A Study on the Formation Process of Fe Clusters During Insulation of Cu95Fe5 Alloy
<p>Atomic potential energy–temperature variation line during solidification of Cu95Fe5 alloy.</p> "> Figure 2
<p>Atomic potential energy–temperature variation line during solidification of Cu95Fe5 alloy (including holding at different temperatures for 140 ns).</p> "> Figure 3
<p>Analysis of crystal types during alloy holding: ((<b>a</b>): 500 K, (<b>b</b>): 800 K, (<b>c</b>): 900 K, (<b>d</b>): 1000 K, (<b>e</b>): 1100 K, (<b>f</b>): 1200 K).</p> "> Figure 3 Cont.
<p>Analysis of crystal types during alloy holding: ((<b>a</b>): 500 K, (<b>b</b>): 800 K, (<b>c</b>): 900 K, (<b>d</b>): 1000 K, (<b>e</b>): 1100 K, (<b>f</b>): 1200 K).</p> "> Figure 4
<p>Scale diagram of alloy crystal types at 300 K.</p> "> Figure 5
<p>Radial distribution function of Fe atoms in alloys during holding at different temperatures ((<b>a</b>): 500 K, (<b>b</b>): 800 K, (<b>c</b>): 900 K, (<b>d</b>): 1000 K, (<b>e</b>): 1100 K, (<b>f</b>): 1200 K, (<b>g</b>): 1300 K, (<b>h</b>): 1400 K).</p> "> Figure 5 Cont.
<p>Radial distribution function of Fe atoms in alloys during holding at different temperatures ((<b>a</b>): 500 K, (<b>b</b>): 800 K, (<b>c</b>): 900 K, (<b>d</b>): 1000 K, (<b>e</b>): 1100 K, (<b>f</b>): 1200 K, (<b>g</b>): 1300 K, (<b>h</b>): 1400 K).</p> "> Figure 6
<p>MSD of Fe atoms extended in X, Y, and Z directions versus holding time of the alloy during holding time at different temperatures.</p> "> Figure 7
<p>Visualization of Fe atomic distribution states during alloy holding: ((<b>a</b>): 800 K, (<b>b</b>): 1000 K, (<b>c</b>): 1200 K, (<b>d</b>): 1400 K; the four pictures in the horizontal row are the Fe atomic distribution states at 0 ns, 30 ns, 60 ns, and 120 ns, respectively).</p> "> Figure 7 Cont.
<p>Visualization of Fe atomic distribution states during alloy holding: ((<b>a</b>): 800 K, (<b>b</b>): 1000 K, (<b>c</b>): 1200 K, (<b>d</b>): 1400 K; the four pictures in the horizontal row are the Fe atomic distribution states at 0 ns, 30 ns, 60 ns, and 120 ns, respectively).</p> "> Figure 8
<p>Plot of the number of Fe atoms contained in the largest Fe cluster and the number of clusters containing more than five atoms in the clusters versus the holding time of the alloy at different holding temperatures: ((<b>a</b>): 800 K, (<b>b</b>): 1000 K, (<b>c</b>): 1200 K, (<b>d</b>): 1400 K).</p> "> Figure 9
<p>Distribution of maximum Fe clusters at different holding times for the alloy held at 1000 K for 140 ns. ((<b>a</b>): 0 ns, (<b>b</b>): 20 ns, (<b>c</b>): 40.4 ns, (<b>d</b>): 40.889 ns, (<b>e</b>): 41 ns, (<b>f</b>): 41.7 ns, (<b>g</b>): 44 ns, (<b>h</b>):52.266 ns (<b>i</b>): 60 ns).</p> ">
Abstract
:1. Introduction
2. Simulation Methods
3. Results and Discussion
3.1. Structural Changes in the System of the Alloy Cooling–Insulation Process
3.2. Study on the Precipitation Mechanism of Fe Clusters
3.2.1. Radial Distribution Function Analysis
3.2.2. Mean Square Displacement Analysis
3.2.3. Study of Fe Atom Precipitation Behavior During Solidification of Cu-Fe Alloys
4. Conclusions
- (1)
- Insulation can improve the crystallization point of the alloy. Cu95Fe5 alloy insulation process atomic potential energy–temperature change line results show that the alloy in the 900 K, 1000 K, and 1100 K temperature conditions when insulation alloy crystallization (normal cold speed conditions alloy crystallization point of 882 K). The lower the holding temperature, the less holding time is required, which indicates that it is easier to crystallize with low-temperature holding.
- (2)
- The crystalline structure of the alloy is unstable after holding, and some atoms are not in the lattice sites. The alloy is a Cu matrix with a predominantly FCC structure. During the initial stages of crystallization, atom groups with non-FCC structures preferentially crystallize. Subsequent to the holding–cooling process, a redistribution of certain atoms within these non-FCC atom groups occurs, and some atoms become incorporated into the FCC matrix. As a result, the proportion of FCC crystal structure types continues to increase. With the prolongation of the holding–cooling time, the structure of the alloy system is gradually stabilized, and the proportion of each crystal type remains basically unchanged.
- (3)
- Interaction forces between Fe atoms and molecular thermal motion are important factors affecting the formation of Fe clusters. The analysis of the radial distribution function shows that the Fe atoms of the alloy aggregate under interaction during the insulation at 1000 K and 1100 K. The tendency of aggregation of Fe atoms is weaker under other insulation temperature conditions. The Fe atomic diffusion coefficient was calculated using MSD as a function of holding time. The diffusion coefficient of Fe atoms increases with the increase in the holding temperature, and the diffusion coefficient of Fe atoms is a negative value when the alloy is held at 500 K−900 K, which indicates that the diffusion of Fe atoms in this process is the uphill diffusion, and the diffusion coefficient of Fe atoms is positive under the condition of a holding temperature of more than 900 K.
- (4)
- The formation of Fe clusters during the insulation process undergoes four main stages. Firstly, the original clusters undergo decomposition, leading to the formation of new clusters as a result of the interplay between molecular thermal motion and the attractive forces among Fe atoms. The second is the condensation and growth of small clusters under the action of non-diffusive atomic localized structural rearrangements. Thirdly, Fe clusters gradually sphericalize under the effect of Cu-Fe interfacial energy. Fourth, individual Fe atoms gradually join large Fe clusters by diffusion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yang, K.; Wang, H.; Mo, Y.D.; Lou, H.; Guo, M. Deformation and Precipitation Behavior of Advanced Cu-Fe-(C) Alloys. Rare Met. Mater. Eng. 2022, 51, 4666–4674. [Google Scholar]
- Xu, J.; Guan, B.; Fu, R.; Wu, Y.; Hu, Q.; Zou, J.; Huang, G.; Yan, C. Tailoring the microstructure and mechanical properties of Cu-Fe alloy by varying the rolling path and rolling temperature. J. Mater. Res. Technol. 2023, 27, 182–193. [Google Scholar] [CrossRef]
- Pang, Y.; Chao, G.; Luan, T.; Gong, S.; Wang, Y.; Jiang, Z.; Xiao, Z.; Jiang, Y.; Li, Z. Microstructure and properties of high strength, high conductivity and magnetic Cu-10Fe-0.4Si alloy. Mater. Sci. Eng. A 2021, 826, 142012. [Google Scholar] [CrossRef]
- Iwase, A.; Fujimura, Y.; Semboshi, S.; Hori, F.; Matsui, T. Effects of energetic electron irradiation on electric, magnetic, and mechanical properties of Cu-1.2 at.%Fe alloy. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2024, 556, 165506. [Google Scholar] [CrossRef]
- Liu, K.M.; Sheng, X.C.; He, G.Y.; Han, N.L.; Li, M.L.; Zhang, M.C.; Zou, J.; Atrens, A.; Huang, H.M. Microstructure and Electrical Resistivity of In Situ Cu-Fe Microcomposites. J. Mater. Eng. Perform. 2022, 31, 3896–3901. [Google Scholar] [CrossRef]
- Yue, S.P.; Qu, J.P.; Li, G.L.; Liu, S.C.; Guo, Z.K.; Jie, J.C.; Guo, S.L.; Li, T.J. A comprehensive investigation of carbon micro-alloying on microstructure evolution and properties of metastable immiscible Cu-Fe alloy. J. Alloys Compd. 2022, 921, 166163. [Google Scholar] [CrossRef]
- Wu, Y.; Zhu, B.; Du, H.; Xia, Z.; Su, J.; Gao, Z. Metastable phase separation kinetics controlled by superheating and undercooling of liquid Fe-Cu peritectic alloys. J. Alloys Compd. 2022, 913, 165268. [Google Scholar] [CrossRef]
- Yue, X.Y.; Peng, S.Y.; Zhang, X.; He, C.N.; Tian, Y.Z. Distinct Electrical and Mechanical Responses of a Cu-10Fe Composite Prepared by Hot-Pressed Sintering and Post Treatment. Acta Metall. Sin. (Engl. Lett.) 2024, 37, 255–265. [Google Scholar] [CrossRef]
- Morshed, A.K.M.M.; Shahadat, M.R.B.; Roni, M.R.H.; Masnoon, A.S.; Shamim, S.A.-A.; Paul, T.C. A Molecular Dynamics Study of Heat Transfer Enhancement during Phase Change from a Nanoengineered Solid Surface. Processes 2021, 9, 715. [Google Scholar] [CrossRef]
- Samiri, A.; Khmich, A.; Hasnaoui, A. Understanding the relationship between structural and dynamic properties in binary Mg-Al metallic liquids from molecular dynamics simulations. Mater. Today Commun. 2024, 41, 110494. [Google Scholar] [CrossRef]
- Mahata, A. Bridging molecular dynamics and additive manufacturing: A study of Al-12 at% Si alloy solidification dynamics. Mater. Today Commun. 2024, 40, 109782. [Google Scholar] [CrossRef]
- Wang, X.F.; Gao, X.F.; Jin, Y.X.; Zhang, Z.H.; Lai, Z.B.; Zhang, H.Y.; Li, Y.G. Molecular Dynamics Simulation Research on Fe Atom Precipitation Behaviour of Cu-Fe Alloys during the Rapid Solidification Processes. Materials 2024, 17, 719. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.F.; Gao, X.F.; Lai, Z.B.; Han, Z.E.; Li, Y.G. Molecular Dynamics Research on Fe Precipitation Behavior of Cu95Fe5 Alloys during Rapid Cooling. Metals 2024, 14, 228. [Google Scholar] [CrossRef]
- Hirel, P. Atomsk: A tool for manipulating and converting atomic data files. Comput. Phys. Commun. 2015, 197, 212–219. [Google Scholar] [CrossRef]
- Plimpton, S. Fast Parallel Algorithms for Short-Range Molecular Dynamics. J. Comput. Phys. 1995, 117, 1–19. [Google Scholar] [CrossRef]
- Bonny, G.; Pasianot, R.C.; Castin, N.; Malerba, L. Ternary Fe-Cu-Ni many-body potential to model reactor pressure vessel steels: First validation by simulated thermal annealing. Philos. Mag. 2009, 89, 3531–3546. [Google Scholar] [CrossRef]
- Stukowski, A. Visualization and analysis of atomistic simulation data with ovito-the open visualization tool visualization and analysis of atomistic simulation data with ovito-the open visualization tool. Model. Simul. Mater. Sci. Eng. 2019, 18, 015012. [Google Scholar] [CrossRef]
- Wang, M.; Huang, X.; Wu, S.; Dai, G. Molecular dynamics simulations of tensile mechanical properties and microstructures of Al-4.5Cu alloy: The role of temperature and strain rate. Model. Simul. Mater. Sci. Eng. 2022, 30, 04500. [Google Scholar] [CrossRef]
- Cheng, Q.; Chen, L.; Tang, J.; Zhao, G.; Sun, L.; Zhang, C. A comprehensive analysis on microstructure evolution of Mg-5.65Zn-0.66Zr alloy during hot deformation—ScienceDirect. J. Magnes. Alloys 2020, 9, 520–531. [Google Scholar] [CrossRef]
- Abu-Hamdeh, N.H.; Alsulami, R.A.; Alimoradi, A.; Karimipour, A. Fluid flow and heat transfer of the two-phase solid/liquid mixture at the equilibration phase structure via MD method: Atomic value effects in a case study of energy consumption and absorbed energy. J. Mol. Liq. 2021, 337, 116384. [Google Scholar] [CrossRef]
- Chalamet, L.; Rodney, D.; Shibuta, Y. Coarse-grained molecular dynamic model for metallic materials. Comput. Mater. Sci. 2023, 228, 112306. [Google Scholar] [CrossRef]
- Samantaray, M.P.; Sarangi, S.S. Effect of cooling rate on solidification points and atomic structures of metal nanoclusters: A molecular dynamics simulation study. Phys. Scr. 2023, 98, 125971. [Google Scholar] [CrossRef]
- Wang, N.J.; Zhang, Y.X.; Wang, Y.; Fang, F.; Wu, T.M.; Chen, L.; Kang, J.; Wang, G.D.; Yuan, G. An experimental and molecular dynamics study on the formation of low-energy grain boundaries induced by grain rotation during rapid solidification. Mater. Lett. 2023, 352, 135116. [Google Scholar] [CrossRef]
- Qin, Q.; Li, W.Z.; Wang, W.R.; Li, D.Y.; Xie, L. Effect of Temperature Gradient and Cooling Rate on the Solidification of Iron: A Molecular Dynamics Study. Materials 2024, 17, 6051. [Google Scholar] [CrossRef] [PubMed]
- Nguyen-Trong, D.; Nguyen-Tri, P. Factors affecting the structure, phase transition and crystallization process of AlNi nanoparticles. J. Alloys Compd. 2020, 812, 152133. [Google Scholar] [CrossRef]
- Tang, J.B.; Ahmadi, A.; Alizadeh, A.; Abedinzadeh, R.; Abed, A.M.; Smaisim, G.F.; Hadrawi, S.K.; Nasajpour-Esfahani, N.; Toghraie, D. Investigation of the mechanical properties of different amorphous composites using the molecular dynamics simulation. J. Mater. Res. Technol. 2023, 24, 1390–1400. [Google Scholar] [CrossRef]
- Liu, W.T.; Peng, J.; Liu, J.J.; Li, J.; Liu, B.; Fang, Q.H. Investigation of the sintering behavior of nanoparticulate SiC by molecular dynamics simulation. Mater. Today Commun. 2024, 41, 110654. [Google Scholar] [CrossRef]
- Agudelo-Giraldo, J.D.; Cantillo-Galindo, N.; López-Salguero, J.S.; Reyes-Pineda, H. Comparative study of surface disorder in gold and silver nanoparticles obtained by molecular dynamics in cooling processes. Phys. Scr. 2023, 98, 095407. [Google Scholar] [CrossRef]
- Syarif, J.; Gillette, V.; Hussien, H.A.; Badawy, K.; Jisrawi, N. Molecular dynamics simulation of the amorphization and alloying of a mechanically milled Fe-Cu system. J. Non-Cryst. Solids 2022, 580, 121410. [Google Scholar] [CrossRef]
- Zhang, S.Z.; Wu, Y.K. Investigating the crystallization behavior of TiO2 during annealing: Molecular dynamics simulations. Aip Adv. 2023, 13, 085226. [Google Scholar] [CrossRef]
- Usler, A.L.; Kemp, D.; Bonkowski, A.; De Souza, R.A. A general expression for the statistical error in a diffusion coefficient obtained from a solid-state molecular-dynamics simulation. J. Comput. Chem. 2023, 44, 1347–1359. [Google Scholar] [CrossRef] [PubMed]
Holding Temperature T (K) | (cm2 s−1) |
---|---|
500 | −4.5695 × 10−11 |
800 | −8.825 × 10−10 |
900 | −2.4938 × 10−9 |
1000 | 4.6867 × 10−6 (0–57 ns) |
1100 | 7.0698 × 10−6 (0–136 ns) |
1200 | 1.3933 × 10−5 |
1300 | 1.9081 × 10−5 |
1400 | 2.5438 × 10−5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Zhang, H.; Xu, C.; Gao, X.; Zhang, Z.; Li, Y.; Liu, L. A Study on the Formation Process of Fe Clusters During Insulation of Cu95Fe5 Alloy. Processes 2025, 13, 557. https://doi.org/10.3390/pr13020557
Wang X, Zhang H, Xu C, Gao X, Zhang Z, Li Y, Liu L. A Study on the Formation Process of Fe Clusters During Insulation of Cu95Fe5 Alloy. Processes. 2025; 13(2):557. https://doi.org/10.3390/pr13020557
Chicago/Turabian StyleWang, Xufeng, Hanyu Zhang, Congjing Xu, Xufeng Gao, Zhenhao Zhang, Yungang Li, and Lu Liu. 2025. "A Study on the Formation Process of Fe Clusters During Insulation of Cu95Fe5 Alloy" Processes 13, no. 2: 557. https://doi.org/10.3390/pr13020557
APA StyleWang, X., Zhang, H., Xu, C., Gao, X., Zhang, Z., Li, Y., & Liu, L. (2025). A Study on the Formation Process of Fe Clusters During Insulation of Cu95Fe5 Alloy. Processes, 13(2), 557. https://doi.org/10.3390/pr13020557