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Abstract: This paper demonstrates that biodiesel production processes can be optimized
through implementing a controller based on fuzzy logic and neural networks. The system
dynamics are identified utilizing convolutional neural networks, enabling tests of the reac-
tor temperature response under different control law proposals. In addition, a sensorless
technique using a convolutional neural network to replace the sensor/transmitter signal in
case of failure is implemented. Two optimization functions are proposed utilizing a meta-
heuristic algorithm based on differential evolution, where the aim is to minimize the use
of cooling for the control of the reactor temperature. Finally, the control system proposals
are compared, and the results show that a neuro-fuzzy controller without optimization
restrictions generated unviable ITAE (1.9597× 107) and TVU (22.3993) performance metrics,
while the restriction proposed in this work managed to minimize these metrics, improving
both the ITAE (3.3928 × 106) and TVU (17.9132). These results show that combining the
sensorless technique and our optimization method for the cooling stage enables energy
saving in the temperature control processes required for biodiesel production.

Keywords: control process; biodiesel; optimization; sensorless technique

1. Introduction
It is important for industrial control systems to maximize profits and the use of re-

sources in their production processes in order to remain competitive. To achieve this, it
is necessary to optimize different areas, such as Electricity, Electronics, Mechanics, Ad-
ministration, and Automatic Control, among others. In the area of Automatic Control, it
is possible to contribute to the fulfillment of the optimization objective in the following
ways: (1) tuning classical controllers [1]; (2) modeling and identification of parameters [2];
(3) monitoring and prediction of behaviors [3]; and (4) implementation of non-conventional
controllers [4]. This work will focus on the modeling and identification of parameters, al-
lowing a mathematical expression of the linear or nonlinear nature of production processes
through the application of classical mechanics methods and computer science techniques [2].
As a possible benefit, it is possible to carry out simulations of the behavior and dynamics of
a process under different considerations such as operating conditions, different controllers,
and performance evaluation, among others. This has to do with purposes associated with
the design of production plants as well as with the optimization of already established
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production processes. The implementation of non-conventional controllers is increasing
worldwide and will be seen with greater force in the industry of undeveloped countries,
because most of them use classical controllers. Due to the complex nature of these processes,
classical controllers quickly reach their limitations and affect the profits of a factory over
time through, for example, using more energy than necessary, product quality problems,
and difficulty in complying with environmental regulations, among other issues. Con-
trollers based on expert systems with fuzzy logic and those based on neural networks have
gained popularity in recent years [5]. However, this type of controller has a fundamental
problem—the inherent dependence on hyper-parameters and their initial conditions—as
well as the classic problems of stability and convergence. Given the rapprochement be-
tween Automatic Control and Computer Science in the last few decades, it is now possible
to combine the techniques and reach the optimization objective from a metaheuristics
point of view, minimizing the dependence on the selection of initial conditions. Mexico’s
energy consumption is primarily distributed to the transportation sector as well as heat and
electricity generation. All this energy comes from fossil material burning (approximately
60%) [6], renewable sources (9%), and biodiesel (5%) [7], among other sources. Several po-
litical reforms in Mexico have been implemented to reduce the pollutant emissions into the
atmosphere. Although 35% of the total energy production came from renewable resources
by the end of 2024, several factors limited this progress [8], such as high production costs,
inadequate infrastructure for the energy production, and the lack of incentives to develop
those products [9]. However, biodiesel production has prospered thanks to various recent
research studies on its production and its promotion in different applications [6,10,11].

Biodiesel production requires a specific viscosity similar to that of diesel, which is
achieved by mixing different substances and heating them under particular conditions for
each type of mixture in transesterification reactors [12]. Adequate control of the inside
of the reactor, specifically temperature control, is important. Nowadays, most of the
theoretical advances in the area of Automatic Control are not being effectively exploited
mainly for two reasons. The first reason is due to a lack of collaboration with areas of
industrial production, which need to contribute their perspective in order to guarantee the
efficient use of resources, as well as the problems and requirements for national growth.
The second reason is due to the lack of interest or efforts by researchers to carry out
implementations in real-world problems, which sometimes, depending on the observer, are
underestimated. However, the union of both aspects will allow us to continue developing
and finding ways to achieve industrialization objectives, the optimization of resources, and
the satisfaction of human needs in accordance with the corresponding area in question. In
this work, an illustration of the above is proposed by combining a problem of interest, such
as the generation of biodiesel, convolutional neural networks, metaheuristic algorithms,
and control through a neuro-fuzzy approach. One can find works such as [13], where a
comparative test of a boiler is presented, proving the maximum boiler efficiency indicators
and also the minimum toxicity of exhaust gases discharged into the atmosphere, all this
considering the proposed control system.

An important part of the control area is the identification of the system to be controlled,
because most control techniques used in the industry require a model to be applied [4].
In a real-world system, to obtain a model from them requires a lot of variables, such as
knowledge of the system, physical and environmental conditions, and the type of model
to be used, i.e., linear, nonlinear, parametric, non-parametric, continuous or discrete time,
among others [14]. The aim of these models is to represent in the best way possible the
real system and to be as simple as possible, too. Different techniques of modeling have
been developed through the years, each one trying to satisfy a specific need [15]. For
example, [16] represents the issues that nonlinear systems could introduce in the modeling
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process and the excitation signals type that could be used in these systems. Also, in [17],
linear models were not enough to capture all the neural activity and relationships in the
neural system, so they propose a nonlinear model that helps in this matter and also produces
sensitive biomarkers to improve diagnosis in neurological disorders. In [18], they propose
the use of neural networks as a modeling method for a nonlinear system with constraints
on states, which is paired with a back-stepping algorithm and an intelligent controller.

Neural networks use has drastically increased in the past twenty years with a variety
of applications like object recognition [19], prediction [20,21], parametric estimation [22,23]
and system control [24]. One of the most popular algorithms within the neural networks is
the convolutional neural network (CNN) [25], inspired by the studies of Hubel and Wiesel
in the 1950s of the visual processing system of animals [26], and image classification is
its main application [27]. A recent deep study of recent advances in the use of CNNs can
be found in [28,29], where many modified architectures to specific applications of CNNs
are gathered together. As regards system identification using CNNs, Guodong Fan and
Xi Zhang present an architecture of CNNs to estimate battery capacity using voltage data
from different degradation levels [30]. In [31], a CNN is employed for the rapid prediction
of fluvial flood inundation where hydraulic/hydrodynamic models used for this same
propose are too computationally demanding. Another technique that can be applied to
the identification of systems is sensorless, which has been gaining popularity in pump,
motor, fan, and extractor control systems, among others [32]. Since sometimes it is not
possible to carry out the measurement of certain variables due to their complexity or a high
implementation cost, the estimation and approximation of the variables have an inherent
and strong correlation with the identification of a mathematical model and its parameters.
It is possible to obtain benefits for the prediction of the behavior of a system or to replace
a primary and secondary element (sensor/transmitter) due to an instrument failure or
communication failure. The implementation of this type of techniques can help reduce
instrumentation costs and avoid unscheduled shutdowns due to instrument replacement;
however, this should not be used under any circumstances for security systems.

In [33–35], a variety of works have addressed the tuning of different controllers
through experimentation, using random combinations, leaving aside hard optimization
problems. According to [36], a neuro-fuzzy controller (NFC) controller is a hybridization
between controllers based on fuzzy networks [37,38] and neural networks based on [39].
A fuzzy logic system uses if–then rules to determine the appropriate course of action based
on input data. The programmer, using its expertise, initially proposes these rules and is
further refined by means of a machine learning algorithm. The rules are based not only on
the experience of the programmer but on how the system learns from the data. This process
involves tuning the hyper-parameters of the neural network and the elements associated
with the inference laws of fuzzy logic. Metaheuristics algorithms provide solutions for
optimization problems when analytical or classical methods are not available. This non-
viability mainly occurs if the objective function to be optimized is not derivable or when
the computing resources for analytical methods are limited.

The main objectives of this work are presented below:

• To identify the dynamics of a biodiesel production system by means of a CNN.
• To tune a neuro-fuzzy controller by applying metahumanistic techniques using the

system obtained by means of the CNN.
• To propose the cooling action as a temperature control problem to optimize the energy

applied in this stage.
• To apply a sensorless technique based on the implementation of a CNN for the

replacement of the control signal in case of failure.



Processes 2025, 13, 672 4 of 20

Biodiesel production systems present challenges and obstacles associated with various
areas of engineering. Computer science techniques can be used to enhance topics related
to Automatic Control, such as artificial neural networks and optimization methods. This
work presents solutions to different problems featuring a mathematical model to perform
the tuning of the temperature control based on convolutional neural networks and tuning
for an NFC counter based on an optimization problem defined from the control objective to
minimize the heating stage by means of metaheuristics. In addition, a sensorless technique
is implemented in case of failure of the sensor/transmitter element, which consists of using
a convolutional neural network to momentarily replace the original signal of the system
and avoid problems in the production process. Finally, the result is a model that allows
simulations to be carried out to observe the dynamics of the process and thereby evaluate
the production process. A method is also proposed for energy saving by minimizing the
use of the cooling stage and, finally, a sensorless technique to guarantee the continuity of
the production process in the event of sensor/transmitter failure.

2. Materials and Methods
2.1. Problem Description

One of the great challenges in the application of Automatic Control in the industry
is the need to carry out tests of the controllers virtually and to allow the evaluation of the
effectiveness of the control law through measurements or performance metrics. However,
a method based on trial and error is not economically feasible in most cases due to the
time it may take and the inputs or raw materials required to carry out such tests. To work
virtually, it is necessary to have a dynamic mathematical model that allows emulation
of the behavior of the process in a specialized software environment and, from there, to
carry out dynamic tests under a specific control proposal to achieve the control objectives
based on the need to optimize the industrial process. Determining a mathematical model
of an industrial production process is often highly complex and complicated by means
of laws based on classical mechanics to obtain the differential equations that describe its
behavior over time. One way that has emerged to try to solve this problem is the use of
parametric and non-parametric identification techniques, which allow the approximation of
dynamics or parameters by means of the input and output signals of a process. In general,
industrial processes have nonlinear behaviors, which implies an important challenge to
determine a mathematical structure that describes their behavior. One of the most used
techniques to determine their dynamics is artificial neural networks; due to their plasticity
and flexibility in the learning process, they become strong candidates to be used since in
industrial processes, it is possible to collect a large amount of information on the control
action (manipulated variable) and the process variable (controlled variable) through a
data acquisition system. The system presented in [40] is taken as a case study, which is
described through Figure 1, where TC, Tp, T1 represents the thermal agent temperature,
output product temperature and the temperature of the product, respectively. The objective
of control is to regulate the temperature of the product (T1) as close to the reference
temperature T0 as possible. We control the action on the manipulated variable (valve),
determined by the control law programmed in the control system, using the information
from the temperature variable transducer coming from the reactor. Also, the flow of cold
water and steam to the tank is controlled in order to reach the desired temperature. Here,
qar is the heat of the cold water, qp is the output product heat and qab is the steam heat. The
detailed description of the physical–chemical process that takes place in the production of
biodiesel and the mathematical model can be found in [40].
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Figure 1. Pilot plant scheme [40].

The transfer function for the tank temperature is described by (1), according to [40]:

G f =
4

(360s + 1)(1143s + 1)
. (1)

To obtain (1), a cascade of three other transfer functions is needed, i.e., G f = GEGpGT ,
where these functions represent the dynamic and the static part of the complete system,
which is shown next:

GE =
KE

TEs + 1
; (2)

GP =
Kp

Tps + 1
; (3)

GT = 2. (4)

The execution element is represented by (2), where KE = 2 and TE = 360; (3) applies
to the process with Tp = 1143 s, Kp = 1, and for the temperature transducer, (4) is used as a
gain. These three transfer functions, working together, ensure the temperature of the tank
remains at the same level as long as the vegetable oil and the methanol react with each other
and the fatty acids methyl ester and glycerin are produced in the correct way. Although
model (1) represents a mathematical model of the system by means of differential equations
expressed in the frequency domain through a transfer function, it is worth mentioning that
it is a linear approximation that is invariant in time and with initial conditions equal to
zero. No model can be an exact copy of the system, so the general considerations that are
made to obtain the dynamics of the system generate uncertainty, and therefore, a controller
based on that model naturally has problems in the experimental phase. Moreover, the
parameters of a mathematical model are time-variant either because of environmental
conditions or due to the properties of the system itself. In the case of biodiesel production,
this may occur during the process. In the transesterification stage, it is possible to observe
adverse phenomena within the equipment and instruments, such as residual material, gas
emissions, and physical effects on the tank due to heating even within operating ranges,
among other effects. These apparently simple things can cause parameter variation.

For the above reasons, it is preferable to determine the mathematical model of the
system in another way. In this work, convolutional neural networks are used, since they
have been proven to be an important and novel tool in the area of computer science due
to their learning capabilities. To apply the identification process to industrial systems and



Processes 2025, 13, 672 6 of 20

ensure that the information collected is reliable, it is necessary for the data acquisition
system to adequately measure the information of the process variable and the control action
according to Theorem 1 and Shannon–Nyquist frequency sampling.

Theorem 1. The sample rate fs must be greater than twice the highest frequency component of
interest in the signal. This frequency is usually known as the Nyquist frequency fN [2]:

fs > 2 ∗ fN . (5)

2.2. Identification Theory Using Convolutional Neural Network

The theory necessary to perform the system identification based on CNN is presented
below. As an estimation method for the system, a convolutional neural network has been
employed with the following structure: one fully connected layer as the output layer
and two convolutional layers one after the other, in which each convolutional layer has
10 hyper-parameter named filters, Fℓ ∈ ℜ3 for ℓ = 1, 2, and a ReLU activation function is
applied to all filters separately.

The output of the CNN q̂p is the estimated output of the real system qp, which is
calculated below:

q̂p = NW ∗ Θ (6)

where NW are the synaptic weights in the output layer and Θ is the input to this layer,
while Θ is the concatenation of the second convolutional layer outputs θ2:

Θ =
[
θ2T

1 θ2T
2 · · · θ2T

10

]T
(7)

each θ2i for i = 1, 2, · · · , 10, is calculated as

θ2i = max(F2,i ⊙ θ1i, 0) (8)

where (8) is the ReLU operation over the convolution, ⊙, of the filter F2,i with the ith-output
θ1i of the first convolutional layer.

These outputs θ1i are obtained as follows:

θ1i = max(F1,i ⊙ uN , 0) (9)

where uN is the input vector for the CNN. For the training of the CNN, the backpropagation
algorithm is employed to update the hyper-parameters of the CNN, in this case, the synaptic
weights NW and the filters F2,i and F1,i [41]. The rules for updating the hyper-parameters
for the synaptic weights are, in backward order,

NW(k + 1) = NW(k)− η
∂J

∂NW
(10)

with k representing the iteration in which the hyper-parameters are updated, J is the
objective function to be minimized, and J = 1

2
(
q̂p − qp

)2. For the ReLU activation function,
the gradient through this operation can be calculated as

∂θh2

∂Fh,i ⊙ θh − 1i
= Fh,i ⊙ θh − 1i (11)

with h = 1, 2 representing the convolutional layer of the structure, which in case of h = 1
θh − 1 corresponds to the input to the CNN, uN . For filters Fh,i, the update rule is
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∂Fh,i ⊙ θh − 1i

∂Fh,i
= (Fh,i ⊙ θh − 1i)⊙ θh − 1i (12)

2.3. System Identification Procedure

The procedure for the system identification is as follows: 12,000 input–output data
from the model are generated, which are used as training information. These data were
obtained while the system was in a closed-loop configuration. In Figure 2, the procedure is
shown, where the control signal U and the tank temperature output signal qp are used as
input to the CNN to produce a estimate value of the tank temperature q̂p. This value is fed
back into the CNN along with qp as an estimation error to calculate the gradient descendant
to update the hyper-parameters of the CNN. This process is completed step by step; we
received data from the system in different instants of time, the estimation was calculated,
and the CNN was calculated in each one of these iterations. The correct application of
Theorem 1 was needed to guarantee that the acquired data from the temperature system
were reliable. Sometimes, it is hard to determine the Nyquist frequency in real-world
applications. Nevertheless, experimental tests can be carried out through a sinusoidal
input signal. For variables such as temperature, the dynamics of these signals are usually
slow, so its fN usually is low, in the order of Hertz, which generates problems in finding
or proposing a sampling frequency. In this work, through trial and error, 1 s is enough to
appreciate changes in the dynamics of the system.

Figure 2. Identification procedure.

For the CNN, the vector uN is generated in each iteration with the following structure:

uN =
[
U(k) U(k − 1) q̂p(k − 1) q̂p(k − 2)

]T (13)

As a result of the system identification, Figure 3 shows these results, where both
signals are practically equal, and the mean square error (MSE) metric was employed and
has a measurement of the identification, leading to a value of 5.52 × 10−21.
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Figure 3. System identification result.

This process can be resumed in Algorithm 1. In it, the first step to propose a CNN
structure, i.e., propose the hyper-parameters of the CNN, is performed randomly; there
are no specific criteria to chose them. Then, the CNN uses data from the signal U and qp

as input to calculate the estimated value of qp in that iteration and generate an estimated
error, which will be used in the backpropagation algorithm to update the value of the
hyper-parameters of CNN. This process is known as the training stage and performed
repeatedly until the simulation time is over. Finally, the testing stage is used to verify that
the training has been successfully achieved using the MSE metric. If the value of this index
is too high, all of the steps are repeated in order to decrease this value.

Algorithm 1 System identification procedure

Propose CNN hyper-parameters, F, NNW .
while i ≤ N do ▷ N -> total of data

Use control signal U into uN .
Run CNN to get q̂p.
Use system output gp into uN for next iteration.
Compute estimation error e = q̂p − qp.
Update hyper-parameters F, NW using gradient descendant method.

end while
Realize a testing stage to verify the training process with aid of MSE index
if MSE ≥ Mm then ▷ Mm -> minimum value for acceptance estimation

Repeat previous steps with a different CNN hyper-parameters selection.
end if

2.4. Neuro-Fuzzy Controller

The control used in this work is presented in detail in [42]; below is a brief explanation
of its operation and mathematical structure. The error (E) and the error increment over
time (∆E) are the inputs necessary for the neuro-fuzzy controller to work. To determine
these signals,

E(k) = SP(k)− PV(k), (14)

∆E(k) =
E(k)− E(k − 1)

Ts
, (15)

where SP(k) and PV(k) denote the set point and the value of the process variable at time k,
E(k − 1) represents a time delay of E(k), and Ts is the sampling time.
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The architecture of NFC is constituted by five layers. The first one, the input vector
X(k) = [E(k), ∆E(k)], is provided for the fuzzification, mapping these real values to the
linguistics applied to make the fuzzification according to the Takagi–Sugeno method [43].
The structure of this layer is defined by (16)

µAj,k = Γj(Λj(k), Xi(k)) (16)

where µAj,k indicates the membership function quantity selected for the vector X(k). Nor-
mally, the selection of the number of membership functions is chosen by trial and error,
but in this work, it is part of the tuning carried out by a bilevel optimization approach,
including the terms related to Γj(·) and Λj(k) that describe the j member functions se-
lected to make the fuzzyfication. For the Gaussian bell described by (17), the set Λj(k)
contains the position and the spread of the Gaussian function in the parameters ϕj,k and
σj,k, respectively [42].

µAj,k (Xi(k)) = e
0.5

(
Xi(k)ϕj,k

σj,k

)2

(17)

The inferences based on the if–then statements are made in the second layer in order
to generate fuzzy sets by means of the vector X(k) for subsequent membership in such a
way that the functions are related between each other to be able to determine the possible
behavior of the system scenarios. Right away, an output value according to each of the
cases established by the set of fuzzy rules denoted by (18) is proposed, where the index
p = 2, 3 corresponds to the second or third layer, respectively [42].

Op = w(k) = µAj,k (Xi(k))T ∗ µAj,k (Xi(k)) (18)

The output of the third layer should be normalized according to (19), where the index
l = 1, 2, ..., R is defined by the number of fuzzy rules n, since R = n × n [42].

w(k) =
w(k)

∑R
l=1 wl(k)

(19)

The fourth layer output (O4) is generated by the products of the normalized firing
strength and the parameter rl = γj(λj(k)). This value is computed using (20), with
βn(k) ∈ ℜn, γj(λj(k)) being the membership function and its parameters that describe the
controller actions by considering the output of the third layer, and wn,:(k) represents each
row of the matrix [42].

O4 = βn(k) = wn,:(k) ∗ γj(λj(k)) (20)

The output of the fifth layer is a scalar value used as a control signal that is obtained
by (21),

U(k) = ∑ β(k) (21)

A hybridization was made with neural networks to give a learning property to the
control system, making it able to learn in a continuous way considering the system is
subject to different operating conditions such as disturbances, as mentioned in [44]. The
gradient descent method [2] was adapted for tuning the membership functions (Gaussians
bells) of the neuro-fuzzy network for the fuzzification and defuzzification stages, as shown,
respectively, in [42]. This has led to an improvement in the controller that has resulted in
an efficient use of energy. However, it can be used to design a desired dynamic for the
controller, which can help avoid unwanted actions by the control signal when trying to
bring the behavior to a desired set point.
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2.5. Sensorless

In biodiesel production, obstacles or situations can be found that make it difficult
to control the reactor temperature. The signal emitted by a sensor/transmitter can be
corrupted by noise, it can be miscalibrated, and it can fail due to poor installation or lack
of maintenance. When any of these situations occur, the controller will be affected due to
the dependence on the measurement of the controlled variable to obtain the error signal.
This can lead to a loss of energy, instability in the system, and a loss of raw material, and it
can also put operators and process equipment at risk. This work presents a solution that
allows to attack this problem through the implementation of the CNN as a virtual sensor,
which has the purpose of replacing the sensor/transmitter signal in its absence. Below, in
Figure 4, it is shown how the CNN acts in the sensorless system. The CNN for this case,
which was previously trained to estimate temperature, uses only information from the
controller signal, the set point, and the output of itself as input to estimate this variable, so
the controller does not obtain a zero at any time, even if the transducer presents any kind
of failure.

Figure 4. Sensorless system.

In order to show the benefits of the sensorless systems, a simulation was created where
the signal from the temperature sensor is missing to compare with real case scenarios where
there is a failure in communication with the sensor, such as accidental cable disconnection
or breakage. In this case, the controller will send a signal to increase temperature because
of the zero signal sent by the sensor, leading to increased energy consumption. For this
matter, the plant is controlled with a PID to reach 45 °C with an external disturbance during
the simulation. This can be seen in Figure 5; the reactor temperature fluctuations are due to
intermittencies in the connection with the sensor. These intermittencies are simulated as
occurring repeatedly during certain periods of time in addition to an external disturbance
occurring in the system at 5000 s. Both before and after the disturbance, the system will not
reach the desired temperature due to the loss of communication with the sensor, potentially
compromising the final product properties.

As a solution for this particular problem, a CNN with 2 convolutional layers with
20 filters in each layer and 10 synaptic weights was trained to model the plant and used
in parallel with it. In each instance of measurement, the two signals corresponding to the
temperature of the reactor can be used as the feedback signal to the controller, preventing
the controller from sending an incorrect signal when communication with the sensor is lost,
reducing energy consumption and allowing the sensor to be checked without having to
stop the process. In both cases, whether the CNN is used or not, 100 s are simulated as the
time that the signal sensor is faulty. Figure 6 shows the temperature of the reactor when a
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CNN is employed; as it can be seen, the controller takes the system to temperature near the
defined set point even though the disturbance appears, unlike the previous case.
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Figure 5. Temperature of reactor with sensor failure communication.
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Figure 6. Temperature of reactor with sensor failure communication using CNN.

2.6. Tuning NFC Parameters with a Bilevel Optimization Approach with Differential Evolution (DE)

In [45], it is explained that the tuning of the NFC controller is complex because the
configuration space contains vectors with different dimensions that contain both integers
and continuous variables, which is a limitation of implementing search algorithms in order
to find the best one. In that work, it was proposed to solve the drawbacks following a
bilevel optimization approach, which refers to one in which one problem is embedded
within another so that the solution of the first (lower problem) restricts the second (upper
problem) [46]. As a contribution to this proposal, the modifications to the bilevel optimiza-
tion approach are presented to tune the NFC with the objective of covering the additional
requirement of not exceeding the reference value of the controller.
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2.6.1. The Original Problem

The optimization problem presented in [45] that has the objective of tuning the NFC
for the tracking task is described below. For both levels of the methodology, the same
objective function presented in (22) is considered where e is determined as the difference
between a signal control and the result of applying the NFC to the system.

f (x⃗) =
k

∑
i=1

(|ei(x⃗)|+ L|ėi(x⃗)|) (22)

In (22), the integers decision variables in x⃗ are the number of membership functions (m),
while the weights of the neural network [w1, w2, ..., wn], the parameters of the membership
functions (ϕj,k) and (σj,k), and the learning rate constants ηϕ, ησ and ηr are real-value
variables. L is a scalar that serves to regulate the influence of the change in the error as a
term of the objective function.

The solution spaces differ in the sense that in the first level, part of the solution
is completed with random values; on the other hand, in the second level, the random
part becomes the solution to be searched using part of the previously found solution as
constants. In the first level of optimization, the weights and the initial position of the
member functions are not considered as design variables but as a noise vector, resulting in
a solution vector and a noise vector structured as in (23) and (24), respectively.

x⃗ = [m, σ1, σ2, ηϕ, ησ, ηr] (23)

w⃗ = [w1, w2, . . . , wn=m2 , ϕ1, ϕ2, . . . , ϕm] (24)

From (23), it is ensured that the size of the solution vector (⃗x) is fixed. To complete the
configuration of the NFC, the vector is combined with randomly generated sets of weights
10 m2 in size, where the set with the lowest objective function is selected as the fitness for
the solution vector. This solution is carried out around the epochs of the DE as an elitist
mechanism. Finally, to deal with the integer value (m), the repulsion strategy proposed by
Liu et al. [47] is employed.

At the second level, the solution obtained at the first level of optimization allows
establishing a restriction at the second level to make the number of functions and weights
constant, where the NFC weights are tuned. The structure of the solution vector for the
second level is denoted by (25); m has a fixed size and comes from the previous level as a
solution. In this second level of optimization, some elements of the solution vector continue
as a decision variable; although weights and positions of member functions are greatly
important, it is possible that a different configuration would be better for the tracking task.

x⃗ = [σ1, σ2, ηϕ, ησ, ηr, w1, . . . , wn=m2 , ϕ1, . . . , ϕm] (25)

2.6.2. The Proposed Modified Problems

The tuning methodology was modified as the contribution of this work to integrate the
additional requirement of not surpassing the point reference in the tracking task. Two new
optimization functions were considered. The first one penalizes the value of the objective
function every time the controller’s action produces a value that exceeds the reference, as
shown in (26).

f (x⃗) =
k

∑
i=1

(|ei(x⃗)|+ L|ėi(x⃗)|+ Mĕi(x⃗)) (26)
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where M is a scalar that regulates the influence of the new term on the objective function. ĕi

defines the error over the set point and is described by (27) using the description of the NFC.

ĕi =

{
ĕi = PV(k)− SP(K), 0 ≤ PV(k)− SP(K)
ĕi = 0, other.

(27)

This proposal follows the idea presented in [48] where in order to cover multiple
objectives, a common objective function is established, which is a composition of different
individual functions whose optimal solution involves covering the objective. As the value
of M increases, the overreaction is reduced but does not necessarily reach the optimal value
of zero. To force the search algorithm to find solutions with that value, a second approach
is proposed.

The second proposal consists of biasing the space of feasible solutions by incorpo-
rating the constraint (28) to the original objective function (22). The constraint considers
a configuration infeasible when it produces system behavior where the controller action
exceeds the set point value when the initial condition begins. Due to the incorporation of
this restriction, the feasibility rules [49] as a constraint handler were included in DE.

h(x⃗) =
k

∑
i=1

ĕi(x⃗) = 0 (28)

The definition of ĕi implies that it can only have positive or zero values, so the solution
of the optimization problem represents the best configuration to perform the monitoring
task without exceeding the reference.

2.6.3. Final Methodology

The general process for solving the complete optimization problem of the modified
approach is shown in Figure 7, and the operations for the mutation, cross, and selection are
described by (29), (30) and (31), respectively. All tuned parameters and its range are shown
in Table 1.

Mutantxj = xr1 + F(xr2 − xr3) (29)

Newxi =

{
Mutantxi, rand(0, 1) ≤ CR
Fatherxi, rand(0, 1) > CR.

(30)

xg+1 =


Newxi, f (Newxi) ≤ f (xg) ∧ h(Newxi) = h(xg) = 0
xg, f (xg) < f (Newxi) ∧ h(Newxi) = h(xg) = 0
Newxi, h(Newxi) ≤ h(xg) ∧ (h(Newxi) ̸= 0 ∨ h(xg) ̸= 0)
xg, h(xg) < h(Newxi) ∧ (h(Newxi) ̸= 0 ∨ h(xg) ̸= 0)

(31)

Table 1. Tuned parameters for the NFC.

Parameter Range

Parameter of the membership ϕj,k, σj,k
functions (ϕj,k and σj,k) ∈ [−100, 100]

Learning rate constants ηϕ, ησ, ηr
ηϕ, ησ, ηr ∈ [0.0001, 3]

Member functions number m m ∈ Z∩ [3, 15]

Initial weights w⃗ refereed to rj wi ∈ [0.0001, 50]
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Figure 7. Flowchart of the tuning process.

3. Experimentation and Discussion
3.1. Case of Study

One of the main objectives of biodiesel production is to control the temperature at
a desired set point. According to Figure 1, it is possible to perform a heating stage by
supplying heat or to carry out a cooling stage, for example, by supplying cold water. When
each of the stages occurs, it is due to the nature of the control action determined by the
control system based on the temperature variation of the biodiesel production system. One
of the main causes that can be easily seen is that if the plant is exposed to an uncontrolled
environment, then it is susceptible to environmental factors such as the variation in ambient
temperature throughout the day or the season of the year. For example, in the summer,
it could be thought that the cooling stage is used more frequently; on the contrary, in the
winter, the heating stage could be used more frequently. These environmental variations
from the point of view of Automatic Control are considered disturbances. In [45], they are
addressed in greater detail. In Section 2.5, it is proposed that the optimization algorithm
based on metaheuristics conducts a search and performs a tuning such that the controller in
its heating stage mitigates exceeding the desired temperature reference; this leads to energy
savings by avoiding the cooling stage being used constantly. Therefore, the above illustrates
that considerable efforts can be made to achieve better results from the production processes
through not only making improvements in the controller but by making a critical analysis
of the needs of a process through understanding it and the industrial objectives.

To illustrate the method proposed in this work, we used the model identified by the
CNN. Subsequently, tests were carried out with the proposed functions (26) and (28). The
reference of 60 °C was taken; according to the problem posed in [42], at 5000 s, a disturbance
due to heat loss of 10 °C is simulated. This may be due to a failure in the control system or
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some unexpected external agent that causes such a loss, thus affecting the production of
biodiesel. Below is the result obtained by the NFC proposed in [45].

In Figure 8, it is observed that in the initial stage, there is an overshoot, causing the
cooling stage of the control system to act to bring the reactor temperature to the desired
set point. Later, in the disturbance due to heat demand, it is observed that there is no
overshoot in the dynamics of the controlled variable and that the temperature recovery
time is gradual.

0 2000 4000 6000 8000 10000 12000

Time (Seconds)

0

10

20

30

40

50

60

70

T
e

m
p

e
ra

tu
re

 o
f 

R
e

a
c
to

r 
(°

C
)

Set-Point

Temperature of Reactor

4500 5000 5500 6000 6500 7000
50

55

60

100 200 300 400 500

58

60

62

64

Figure 8. System behavior by NFC without additional considerations.

3.2. First Optimization Proposal

In this experiment, see Figure 9, it is shown how the optimization function proposed
in the model (26) penalizes the value of the objective function, as the controller’s action
produces a value that exceeds the reference. At the beginning of the system response, there
is no overshoot, avoiding the cooling stage. However, when the disturbance occurs, it can
be observed that in the recovery of the system, there is a time in which the temperature
exceeds the proposed reference, so it is necessary to activate the cooling stage. Therefore,
speaking in terms of energy savings, it is not desired since this type of system can use
cooling towers to supply cold water and lower the reactor temperature.
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Figure 9. System behavior by NFC with the first optimization proposal.
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3.3. Second Optimization Proposal

Figure 10 shows the experimentation considering the second optimization function,
which was proposed in model (28), where the constraint considers infeasible a configuration
that produces system behavior where the controller action exceeds the set point value when
the initial condition begins below. In this case, it is possible to observe that at no time
during the experiment, either in the initial stage or at the time of the disturbance, is there a
time in which the dynamics of the reactor temperature variable exceed the reference value.
Therefore, the activation of the cooling stage was not necessary; this can mean considerable
energy savings in biodiesel production systems.
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Figure 10. System behavior by NFC with the second optimization proposal.

With this approach, the desired objective was achieved, but due to the stochastic
components inherent in metaheuristic techniques, the tuning methodology was repeated
10 times. The results are reported in Table 2. Most of the results are infeasible in the strict
sense, but more than half of them have errors less than 1 × 10−6, so their implementation
is viable.

Table 2. Performance of 10 tuned configurations using the second optimization proposal.

Run Objective Function Constraint Value ITAE TVU

1 8.4832 × 103 0 2.1363 × 107 17.5678
2 5.5300 × 103 10.6989 4.0364 × 106 17.6588
3 4.6494 × 103 3.7802 × 10−5 4.7453 × 106 30.4145
4 5.3384 × 103 1.9564 × 10−10 6.2209 × 106 17.5678
5 5.4586 × 103 16.0819 3.8061 × 106 17.7146
6 5.2092 × 103 31.4761 3.3928 × 106 17.9132
7 4.7826 × 103 2.1240 × 10−10 4.5194 × 106 24.6171
8 5.0259 × 103 31.6624 3.6326 × 106 17.9256
9 4.7149 × 103 8.8660 × 10−5 4.6459 × 106 29.8925

10 6.9511 × 103 3.1859 × 10−10 5.6212 × 106 17.5678

Average 5.6143 × 103 8.9919 6.1983 × 106 17.5678

Standard deviation 1.2049 × 103 13.1563 5.4005 × 106 5.3431

3.4. Discussion

The performance metric allows us to interpret the dynamics of the system by quanti-
fying the error signal: the smaller the index, the better the controller performance. There
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are a variety of metrics that allow the user to obtain many quantitative properties of the
performance of the control of dynamic systems [50]. However, when dealing with the
temperature variable, it must be taken into consideration that its dynamics are slow, and
it is preferable to penalize more strongly the deviations of the controlled variable with
respect to the set point in a steady state or in the presence of disturbances with respect to
the transient behavior performance. The ITAE metric results are useful since they penalize
the error more strongly as time increases; this is preferable for systems with slow dynamics,
such as the temperature of the reactor, where the initial error is usually large. Below is the
expression of performance metrics [2]:∫ ∞

0
t|e(t)| dx. (32)

To obtain the results presented, the integral corresponding to the ITAE index was
approximated to the form presented in (33)

1
2

d

∑
k=1

ke(k) + (k − 1)e(k − 1). (33)

In many processes, the control signal is an important variable to observe when evalu-
ating the performance of the control system. The TVU index is adequate in this case [2]:

d

∑
k=1

|u(k)− u(k − 1)|. (34)

Figures 8–10 are helpful in qualitatively judging the behavior of the reactor temper-
ature variable under NFC control with different considerations. However, this is not an
analysis that reveals simple proof that one method is better than another. For a numerical
comparison point, Table 3 is presented below, which contains the values obtained in each ex-
periment using the ITAE and TVU performance metrics. Identification, system simulation,
and controller tuning through optimization were performed using MATLAB R2020a. We
used a computing platform with the following specifications: Intel i7 processor at 3.70 GHz,
16 GB of RAM, and Windows 11 operating system.

Table 3. Comparison of controller performance indexes.

Controller ITAE TVU

NFC without penalization 1.9597 × 107 22.3993
NFC first optimization proposal 3.5530 × 106 18.3259

NFC second optimization proposal 3.3928 × 106 17.9132

From Table 3, it can be determined that the best control applied is the NFC considering
the restriction proposed in the model (28), demonstrating a lower accumulated ITAE error
as well as using 20% less energy with respect to the TVU metric. Applied to an industrial
control problem, this could mean profits for the company by making better use of the
resources involved in the biodiesel production process.

4. Conclusions
This paper presents a way to apply computer science techniques to solve problems

in biodiesel production. This includes a conceptual stage featuring the control objective
as well as evaluating the results of an experimental phase. The identification phase of the
dynamics of a process, by means of a CNN, is crucial to be able to carry out tests through
simulations in order to save time and resources. Since this identification is carried out with
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real data from the industrial system, the possible deviation in the implementation in the
real world will be drastically minimized, which is of great importance so that advanced
control techniques are more easily accepted by the industrial sector. A sensorless technique
is also shown, which allows the use of a virtual sensor executed by a CNN and continues
with the control of the process while there is no signal from the sensor/transmitter element.

NFC controllers are flexible and allow for the easier mitigation of changes in the
environment where the biodiesel plant is located, as well as disturbances that could arise,
such as mechanical or electronic failures. The combination of control objectives with
metaheuristic algorithms allows the focus of the controllers to meet optimization challenges,
as has been shown in this work, by limiting the use of the cooling stage in the temperature
control of the reactor. Finally, the quantitative comparison using the TVU and ITAE
performance metrics allows the evaluation of the different proposals and determines that
for this case study, the NFC with an optimization function that penalizes any control signal
that causes the reactor temperature to exceed the desired set point is the best option, thereby
achieving a lower error, using lower energy consumption (20% less). The next work is
intended to implement these advances in a biodiesel production plant and carry out an
energy study of the experimental results. Future work is intended to carry out experimental
tests in an industrial pilot plant for the production of biodiesel from cooking oil and to
conduct a study of the energy quality of the controller developed in this research.
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44. Huba, M.; Hypiusová, M.; Ťapák, P.; Vrancic, D. Active Disturbance Rejection Control for DC Motor Laboratory Plant Learning
Object. Information 2020, 11, 151. [CrossRef]

45. López-Muñoz, R.; Molina-Pérez, D.; Vega-Alvarado, E.; Duran-Medina, P.; Maya-Rodriguez, M.C. A Bilevel Optimization
Approach for Tuning a Neuro-Fuzzy Controller. Appl. Sci. 2024, 14, 5078. [CrossRef]

46. Dempe, S.; Kue, F.M. Solving discrete linear bilevel optimization problems using the optimal value reformulation. J. Glob. Optim.
2017, 68, 255–277. [CrossRef]

47. Liu, J.; Wang, Y.; Huang, P.Q.; Jiang, S. Car: A cutting and repulsion-based evolutionary framework for mixed-integer
programming problems. IEEE Trans. Cybern. 2021, 52, 13129–13141. [CrossRef]

48. Starke, S.; Hendrich, N.; Zhang, J. Memetic Evolution for Generic Full-Body Inverse Kinematics in Robotics and Animation. IEEE
Trans. Evol. Comput. 2019, 23, 406–420. [CrossRef]

49. Deb, K. An efficient constraint handling method for genetic algorithms. Comput. Methods Appl. Mech. Eng. 2000, 186, 311–338.
[CrossRef]

50. Dorf, R.C.; Bishop, R.H. Modern Control Systems, 14th ed.; Pearson: Boston, MA, USA, 2017.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/en16062883
http://dx.doi.org/10.1016/j.ins.2018.10.019
http://dx.doi.org/10.3390/en16176187
http://dx.doi.org/10.1109/FUZZY.1997.616420
http://dx.doi.org/10.3390/info11030151
http://dx.doi.org/10.3390/app14125078
http://dx.doi.org/10.1007/s10898-016-0478-5
http://dx.doi.org/10.1109/TCYB.2021.3103778
http://dx.doi.org/10.1109/TEVC.2018.2867601
http://dx.doi.org/10.1016/S0045-7825(99)00389-8

	Introduction
	Materials and Methods
	Problem Description
	Identification Theory Using Convolutional Neural Network
	 System Identification Procedure
	Neuro-Fuzzy Controller
	Sensorless
	Tuning NFC Parameters with a Bilevel Optimization Approach with Differential Evolution (DE)
	The Original Problem
	The Proposed Modified Problems
	Final Methodology


	Experimentation and Discussion
	Case of Study
	First Optimization Proposal
	Second Optimization Proposal
	Discussion

	Conclusions
	References

