 2024).
- United Nations Economic Commission for Europe. Uniform Provisions Concerning the Approval of Vehicles with Regard to the Emission of Pollutants According to Engine Fuel Requirements; United Nations Economic Commission for Europe: Geneva, Switzerland, 2018; Available online: https://unece.org/fileadmin/DAM/trans/main/wp29/wp29regs/R083r5e.pdf (accessed on 16 August 2024).
- Tsujimura, T.; Suzuki, Y. Development of a large-sized direct injection hydrogen engine for a stationary power generator. Int. J. Hydrogen Energy 2019, 44, 11355–11369. [Google Scholar] [CrossRef]
- Matienzo, J.M.R. Influence of addition of hydrogen produced on board in the performance of a stationary diesel engine. Int. J. Hydrogen Energy 2018, 43, 17889–17897. [Google Scholar] [CrossRef]
- Haller, J.; Link, T. Thermodynamic concept for an efficient zero-emission combustion of hydrogen and oxygen in stationary internal combustion engines with high power density. Int. J. Hydrogen Energy 2017, 42, 27374–27387. [Google Scholar] [CrossRef]
- Wittek, K.; Cogo, V.; Prante, G. Full load optimization of a hydrogen fuelled industrial engine. Int. J. Hydrogen Energy 2024, 77, 230–243. [Google Scholar] [CrossRef]
- Singh, K.; Verma, T.N.; Dwivedi, G.; Shukla, A.K. Hydrogen production, storage and CI Engine utilisation: A global perspective. Process Saf. Environ. Prot. 2024, 190 Pt A, 1067–1092. [Google Scholar] [CrossRef]
- Gerbig, F.; Heller, K.; Ringler, J.; Eichlseder, H.; Grabner, P. Innovative Brennverfahrenskonzepte für Wasserstoffmotoren. In Proceedings of the Tagung Der Arbeitsprozess des Verbrennungsmotors, Graz, Austria, 20–21 September 2007; pp. 382–405. (In Germany). [Google Scholar]
- Payri, R.; Novella, R.; Nasser, K.I.; Bori-Fabra, O. Spray Characterization of Direct Hydrogen Injection as a Green Fuel with Lower Emissions. Energies 2024, 17, 2405. [Google Scholar] [CrossRef]
- Huang, M.; Luo, Q.; Sun, B.; Zhang, S.; Wang, K.; Bao, L.; Li, Q.; Tang, X.; Deng, W. Experimental Investigations of the Hydrogen Injectors on the Combustion Characteristics and Performance of a Hydrogen Internal Combustion Engine. Sustainability 2024, 16, 1940. [Google Scholar] [CrossRef]
- Verhelst, S.; Wallner, T. Hydrogen-fueled internal combustion engines. Prog. Energy Combust. Sci. 2009, 35, 490–527. [Google Scholar] [CrossRef]
- Gao, J.; Wang, X.; Song, P.; Tian, G.; Ma, C. Review of the backfire occurrences and control strategies for port hydrogen injection internal combustion engines. Fuel 2022, 307, 121553. [Google Scholar] [CrossRef]
- Caricato, A.; Carlucci, A.P.; Potenza, M.E.C.; Laforgia, D.; Torresi, M.; Strafella, L. Autoignition Characterization of Hydrogen Directly Injected into a Constant-Volume Combustion Chamber through a Heavy-Duty Injector. Energies 2023, 16, 6823. [Google Scholar] [CrossRef]
- Yang, Z.; Wu, J.; Yun, H.; Zhang, H.; Xu, J. Diagnosis and control of abnormal combustion of hydrogen internal combustion engine based on the hydrogen injection parameters. Int. J. Hydrogen Energy 2022, 47, 15887–15895. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, F.; Wang, L.; Wang, K.; Zhang, D. Effects of injection mode on the mixture formation and combustion performance of the hydrogen internal combustion engine. Energy 2018, 147, 715–728. [Google Scholar] [CrossRef]
- Duan, J.; Liu, F.; Sun, B. Backfire control and power enhancement of a hydrogen internal combustion engine. Int. J. Hydrogen Energy 2014, 39, 4581–4589. [Google Scholar] [CrossRef]
- Liu, X.H.; Liu, F.S.; Zhou, L.; Sun, B.G.; Schock, H.J. Backfire prediction in a manifold injection hydrogen internal combustion engine. Int. J. Hydrogen Energy 2008, 33, 3847–3855. [Google Scholar] [CrossRef]
- Sterlepper, S.; Fischer, M.; Claßen, J.; Huth, V.; Pischinger, S. Concepts for hydrogen internal combustion engines and their implications on the exhaust gas aftertreatment system. Energies 2021, 14, 8166. [Google Scholar] [CrossRef]
- Sun, B.G.; Zhang, D.S.; Liu, F.S. Cycle variations in a hydrogen internal combustion engine. Int. J. Hydrogen Energy 2013, 38, 3778–3783. [Google Scholar] [CrossRef]
- Dober, G.; Hoffmann, G.; Doradoux, L.; Meissonnier, G. Direct injection systems for hydrogen engines. MTZ Worldw. 2021, 82, 60–65. [Google Scholar] [CrossRef]
- Koch, D.; Ebert, T.; Sousa, A. Engine adaptation from diesel to H2 HP-EGR lean combustion concept. MTZ Worldw. 2020, 81, 30–37. [Google Scholar] [CrossRef]
- Hofer, F.; Raser, B.; Schmidt, M.; Kabza, A. H2 Engine and Fuel Cell in Heavy Commercial Vehicles. MTZ Worldw. 2022, 83, 28–35. [Google Scholar] [CrossRef]
- Seboldt, D.; Mansbart, M.; Grabner, P.; Eichlseder, H. Hydrogen engines for future passenger cars and light commercial vehicles. MTZ Worldw. 2021, 82, 42–47. [Google Scholar] [CrossRef]
- Bobusch, B.; Ebert, T.; Fink, A.; Nett, O. Nozzle for Oscillating Direct Injection in H2 Internal Combustion Engines. MTZ Worldw. 2021, 82, 42–45. [Google Scholar] [CrossRef]
- Bai-gang, S.; Hua-yu, T.; Fu-shui, L. The distinctive characteristics of combustion duration in hydrogen internal combustion engine. Int. J. Hydrogen Energy 2014, 39, 14472–14478. [Google Scholar] [CrossRef]
- Wang, L.; Yang, Z.; Huang, Y.; Liu, D.; Duan, J.; Guo, S.; Qin, Z. The effect of hydrogen injection parameters on the quality of hydrogen–air mixture formation for a PFI hydrogen internal combustion engine. Int. J. Hydrogen Energy 2017, 42, 23832–23845. [Google Scholar] [CrossRef]
- Homan, H.S.; De Boer, P.C.T.; McLean, W.J. The effect of fuel injection on NOx emissions and undesirable combustion for hydrogen-fuelled piston engines. Int. J. Hydrogen Energy 1983, 8, 131–146. [Google Scholar] [CrossRef]
- Boretti, A. Hydrogen internal combustion engines to 2030. Int. J. Hydrogen Energy 2020, 45, 23692–23703. [Google Scholar] [CrossRef]
- Luo, Q.H.; Sun, B.G. Inducing factors and frequency of combustion knock in hydrogen internal combustion engines. Int. J. Hydrogen Energy 2016, 41, 16296–16305. [Google Scholar] [CrossRef]
- Lou, D.; Rao, X.; Zhang, Y.; Fang, L.; Tan, P.; Hu, Z. Investigation of impacts of hydrogen injection and spark strategy on knock in hydrogen engine. Int. J. Hydrogen Energy 2024, 82, 1252–1262. [Google Scholar] [CrossRef]
- Hong, C.; Xin, G.; Xu, S.; Cai, J.; Su, F.; Wang, S.; Ji, C. An experimental study of knock in a DI hydrogen engine: The synergistic effects of the deep Miller cycle and oxygen-enriched atmosphere. Energy Convers. Manag. 2024, 306, 118269. [Google Scholar] [CrossRef]
- Meng, H.; Zhan, Q.; Ji, C.; Yang, J.; Wang, S. Identification, prediction and classification of hydrogen-fueled Wankel rotary engine knock by data-driven based on combustion parameters. Energy 2024, 308, 133029. [Google Scholar] [CrossRef]
- Pielecha, I.; Szwajca, F. Combustion Characteristics of a Hydrogen-Fueled TJI Engine under Knocking Conditions. Energies 2024, 17, 1324. [Google Scholar] [CrossRef]
- Kondo, T.; Shuuichi, I.; Masaru, H. A study on the mechanism of backfire in external mixture formation hydrogen engines-about backfire occurred by cause of the spark plug. SAE Trans. 1997, 106, 1953–1960. [Google Scholar]
- Bundesrepublik Deutschland Deutsches Patent- und Markenamt. Zündkerze für einen Wasserstoff-Verbrennungsmotor. Patent DE 10 2006 041 161 A1, 6 March 2008. Available online: https://worldwide.espacenet.com/patent/search/family/038561745/publication/DE102006041161A1?q=pn%3DDE102006041161A1 (accessed on 18 August 2024). (In Germany).
- Herman, P. Anderson Technologies, LLC. Hydrogen Powered Vehicle, Internal Combustion Engine, and Spark Plug for use in Same. US6119651A, 22 February 1999. Available online: https://patents.google.com/patent/US6119651A/en (accessed on 19 August 2024).
- SEM Heavy Duty Engine Ignition System—Hydrogen. Available online: https://www.sem.se/en/products/h2-ignition-systems/ (accessed on 19 August 2024).
- Green Car Congress. Man Offering Pre-Chamber Spark Plugs for Turbocharged Nat Gas Engines to Increase Efficiency; Hydrogen Admixture Up to 20% by Volume. Available online: https://www.greencarcongress.com/2023/07/20230703-man.html (accessed on 19 August 2024).
- Baş, O.; Akar, M.A.; Serin, H.; Özcanlı, M.; Tosun, E. Variation of spark plug type and spark gap with hydrogen and methanol added gasoline fuel: Performance characteristics. Int. J. Hydrogen Energy 2020, 45, 26513–26521. [Google Scholar] [CrossRef]
- Bucherer, S.; Rothe, P.; Sobek, F.; Gottwald, T.; Kraljevic, I.; Vacca, A.; Gal, T.; Chiodi, M.; Kulzer, A. Experimental and Numerical Investigation of Spark Plug and Passive Pre-Chamber Ignition on a Single-Cylinder Engine with Hydrogen Port Fuel Injection for Lean Operations. SAE Int. J. Adv. Curr. Pract. Mobil. 2023, 6, 1073–1087. [Google Scholar] [CrossRef]
- Park, C.; Kim, Y.; Oh, S.; Oh, J.; Choi, Y. Effect of the operation strategy and spark plug conditions on the torque output of a hydrogen port fuel injection engine. Int. J. Hydrogen Energy 2021, 46, 37063–37070. [Google Scholar] [CrossRef]
- Module 3: Hydrogen Use in Internal Combustion Engines. Available online: https://www1.eere.energy.gov/hydrogenandfuelcells/tech_validation/pdfs/fcm03r0.pdf (accessed on 19 August 2024).
- Ricci, F.; Zembi, J.; Avana, M.; Grimaldi, C.N.; Battistoni, M.; Papi, S. Analysis of Hydrogen Combustion in a Spark Ignition Research Engine with a Barrier Discharge Igniter. Energies 2024, 17, 1739. [Google Scholar] [CrossRef]
- Kovar, Z.; Scholz, C.; Beroun, S.; Nydrle, M.; Drozda, H.; Blazek, J.; Svoboda, M. Silniki tłokowe zasilane paliwem wodorowym: Badania i rozwój, doświadczenia. Silniki Spalinowe 2006, 45, 28–36. Available online: https://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-article-LOD2-0003-0004 (accessed on 17 August 2024).
- Gao, J.; Zhang, H.; Li, J.; Wang, Y.; Tian, G.; Ma, C.; Wang, X. Simulation on the effect of compression ratios on the performance of a hydrogen fueled opposed rotary piston engine. Renew. Energy 2022, 187, 428–439. [Google Scholar] [CrossRef]
- Yuan, C.; Xu, J.; He, Y. Performance characteristics analysis of a hydrogen fueled free-piston engine generator. Int. J. Hydrogen Energy 2016, 41, 3259–3271. [Google Scholar] [CrossRef]
- FEV Group GmbH. FEV Stellt Adaptierten Motor für den Betrieb mit Wasserstoff Vor. Available online: https://www.fev.com/fev-stellt-adaptierten-motor-fuer-den-betrieb-mit-wasserstoff-vor/ (accessed on 18 August 2024). (In Germany).
- Sotiropoulou, E.; Knepper, S.; Deeken, S.; Grewe, F. Zero Emission-Die Evolution von Erdgas zu Wasserstoff mit Vorkammerzündkerzen. MTZ-Mot. Z. 2020, 81, 50–55. (In Germany) [Google Scholar] [CrossRef]
- Jyothi, U.S.; Reddy, K.V.K. Experimental Study on Hydrogen Enriched Diesel Engine with Varied Piston Bowl Geometry for Emission Reduction. J. Mech. Eng. 2015, 6, 16. [Google Scholar] [CrossRef]
- Temizer, İ.; Cihan, Ö. Analysis of different combustion chamber geometries using hydrogen/diesel fuel in a diesel engine. Energy Sources Part A Recovery Util. Environ. Eff. 2021, 43, 17–34. [Google Scholar] [CrossRef]
- Gültekin, N.; Ciniviz, M. Examination of the effect of combustion chamber geometry and mixing ratio on engine performance and emissions in a hydrogen-diesel dual-fuel compression-ignition engine. Int. J. Hydrogen Energy 2023, 48, 2801–2820. [Google Scholar] [CrossRef]
- Jyothi, U.S.; Reddy, K.V.K. CFD analysis on particle diameter in hydrogen-enriched diesel engine for different piston bowl geometries. Int. J. Ambient. Energy 2022, 43, 1661–1670. [Google Scholar] [CrossRef]
- Li, W.; Fan, B.; Jiang, P.; Liu, W.; Pan, J.; Huo, S.; Wu, Y.; Lu, Q. Exploring the coupling mechanism between piston structure and turbulent jet ignition mode in hydrogen mixed natural gas rotary engines. Int. J. Hydrogen Energy 2024, 63, 905–917. [Google Scholar] [CrossRef]
- Baratta, M.; Chiriches, S.; Goel, P.; Misul, D. CFD modelling of natural gas combustion in IC engines under different EGR dilution and H2-doping conditions. Transp. Eng. 2020, 2, 100018. [Google Scholar] [CrossRef]
- Ali, K.; Amna, R.; Hassan Ali, M.I. Numerical study to improve the combustion and thermal efficiencies of off-gas/synthesis gas-fueled HCCI-engine at different loads: Piston-shape and crevice design. Case Stud. Therm. Eng. 2023, 45, 102956. [Google Scholar] [CrossRef]
- Heron Cylinder Head. Available online: https://en.wikipedia.org/wiki/Heron_cylinder_head (accessed on 18 August 2024).
- Heron Cylinder Head. Available online: http://www.italian.sakura.ne.jp/bad_toys/heronhead/ (accessed on 18 August 2024).
- Demirci, A.; Kutlar, O.A.; Doğan, H.E.; Cihan, Ö. Investigation of Cyclic Variations of a Spark Ignition Engine Under Homogeneous and Lean Conditions for Different Chamber Geometries. Available online: https://www.researchgate.net/publication/331988271_INVESTIGATION_OF_CYCLIC_VARIATIONS_OF_A_SPARK_IGNITION_ENGINE_UNDER_HOMOGENEOUS_AND_LEAN_CONDITIONS_FOR_DIFFERENT_CHAMBER_GEOMETRIES (accessed on 18 August 2024).
- Smirnov, N.N.; Nikitin, V.F. Modeling and simulation of hydrogen combustion in engines. Int. J. Hydrogen Energy 2014, 39, 1122–1136. [Google Scholar] [CrossRef]
- Qiao, J.; Li, Y.; Wang, S.; Wang, P.; Liu, J. Experimental investigation and numerical assessment the effects of EGR and hydrogen addition strategies on performance, energy and exergy characteristics of a heavy-duty lean-burn NGSI engine. Fuel 2020, 275, 117824. [Google Scholar] [CrossRef]
- Poursadegh, F.; Brear, M.; Hayward, B.; Yang, Y. Autoignition, knock, detonation and the octane rating of hydrogen. Fuel 2023, 332, 126201. [Google Scholar] [CrossRef]
- Babayev, R.; Im, H.G.; Andersson, A.; Johansson, B. Hydrogen double compression-expansion engine (H2DCEE): A sustainable internal combustion engine with 60%+ brake thermal efficiency potential at 45 bar BMEP. Energy Convers. Manag. 2022, 264, 115698. [Google Scholar] [CrossRef]
- Boretti, A. Latest concepts for combustion and waste heat recovery systems being considered for hydrogen engines. Int. J. Hydrogen Energy 2013, 38, 3802–3807. [Google Scholar] [CrossRef]
- Farzam, R.; McTaggart-Cowan, G. Hydrogen-diesel dual-fuel combustion sensitivity to fuel injection parameters in a multi-cylinder compression-ignition engine. Int. J. Hydrogen Energy 2024, 49, 850–867. [Google Scholar] [CrossRef]
- Cho, J.; Song, S. Prediction of hydrogen-added combustion process in T-GDI engine using artificial neural network. Appl. Therm. Eng. 2020, 181, 115974. [Google Scholar] [CrossRef]
- Ragupathy, K. Modeling and analysis of diesel engine with addition of hydrogen-hydrogen-oxygen gas. Therm. Sci. 2017, 21 (Suppl. 2), 465–471. [Google Scholar] [CrossRef]
- Boretti, A.; Jiang, S.; Scalzo, J. A novel wankel engine featuring jet ignition and port or direct injection for faster and more complete combustion especially designed for gaseous fuels. (No. 2015-01-0007). SAE Tech. Pap. 2015, 1–12. [Google Scholar] [CrossRef]
- Ilbas, M.; Crayford, A.; Yılmaz, I.; Bowen, P.; Syred, N. Laminar-burning velocities of hydrogen–air and hydrogen–methane–air mixtures: An experimental study. Int. J. Hydrogen Energy 2006, 31, 1768–1779. [Google Scholar] [CrossRef]
- Parthasarathy, M.; Lalvani, J.I.J.; Dhinesh, B.; Annamalai, K. Effect of hydrogen on ethanol–biodiesel blend on performance and emission characteristics of a direct injection diesel engine. Ecotoxicol. Environ. Saf. 2016, 134, 433–439. [Google Scholar] [CrossRef] [PubMed]
- Thiyagarajan, S.; Varuvel, E.; Karthickeyan, V.; Sonthalia, A.; Kumar, G.; Saravanan, C.; Dhinesh, B.; Pugazhendhi, A. Effect of hydrogen on compression-ignition (CI) engine fueled with vegetable oil/biodiesel from various feedstocks: A review. Int. J. Hydrogen Energy 2022, 47, 37648–37667. [Google Scholar] [CrossRef]
- Muhssen, H.S.; Zöldy, M.; Bereczky, Á. A Comprehensive Review on the Hydrogen–Natural Gas–Diesel Tri-Fuel Engine Exhaust Emissions. Energies 2024, 17, 3862. [Google Scholar] [CrossRef]
- Murugesan, P.; Hoang, A.T.; Venkatesan, E.P.; Kumar, D.S.; Balasubramanian, D.; Le, A.T.; Pham, V.V. Role of hydrogen in improving performance and emission characteristics of homogeneous charge compression ignition engine fueled with graphite oxide nanoparticle-added microalgae biodiesel/diesel blends. Int. J. Hydrogen Energy 2022, 47, 37617–37634. [Google Scholar] [CrossRef]
- Fayaz, H.; Saidur, R.; Razali, N.; Anuar, F.; Saleman, A.; Islam, M. An overview of hydrogen as a vehicle fuel. Renew. Sustain. Energy Rev. 2012, 16, 5511–5528. [Google Scholar] [CrossRef]
- Jurić, Z.; Vidović, T.; Šimunović, J.; Radica, G. A Comprehensive Analysis of Hydrogen–Gasoline Blends in SI Engine Performance and Emissions. Energies 2024, 17, 1557. [Google Scholar] [CrossRef]
- Szwaja, S.; Piotrowski, A.; Szwaja, M.; Musial, D. Thermodynamic Analysis of the Combustion Process in Hydrogen-Fueled Engines with EGR. Energies 2024, 17, 2833. [Google Scholar] [CrossRef]
- Mohamed, M.; Wang, X.; Zhao, H.; Peckham, M.; Hall, J.; Jiang, C. A Comprehensive Experimental Investigation of NOx Emission Characteristics in Hydrogen Engine Using an Ultra-Fast Crank Domain Measurement. Energies 2024, 17, 4141. [Google Scholar] [CrossRef]
- Kim, J. Exhaust emissions and aftertreatments of hydrogen internal combustion engines: A review. Int. J. Automot. Technol. 2023, 24, 1681–1690. [Google Scholar] [CrossRef]
- Bao, L.-Z.; Sun, B.-G.; Luo, Q.-H.; Li, J.-C.; Qian, D.-C.; Ma, H.-Y.; Guo, Y.-J. Development of a turbocharged direct-injection hydrogen engine to achieve clean, efficient, and high-power performance. Fuel 2022, 324, 124713. [Google Scholar] [CrossRef]
- Bariş, O.; Güler, İ.; Yaşgül, A. The effect of different charging concepts on hydrogen fuelled internal combustion engines. Fuel 2023, 343, 127983. [Google Scholar] [CrossRef]
- Lee, J.; Park, C.; Kim, Y.; Choi, Y.; Bae, J.; Lim, B. Effect of turbocharger on performance and thermal efficiency of hydrogen-fueled spark ignition engine. Int. J. Hydrogen Energy 2019, 44, 4350–4360. [Google Scholar] [CrossRef]
- Misul, D.A.; Scopelliti, A.; Baratta, M. High-Performance Hydrogen-Fueled Internal Combustion Engines: Feasibility Study and Optimization via 1D-CFD Modeling. Energies 2024, 17, 1593. [Google Scholar] [CrossRef]
Mixture formation concepts | External mixture formation | Continuous injection |
Sequential injection | ||
Internal mixture formation | Early injection | |
Late injection | ||
Combustion control | ||
Combined mixture formation |
Conception | Homogenous Combustion/Spark Ignition | Diffusion Combustion/Compressed Ignition | ||||
---|---|---|---|---|---|---|
Multi-Point Injection (MPI) | Low- and Mid-Pressure Direct Injection (LP-DI and MP-DI) | Multi-Point Injection (MPI) | High-Pressure Direct Injection (HPDI) | |||
Homogenous Lean Pressure Injection | Homogeneous Lean Pressure Injection | Stratified Lean Pressure Injection | Lean Pre-Mixed + Diesel Diffusion Combustion | Diffusion Combustion Lean (Diesel Like) | Diffusion Combustion Lean (Diesel Like) | |
Mixture formation | Swirl | Swirl | Tumble | Swirl | Swirl/Tumble | Swirl/Tumble |
Ignition | Spark Plug | Compression ignition | Diesel pilot injection | Glow plug or spark plug (with pre-injection) | ||
Combustion | Stoich./Lean | Lean | Lean | Stoich./Lean | Lean—Diffusive | |
Advantages | Low conversation effort | No risk of backfire | Good efficiency Low-NOx raw emission | Low conversation effort | Diesel-like efficiency Low-NOx raw emission | Diesel-like efficiency Low-NOx raw emission |
Easy to integrate | Robust against backfire | Robust against backfire | Easy to integrate | Same as LP-DI | Same as LD-PI | |
Hardware available | Power density | Power density | Hardware available | Diffusive combustion possible | Diffusive combustion possible | |
Low failure risk | Transient response | Transient response | Low failure risk | |||
Disadvantages | Transient performance challenging; risk of backfire | Conversion effort w/o benefits in terms of efficiency and power density | Dedicated cylinder head engine required | CO2 emission existing due to diesel | High pressure fuel supply | Very high injection pressure |
CO2 reduction compared to diesel | −100% | −100% | −100% | −30%~−70% | −95% | −100% |
Mixture Formation (MF) Conceptions | |||||
---|---|---|---|---|---|
External MF | Combined MF | Internal MF | |||
Continuous | Sequential | - | Simple | Multiple | Combustion control |
Direct Injection Systems | |||||
---|---|---|---|---|---|
Servo-hydraulic | Electromagnetic | Piezoelectric | |||
- | Passive closing | Active closing | Stroke increase | Direct acting | |
Mechanic | Hydraulic |
Direct Injection Systems | ||
---|---|---|
Inward opening | Outward opening | |
Hole pattern | Orifice geometry | Cone Angle |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zöldy, M.; Virt, M.; Lukács, K.; Szabados, G. A Comprehensive Analysis of Characteristics of Hydrogen Operation as a Preparation for Retrofitting a Compression Ignition Engine to a Hydrogen Engine. Processes 2025, 13, 718. https://doi.org/10.3390/pr13030718
Zöldy M, Virt M, Lukács K, Szabados G. A Comprehensive Analysis of Characteristics of Hydrogen Operation as a Preparation for Retrofitting a Compression Ignition Engine to a Hydrogen Engine. Processes. 2025; 13(3):718. https://doi.org/10.3390/pr13030718
Chicago/Turabian StyleZöldy, Máté, Márton Virt, Kristóf Lukács, and György Szabados. 2025. "A Comprehensive Analysis of Characteristics of Hydrogen Operation as a Preparation for Retrofitting a Compression Ignition Engine to a Hydrogen Engine" Processes 13, no. 3: 718. https://doi.org/10.3390/pr13030718
APA StyleZöldy, M., Virt, M., Lukács, K., & Szabados, G. (2025). A Comprehensive Analysis of Characteristics of Hydrogen Operation as a Preparation for Retrofitting a Compression Ignition Engine to a Hydrogen Engine. Processes, 13(3), 718. https://doi.org/10.3390/pr13030718