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Abstract: Laser welding, widely used in industries such as automotive and aerospace,
requires precise monitoring to ensure defect-free welds, especially when joining dissimilar
metallic thin foils. This study investigates the application of machine learning techniques
for defect detection in laser welding using photodiode signal patterns. Supervised models,
including Support Vector Machine (SVM), k-Nearest Neighbors (kNN), and Random Forest
(RF), were employed to classify weld defects into sound welds (SW), lack of connection
(LoC), and over-penetration (OP). SVM achieved the highest accuracy (95.2%) during
training, while RF demonstrated superior generalization with 83% accuracy on validation
data. The study also proposed an unsupervised learning method using a wavelet scattering
one-dimensional convolutional autoencoder (1D-CAE) network for anomaly detection. The
proposed network demonstrated its effectiveness in achieving accuracies of 93.3% and 87.5%
on training and validation datasets, respectively. Furthermore, distinct signal patterns
associated with SW, OP, and LoC were identified, highlighting the ability of photodiode
signals to capture welding dynamics. These findings demonstrate the effectiveness of
combining supervised and unsupervised methods for laser weld defect detection, paving
the way for robust, real-time quality monitoring systems in manufacturing. The results
indicated that unsupervised learning could offer significant advantages in identifying
anomalies and reducing manufacturing costs.

Keywords: machine learning; deep learning; laser welding; weld defect; photodiode

1. Introduction
Laser welding is a cutting-edge joining process that has gained widespread acceptance

in industries such as automotive, aerospace, and electronics. This process offers several
key advantages, including non-contact operation, single-sided access, and the capability
to achieve deep penetration welds with minimal thermal distortion in a fraction of a
second [1–3]. Furthermore, its ability to ensure consistent and repeatable welds through
automation makes laser welding particularly appealing in industries where high production
throughput and reliability are crucial.

Despite its many advantages, quality-related problems can still be encountered in
laser welding. The quality of weldments is generally evaluated by measuring a variety
of features, which are categorized as (i) surface features (surface spatter, blowout, melt
pool width, upper and bottom concavity, and seam discontinuity) and (ii) sub-surface
features (lack of connection, over penetration, weld penetration depth, weld connection,
porosity, and crack) [4–6]. To ensure a high-quality weld, each feature must comply with
the allowance limits defined by industrial standards. Any deviation from these limits
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is regarded as a weld defect. These defects not only degrade quality but also increase
manufacturing costs due to rework, scrap, and potential safety risks. Therefore, effective
monitoring and analysis of the welding process are crucial to ensuring high-quality welds.

As the rapid development of process signals acquisition technologies, both super-
vised and unsupervised machine learning methodologies related to in-process monitoring
and the quality assurance of weld have garnered increasing interest over the past five
years [7–9]. There are three primary data sources examined during laser welding: the
plasma plume, the molten pool and the keyhole. Depending on the focus of the study, the
sensors utilized can be grouped into three main types: optical emissions, acoustic emissions,
and charge potential. Photodiodes are the most common sensors adopted for welding
anomaly detection for their fast response, low data dimensions, and low costs. They can
capture signals from three sources: (i) reflected laser light, (ii) thermal radiation from the
weld zone, and (iii) radiation intensity of the plasma [10–12]. Their ability to detect changes
in both the intensity and wavelength of light emitted during welding provides instant
feedback on the welding conditions.

The integration of supervised learning methods into sensor-driven in-process mon-
itoring frameworks enhances the potential for real-time analysis and defect detection in
laser welding processes when sufficient labeled data is available. One notable study by
Chianese et al. [13] evaluated the effectiveness of photodiode signals combined with super-
vised machine learning algorithms for defect classification in remote laser welding of thin
foils. They assessed several algorithms, including k-Nearest Neighbors (kNN), Decision
Trees (DT), and Support Vector Machines (SVM), achieving promising results in defect
detection. The results indicate that these machine learning models can achieve high accu-
racy rates in defect classification, demonstrating their potential for real-time monitoring
applications in industrial settings. Furthermore, the exploration of hybrid methodologies
that combine photodiode data with other sensing technologies can significantly enhance
defect detection capabilities in laser welding. For instance, Zhang et al. [14] highlight the
effectiveness of using real-time spectrometer signals combined with SVM to detect laser
welding defects. This integration offers a robust framework for improving weld quality
monitoring, paving the way for more reliable and efficient laser welding processes in
various industrial applications. Similarly, Deng et al. [15] developed a multi-sensor data
fusion system for laser welding process monitoring, where they employed Random Forests
(RF) to classify in-process defects based on fused sensor data. Their findings indicated
that Random Forests outperformed individual DT in terms of accuracy, showcasing their
capability to handle complex interactions among features. However, supervised methods
can be limited by the need for large, labeled datasets, which may not always be feasible in
industrial settings where defects are rare or labeling is costly and time-consuming [16–19].

To address these challenges, unsupervised learning approaches, which detect de-
viations in the welding process without requiring labeled data, have gained traction.
Unsupervised methods, such as clustering and anomaly detection using autoencoders,
deep learning networks have shown promise in identifying anomalies by learning the
normal pattern of the process and flagging deviations as potential anomalies [20–24]. The
literature also reveals a growing trend towards the application of unsupervised learning
methods in analyzing photodiode signal patterns. For instance, Xiao et al. [25] propose a
gradient-based unsupervised learning method specifically designed for classifying surface
defects in laser welding. This model operates effectively with datasets characterized by
a limited number of labels, relying on gradient distributions to identify defects, which is
particularly advantageous given the lack of comprehensive datasets in this field. Moreover,
Zhang et al. [26] discuss a novel approach for real-time monitoring of penetration states
in laser welding processes, specifically for tailor-rolled blanks, using convolutional neural
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networks (CNN). The study highlights the effectiveness of deep learning techniques in
enhancing the accuracy and efficiency of monitoring systems, addressing the challenges
associated with traditional methods. The results demonstrate that the CNN-based monitor-
ing system achieves high accuracy in identifying penetration states, with reported accuracy
rates exceeding 95%. Meanwhile, Knaak et al. [27] presents a novel spatio-temporal deep
learning architecture designed for real-time defect detection in laser welding processes,
specifically optimized for deployment on low power embedded computing boards. The
architecture employs CNNs to extract spatial features from individual frames and recur-
rent neural networks (RNNs) to capture temporal dependencies across frames. This dual
approach allows the model to understand both the spatial characteristics of defects and
their evolution over time. However, RNNs suffer from vanishing and exploding gradients,
limiting their effectiveness in capturing long-term dependencies. Both traditional machine
learning and new deep learning networks have been effectively utilized for penetration
estimation, achieving a total accuracy rate of 99% in penetration estimation.

Despite advancements in laser welding defect detection, challenges remain especially
when joining dissimilar metallic thin foils. Welding dissimilar metals with a laser involves
joining materials with differing thermal and mechanical properties, which leads to segrega-
tion and precipitates, poor compatibility and miscibility, and poor joint strength. In addition,
key product indicators such as penetration depth, keyhole clearance, and part-to-part gap
joining that determine the weld quality occur within the welded material and therefore
cannot be measured directly during welding. Although supervised machine learning ap-
proaches have shown promise in weld defect classification when large, labeled datasets are
available, their dependence on extensive labeled data limits their applicability in dynamic,
real-world conditions. Unsupervised learning methods, which can analyze unlabeled data
to identify anomalies, offer a more flexible and adaptive approach to in-process monitor-
ing [28–30]. However, they may struggle to distinguish between meaningful anomalies and
noise, particularly in complex or highly variable industrial environments. Therefore, this
study proposes an unsupervised learning network based on photodiode signal patterns to
detect anomalies during the laser welding process. The proposed network leverages the
strengths of wavelet scattering and a one-dimensional convolutional autoencoder (1D-CAE)
to enhance feature extraction and dimensionality reduction. The integration of wavelet
scattering enables the capture of both time and frequency domain features, providing a
stable and informative representation of non-stationary signals.

The main contributions of this paper are (i) the integration of wavelet scattering and a
one-dimensional convolutional autoencoder (1D-CAE), which represents a novel method-
ological framework for laser welding anomaly detection. Wavelet scattering captures both
time and frequency domain features, providing a stable representation of non-stationary
photodiode signals, while the 1D-CAE facilitates automatic feature extraction, dimension-
ality reduction, and reconstruction-based anomaly detection. This combined approach
offers a robust solution for monitoring dynamic laser welding processes, particularly in
environments with scarce labeled datasets, and (ii) the elimination of reliance on extensive
labeled datasets while enabling real-time monitoring, allowing a scalable and efficient solu-
tion for defect detection in industrial laser welding applications. By integrating advanced
machine learning techniques with real-time data processing, this framework paves the
way for smarter manufacturing environments where quality assurance can be achieved
proactively and efficiently. Such advancements are crucial for maintaining high standards
in production while minimizing downtime and waste, ultimately leading to improved
operational efficiency and product quality.

The remainder of the paper is structured as follows: Section 2 presents the experi-
mental setup and outlines the proposed methodologies for weld defect classification using
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supervised learning models and anomaly detection through the wavelet scattering 1D-CAE
network. Section 3 discusses the findings from both the experiments and the proposed
network. Finally, Section 4 provides the conclusions of this study and the directions for
future research.

2. Materials & Methods
2.1. Experimental Setup for Laser Welding and Photodiode Signals Acquisition

The quality of a laser-welded joint is typically influenced by key process parameters,
such as laser power, welding speed, and laser focus offset. In addition to these parameters,
laser incidence angle and part-to-part gap are also relevant process parameters. The inci-
dence angle is important because of the visibility of the welding position and accessibility
of the laser scanner head to the workpiece; whereas, the part-to-part gap influences weld
defects since if the gap is small porosities and spatters occur, and if it is too large, two parts
are unable to weld together.

The primary objective of the present study is to integrate supervised and unsupervised
machine learning methodologies into the dataset collected from the laser welding process
to identify weld defects. To accomplish this, the experimental data utilized in this study
were derived from the study conducted by Chianese et al. [13]. Their research focused
on the laser welding of thin copper-steel foils arranged in lap joint configurations, with
particular emphasis on two key process parameters: laser power and part-to-part gap. The
laser power was adjusted to mimic actual manufacturing conditions where different levels
of weld penetration occurred, while changes in spacing between parts were made to reduce
possible dimensional errors that could happen during the clamping phase before welding.

In the study, the nLight Compact Fiber Laser (nLight Inc., Camas, WA, USA) with a
power output of 3 kW was used for the welding process. The laser power was directed at
the samples through a two-dimensional F-theta scanner equipped with telecentric lenses
(Scout-200, Laser and Control K-lab., Gunpo-si, Gyeonggi-do, Republic of Korea) operating
in continuous mode to ensure precise beam focus on the samples. The welding setups were
configured in a lap joint arrangement with a welding length of 40 mm, and the samples
measured 70 mm in length and 30 mm in width. Optical emissions from the welding process
were monitored using a photodiode-based sensor, Laser Welding Monitoring 4.0 (Precitec
GmbH, Gaggenau, Germany), which detected emissions across three distinct wavelength
ranges: 300–700 nm for the plasma signal (sP), 1200–2000 nm for the temperature signal (sT),
and 1020–1090 nm for the back reflection signal (sR), at a maximum sampling frequency of
50 kHz.

The three geometric features evaluated in every cross-section of the welds were weld
penetration depth (DP), throat thickness (TS), and the actual gap between parts. The TS
was determined as the minimum distance from the lower corner of the upper material to
the weld contour. Based on the measurements, welds were classified into three categories:
over-penetration (OP), characterized by a laser mark left on the inspection surface; lack
of connection (LoC), where DP is below 0.35 times the thickness of the lower specimen
(TL) and TS is below 0.75 times the thickness of the upper specimen (TU); and sound weld
(SW), where DP is greater than or equal to 0.35 times TL and TS is greater than or equal to
0.75 times TU. The listed geometrical features are depicted in Figure 1.
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Figure 1. The visual representation of the geometrical features.

2.2. Supervised Learning Algorithms for Weld Defect Classification

Photodiode signals were captured with three different channels (sP, sT , sR). Each
recording was subsequently preprocessed using signal processing techniques, followed by
the development of machine learning models aimed at accurately classifying weld defects.
The workflow for developing and evaluating these classification models is illustrated
in Figure 2.

Step 1: Data Preprocessing
Data Normalization: Standardize data
across channels.
Data Shuffling: Randomize the order of
samples.

Step 2: Feature Extraction
Generate Features: Extract features
from time and frequency domains for
each signal (e.g., crest factor, kurtosis,
peak freq).
Feature Selection: Remove non-useful
features to improve model perfor-
mance by focusing on the most rele-
vant features.

Step 3: Data Partitioning
Holdout Cross-Validation: Split the dataset
into three parts: 70% for training, 15% for
test and 15% for validation.

Step 4: Model Development
Model Training: Train classifica-
tion machine learning models (i.e.,
SVM, RF, and kNN) using the train-
ing dataset.
Hyperparameter Optimization:
Fine-tune model parameters to op-
timize its performance using the test
dataset.

Step 5: Prediction & Evaluation
Make Predictions: Apply the developed
models to the validation dataset.
Evaluate Performance: Assess model ac-
curacy using metrics: accuracy, precision,
recall, and confusion matrix to determine
the best-performing model.

Figure 2. Flowchart of the proposed methodology for classification models.

The first step of the methodology is data preprocessing, in which the raw photodiode
signals were initially standardized across all channels to remove scale discrepancies, en-
abling more uniform input for model training. To further mitigate the risk of overfitting,
the dataset was randomized to ensure that the sequence of samples did not influence the
training process. The Z-score normalization technique was applied to each channel within
every experimental configuration in this study, as presented in Equations (1)–(3).

x(t) =
s(t)− µ

σ
(1)
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µ =
1
T

∫ T

0
x(t) dt (2)

σ =

√
1
T

∫ T

0
(x(t)− µ)2 dt (3)

where s(t) is the captured signal during weld, x(t) is the normalized signal, µ and σ are
the mean value and standard deviation of the normalized signal, respectively.

In Step 2, features were extracted from the normalized signals to serve as informative
inputs for the machine learning models. In this study, features were obtained from the time,
frequency, and time-frequency domains to best capture the distinguishing characteristics of
the normalized signals. Time domain analysis, also known as waveform analysis, involves
directly analyzing raw sequences of normalized signals using statistical metrics. These
metrics are widely used due to their simplicity of extraction and low computational time.
The features used in this study for the time domain analysis include the standard deviation
(SD), root-mean-square value (RMS), impulse factor (IF), and clearance factor (CF), which
are expressed in Equations (4)–(7), respectively.

SD =

√
1
T

∫ T

0
(x(t)− x̄)2 dt (4)

RMS =

√
1
T

∫ T

0
x(t)2 dt (5)

IF =
max(x(t))

RMS
(6)

CF =
max(x(t))(

1
T
∫ T

0 |x(t)| dt
)2 (7)

The frequency domain analysis, also known as spectrum analysis, is mainly utilized
to determine the spectrum of the signal. To analyze the frequency components of the
normalized time-domain signals, the fast Fourier transform (FFT) was applied to the
normalized time-domain signals to obtain frequency patterns as defined in Equation (8).
Unusual peaks in the frequency distribution within the spectrum were thought to be an
indication of weld defects. In this study, in the frequency domain analysis, the features of
the power spectral density (P( f )) such as median frequency ( fmed), band power (Pband),
and peak amplitude (Ppeak) were determined, as defined in Equations (9)–(12), respectively.

X( f ) =
∫ ∞

−∞
x(t)e−j2π f t dt (8)

P( f ) = |X( f )|2 (9)

fmed =
1
2

∫ fmax

0
P( f ) d f (10)

Pband =
∫ f2

f1

P( f ) d f (11)

Ppeak = max(P( f )) (12)



Processes 2025, 13, 121 7 of 20

The time-frequency domain serves as a critical framework for examining signals that
exhibit non-stationary characteristics, where both temporal and frequency information are
essential for understanding the dynamics of the signal. A significant instrument for this
examination is the spectrogram, which provides a graphical representation of the energy
distribution of the signal across time and frequency. To compute the spectrogram of a
signal, a window function (w(τ − t)), is applied to isolate sections of the signal around each
time point t, and can vary in form (e.g., Gaussian, Hamming, or rectangular) based on the
desired time-frequency resolution. The Short-Time Fourier Transform (STFT) then takes the
Fourier transform of this windowed segment, yielding the time-frequency representation
S(t, f ), defined as follows:

S(t, f ) =
∫ ∞

−∞
x(τ)w(τ − t)e−j2π f τ dτ (13)

The time-frequency domain features that are focused on in this research are spectral
kurtosis (SK), which evaluates the sharpness of the frequency distribution and aids in
identifying unusual peaks or outliers that are often linked to defects; spectral skewness
(SS), which quantifies the asymmetry of the frequency distribution and suggests possible
imbalances within the signal structure; and spectral flatness (SF), which assesses whether
the signal is more noise-like or tone-like, assisting in differentiating between normal
and defect-related characteristics. These time-frequency features are respectively defined
as follows:

SK =
1
T
∫ T

0 (S(t, f )− µ( f ))4 dt(
1
T
∫ T

0 (S(t, f )− µ( f ))2 dt
)2 (14)

SS =
1
T
∫ T

0 (S(t, f )− µ( f ))3 dt(
1
T
∫ T

0 (S(t, f )− µ( f ))2 dt
)3/2 (15)

SF =
exp

(
1
T
∫ T

0 log(S(t, f )) dt
)

1
T
∫ T

0 S(t, f ) dt
(16)

where µ( f ) is the mean of the spectrogram at frequency f , and T refers to the time interval
for each segment. Following the extraction of features from all domains, the minimum
redundancy maximum relevance (MRMR) algorithm was utilized to evaluate their signifi-
cance and eliminate any non-informative or overlapping features. The MRMR algorithm
identifies an ideal set of features that are mutually exclusive and maximally distinct, effec-
tively representing the response variable. It achieves this by minimizing redundancy within
the feature set while maximizing the relevance of the features to the target variable [31].

Before developing classification models, in Step 3, the extracted features were parti-
tioned into distinct subsets for training, testing, and validation. The training data was used
to identify patterns within the data and develop the classification models. The testing data
was utilized to adjust the hyperparameters of each classification model. The validation
data was used to determine the most effective classification model from the developed
ones based on metrics namely accuracy, precision, recall, and the confusion matrix. For
this purpose, the extracted features were randomly split into 70% training, 15% testing,
and 15% validation data. This systematic approach ensured that the models were robust
and generalizable, minimizing the risk of overfitting while maximizing their predictive
performance on unseen data.

In Step 4, supervised machine learning models; namely Support Vector Machine
(SVM) [32], Random Forest (RF) [33], and k-Nearest Neighbor (kNN) [34], were developed
using the training dataset to classify sound welds and weld defects based on photodiode
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signals. To improve the classification performance of these models, hyperparameters
were carefully fine-tuned using the test dataset. This process involved systematically
adjusting the parameters and determining the optimal configuration to achieve the highest
classification accuracy possible.

In Step 5, these models were applied to an unseen validation dataset to generate
predictions, which were then compared against the actual class labels. The performance
of the models was evaluated using accuracy, precision, recall, and the confusion matrix.
These metrics provided a comprehensive assessment of the ability of models to correctly
classify the photodiode signals, enabling the identification of the best-performing model.

2.3. Unsupervised Learning Network for Weld Defect Detection

This study proposes an unsupervised learning network based on photodiode signal
patterns to detect anomalies during the laser welding process. The proposed network
combines the advantages of wavelet scattering (WS) and the one-dimensional convolu-
tion autoencoder (1D-CAE) to capture both time and frequency domain information in
photodiode signals. This architecture, which is depicted in Figure 3, enables automatic
feature extraction and dimensionality reduction while reconstructing the input signal
patterns to identify deviations indicative of defects. The anomaly detection capability of
this architecture is based on reconstruction error. By comparing the original input signals
with their reconstructed versions from the decoder, an anomaly score can be calculated.
High reconstruction errors indicate potential anomalies in the input data, allowing for the
effective detection of outliers or unusual patterns in sequential signals.
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Figure 3. The network structure of the 1D convolution autoencoder.

The input layer of the proposed network utilizes wavelet scattering to preprocess
the photodiode signals. Wavelet scattering is selected as the initial layer due to its au-
tomatic feature extraction capabilities [35,36], its stability in representing non-stationary
signals [37,38], and its ability to capture both multi-scale and multi-frequency features of
the input data [39]. The key benefits of the wavelet scattering method in this study are as
follows: (i) it provides a time-frequency representation, capturing both temporal and spec-
tral dynamics crucial for identifying patterns associated with varying welding conditions;
(ii) it enables multi-scale analysis, allowing for consistent detection of welding defects,
such as over-penetration or lack of connection, which manifest as features at varying scales
and frequencies in the signal, thereby enhancing the robustness of the defect detection
process; and (iii) it facilitates dimensionality reduction by generating stable coefficients
that retain essential information, thereby improving the efficiency and performance of
subsequent models, such as the 1D-CAE used for anomaly detection. This preprocessing
phase significantly improves the performance of the subsequent layers, as the obtained
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features are the essential features that enable the network to learn complex patterns and
relationships in the input signal.

In mathematical terms, wavelet scattering starts by convolving the input signal x(t), in
this case, normalized photodiode signals, with a set of wavelets ψλ(t), where λ represents
the scale and frequency parameters. This yields a series of high-frequency components,
x(t)⊗ ψλ(t), which capture localized variations in the signal. To enhance stability and
suppress noise, the modulus of each filtered component is taken, and then each output is
further convolved with a second wavelet filter, effectively creating a cascade of wavelet
transformations. At each m layer of the cascade, the scattering coefficients Smx(t) are
calculated by applying a pooling operation, usually averaging through a low-pass filter
ϕm(t). Finally, the mathematical formulation of wavelet scattering is as follows:

Smx(t) = |||x(t)⊗ ψλ1(t)| ⊗ ψλ2(t)| · · · ⊗ ψλm | ⊗ ϕm (17)

The 1D-CAE is a deep learning network architecture that utilizes the one-dimensional
convolutional neural network (1D-CNN) within its convolutional layers. While the 1D-
CAE structure is similar to traditional autoencoders, which consist of an encoder and a
decoder, it has a notable distinction: weight sharing. In the 1D-CAE, weights are shared
across all connections in each layer, allowing the model to maintain the spatial structure of
the input by preserving relative feature locations. This is crucial for anomaly detection in
sequential data, as the local structure of the signal may contain important information about
potential anomalies. The shared weights and one-dimensional convolutional structure thus
enable the 1D-CAE to reconstruct the input signal based on a reduced latent representation,
capturing spatial dependencies and enhancing the model capacity to identify deviations in
the underlying patterns of process data.

The encoder part of the CAE contains two 1D-CNN layers, each of which is followed
by a Rectified Linear Unit (ReLU) activation to introduce non-linearity and a 20% dropout
layer to prevent overfitting. The first convolutional layer employs 64 filters, each with a
length of 16, and applies a stride of 2. The stride refers to how much the filter shifts along
the input sequence with each step, resulting in an output that is approximately half the size
of the original input. The second convolutional layer uses 32 filters with a size of 8 and
with stride of 2. The 1D-CNN in the encoding stage is defined as follows:

zc
j = f

(
∑
m

Wc
m,j ∗ xc−1

m + bc
j

)
(18)

where zc
j denotes the resulting feature corresponding to the j-th channel with the c-th

convolutional layer; bc
j is the bias for the j-th feature; Wc

m,j denotes the convolutional weight
matrix; M represents the input channel data; ∗ denotes the convolution operation; the term
xc−1

m refers to the feature map from the m-th input channel with the c-th convolutional layer,
capturing the channel’s data input; and f denotes the ReLU activation function.

The decoder mirrors the encoder structure with transposed convolutional layers to
upsample and reconstruct the original signal. These transposed convolutional layers are
configured with the same parameters as the convolutions (64 filters of size 16 with a stride of
2, 32 filters of size 8 with a stride of 2), with ReLU activations and 20% dropout applied after
each layer to maintain robustness and control overfitting. The decoding stage reconstructs
the output dimensions by reversing the dimensionality reduction from the encoding stage,
which is expressed by the following calculation:

x̂c
j = f

(
∑
m

Ŵc
m,j ⊙ xc−1

m + b̂c
j

)
(19)
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where x̂c
j represents the output feature corresponding to the j-th channel with the c-th

deconvolution layer; b̂c
j indicates the bias associated with the j-th feature; Ŵc

m,j denotes
the convolutional weight matrix; M represents the input channel data; and ⊙ denotes the
deconvolution operation.

A fully connected layer with three output units follows the decoder layer, acting as
the final feature mapping layer and producing predictions or classifications based on the
model’s application. Lastly, a truncation function ensures the output dimensions match
the target by trimming any excess padding, thereby preserving the original sequence
length and dimensional integrity. The training process involves updating the weights
and biases parameters of the network using the Adam optimization algorithm until the
maximum number of 500 epochs is reached. The training data will be shuffled after each
epoch to prevent the model from overfitting to the training set. The loss function between
the reconstructed signal (X̂i) and input signal (Xi) is defined by the mean squared error
as follows:

Loss =
1
n

n

∑
i=1

(Xi − X̂i)
2 (20)

2.4. Anomaly Detection Mechanism

The methodology for implementing the proposed wavelet scattering 1D-CAE network
consists of five key steps. The first step involved preprocessing the acquired photodiode
signals using Z-score normalization and defining wavelet scattering parameters to prepare
the data for robust feature extraction. In the second step, wavelet scattering is applied to
the normalized signal to generate scattering coefficients, which capture invariant and noise-
resistant features. These coefficients serve as inputs to the 1D-CAE, which is illustrated
in Figure 3. The third step involves training the 1D-CAE network using a set of training
data in an iterative loop, using mini-batches and the Adam optimizer to minimize the
reconstruction loss, with test data employed to monitor and save the best-performing
model. The trained network can accurately reconstruct the input signal data with minimal
deviation. When a faulty signal is presented and reconstructed using the trained network,
the difference between the reconstructed signal and the original faulty signal becomes
significantly larger. This study employed the same training, test, and validation datasets
utilized for the weld defect classification. However, for the purpose of anomaly detection,
instances of lack of connectivity (LoC) and overpenetration (OP), previously categorized
as weld defects, were reclassified as anomalies. Finally, the postprocessing step evaluates
the reconstruction loss on validation data, producing the trained model and reconstructed
signals as outputs. An anomaly score is computed based on the reconstruction loss, which
is the difference between the input and reconstructed signals. A threshold is determined
for the reconstruction loss, beyond which a signal is classified as an anomaly, indicative
of a potential defect. This threshold is determined using a value-based method on a
user-defined fraction of expected anomalies. The reconstruction losses from all training
windows are computed and sorted in ascending order, and the threshold is set at the loss
corresponding to the 1−γth percentile γ is the set fraction. Any signal with a reconstruction
loss exceeding this threshold is classified as an anomaly. The pseudocode of the wavelet
scattering 1D-CAE network is shown in Algorithm 1.
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Algorithm 1 The pseudocode of the wavelet scattering 1D convolution autoencoder with
threshold calculation.
Require: Load time-series photodiode signals sP, sT , sR
Require: Define constants: Sampling Frequency f s, Window Size ws
Require: Define Wavelet Scattering architecture
Require: Define 1D-CAE architecture
1: for channel = 1 to 3 do ▷ Process signals sP, sT , sR individually
2: Normalize the input signal
3: Segment signal into ws-length windows (e.g., 100 ms intervals)
4: Apply wavelet scattering transform to each window
5: Extract features from wavelet scattering coefficients
6: Split features into training, test, and validation datasets
7: Initialize 1D-CAE network

Require: Define training hyperparameters: optimizer (Adam), maximum epochs E, batch size B, shuffle strategy
(shuffle every epoch)

8: for epoch t = 1 to E do ▷ Training Loop
9: Shuffle training data randomly

10: Divide training data into mini-batches of size B
11: for each mini-batch B in training data do
12: Perform forward pass: Reconstruct features using the 1D-CAE
13: Compute reconstruction loss:

Lossb = ||Features − Reconstructed Features||2

14: Backpropagate the loss and update network weights using the Adam optimizer
15: end for
16: Compute reconstruction loss on test data
17: Save the network if the test reconstruction loss improves
18: end for
19: Compute reconstruction losses L for all training windows
20: Sort the reconstruction losses in ascending order: Lsorted
21: Calculate the detection threshold τ using contamination fraction γ:

Index = ⌈(1 − γ)× N⌉

τ = Lsorted[Index]

▷ e.g., γ = 0.01 ensures 1% of windows are flagged as anomalies
22: Evaluate the trained model on validation data
23: Flag windows with reconstruction loss > τ as anomalies
24: end for

3. Results & Discussions
3.1. Photodiode Signal Patterns

The welding experiments were performed with varying laser power levels from
600 to 1500 W and part-to-part gaps from 0 to 300 µm. The photodiode captured three
distinct signals throughout each experiment: sP, sT , and sR. Both the hardware and
software gains were adjusted to limit the signals within the range of 0 to 10 V. Figure 4
demonstrates the normalized amplitude variation of each signal to compare and highlight
their cyclic behaviour.

These observed signal patterns suggest that sound welds (SW) maintain stable signal
intensities and consistent temporal profiles across all emission ranges, indicating balanced
laser-material interaction, optimal heat input, and uniform plasma formation. When com-
pared to over-penetration (OP), the correlation of signals reveals that OP exhibits increased
intensity in the plasma signal (sP) and temperature signal (sT), suggesting excessive heat
input and deeper penetration. In contrast, the lack of connection (LoC) displays a different
correlation pattern with the signals. The signals recorded from LoC exhibit a similar pattern
to those recorded from SW. In addition, the comparison between SW and LoC reveals the
decreasing intensities in sP and sT , as well as the increasing back reflection in sR that may
indicate weak welding and weld defects. Implementing advanced monitoring technologies,
such as real-time data analysis and machine learning algorithms, can further enhance
welding processes by allowing for adaptive process parameter adjustment that responds to
changing welding conditions on the fly.
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Figure 4. Photodiode signals (normalized) recorded during the welding process are categorized as
over-penetration (OP), lack of connection (LoC), and sound weld (SW).

3.2. Comparison of Supervised Learning Methods Performance

The confusion matrices in Figure 5 display the classification performance of the SVM,
kNN, and RF models for both the training and the validation datasets across the three
welding quality classes: Lack of Connection (LoC), Over-Penetration (OP), and Sound
Weld (SW). For the training dataset, all models exhibited robust performance in classifying
SW, suggesting effective learning of optimal weld characteristics. However, classification
accuracy for LoC and OP defects varied across models. The SVM model demonstrated
superior classification accuracy, particularly for LoC, with only 2 misclassifications. While
the kNN model provided consistent overall classification, it exhibited the lowest accuracy
among the models. Nevertheless, all three supervised learning methods achieved high
accuracy rates on the training dataset, with SW consistently identified by all models. In
summary, SVM and RF models excelled in identifying sound welds, whereas kNN offered
balanced performance across classes but with slightly higher error rates.

During the validation phase, a noticeable decrease in performance was noted for
all models. The SVM model accurately classified 5 instances of LoC, making 2 misclas-
sifications and displaying satisfactory performance for the OP class, achieving 5 correct
predictions with 1 error. In the case of the SW class, 9 instances were correctly identified,
with 2 misclassifications. The kNN model exhibited a major decline, accurately identifying
5 LoC instances while misclassifying 2. For the OP class, it made 4 correct predictions
alongside 2 errors. The SW class achieved 9 correct identifications but faced 2 misclassi-
fications. Likewise, the RF model produced stable results, classifying 5 instances of LoC
correctly with 2 misclassifications. The OP class demonstrated enhanced results, with 5
instances classified correctly. The SW class retained strong performance with 10 correct
predictions and just 1 error. Overall, the RF model demonstrates superior performance in
terms of balanced classification across the three categories, while the SVM and kNN models
perform comparably with a slightly higher rate of misclassification between LoC and OP.

Table 1 presents the calculated classification metrics, including accuracy, precision,
sensitivity, and specificity, for each model on both the training and validation datasets.
Accuracy measures the overall correctness of predictions as the ratio of correct predictions
to total instances, while precision indicates the proportion of true positive predictions
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among all positive predictions. Sensitivity measures the ability of the model to correctly
identify positive cases, which is crucial for early detection in applications. On the other
hand, specificity assesses the accuracy of the model in recognizing negative cases, which is
important for avoiding the misclassification of negatives.
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Figure 5. Confusion matrices for (a) SVM, (b) kNN and (c) RF models associated with the training
dataset; and, (d) SVM, (e) kNN and (f) RF models associated with the validation dataset, respectively.

For the training dataset, the SVM model achieved the highest accuracy (0.952) among
the three models, with precision values of 0.966 for LoC, 0.894 for OP, and 0.964 for SW.
Sensitivity scores were similarly high, especially for SW at 1. The specificity was also
consistently above 0.95 for all classes, indicating strong discriminative performance. The
kNN model had an accuracy of 0.904, slightly lower than SVM. Precision for LoC and OP
stood at 0.903 and 0.894, respectively, while SW had a precision of 0.909. Sensitivity scores
for LoC and OP were 0.903 and 0.85, respectively, with SW at 0.925. Specificity remained
robust, particularly for OP at 0.976. The RF model achieved an accuracy rate of 0.933.
Precision values included 0.875 for LoC, a perfect 1 for OP, and 0.947 for SW. The sensitivity
for LoC was 0.903, and it reached 1 for SW. Specificity was high for all classes, with perfect
specificity for OP.

On the other hand, for the validation dataset, the SVM model shows perfect precision
(1.000) and specificity (1.000) for the OP class, reflecting its reliability in minimizing false
positives for this category. However, its sensitivity for LoC (0.714) is slightly lower than
RF, suggesting some limitations in detecting all true positives for this class. Moreover, the
kNN model displays comparatively lower performance, with the lowest sensitivity for the
OP class (0.666). While its precision for the SW class is identical to RF and SVM (0.818),
its specificity for the OP class (0.944) is slightly inferior to RF. This indicates that kNN
may struggle to generalize effectively across certain anomalies. Among the models, the
RF classifier achieves the highest overall accuracy of 0.833, followed by SVM (0.792) and
kNN (0.750). RF demonstrates superior performance across most class-specific metrics,
particularly excelling in sensitivity for the SW class (0.909) and specificity for the LoC class
(0.941). This indicates RF’s robustness in correctly identifying anomalies and distinguishing
between normal and anomalous behavior. Overall, the comparative analysis of the models
reveals that the RF model exhibited stable and balanced performance, making it the most
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suitable model for this application. The kNN model faced the most significant decrease in
performance, suggesting that it may be more sensitive to variations in the dataset.

Table 1. The performance comparison of three machine learning models for welding classification.

Dataset Model Accuracy Precision Sensitivity Specificity
LoC OP SW LoC OP SW LoC OP SW

Training
SVM 0.952 0.966 0.894 0.964 0.935 0.850 1.000 0.986 0.976 0.960
kNN 0.904 0.903 0.894 0.909 0.903 0.850 0.925 0.959 0.976 0.901
RF 0.933 0.875 1.000 0.947 0.903 0.800 1.000 0.945 1.000 0.941

Validation
SVM 0.792 0.625 1.000 0.818 0.714 0.833 0.818 0.824 1.000 0.846
kNN 0.750 0.625 0.800 0.818 0.714 0.666 0.818 0.823 0.944 0.846
RF 0.833 0.833 0.833 0.833 0.714 0.833 0.909 0.941 0.944 0.846

An analysis of variance (ANOVA) was conducted to determine if the differences in
mean performance among the classifiers were statistically significant. The analysis was
based on the results from ten-fold cross-validation. The ANOVA revealed a p-value below
0.05, confirming that the performance differences between the classifiers were significant.
To further investigate, pairwise t-tests were performed to identify the best classifier with
statistical significance. The results showed a significant difference between SVM and kNN
(p = 0.022), indicating that SVM performed better. However, no significant differences were
found between SVM and RF (p = 0.093) or between kNN and RF (p = 0.156). These findings
suggest that while SVM outperformed kNN, its performance was similar to RF, and kNN
and RF performed comparably.

3.3. Anomaly Detection Based on the Proposed Unsupervised Learning Method

The proposed unsupervised learning method for anomaly detection, which integrates
wavelet scattering and a one-dimensional convolutional autoencoder (1D-CAE), was ap-
plied to the photodiode signal data collected during the laser welding process. The wavelet
scattering was generated with a 100 ms invariance scale and a 50 kHz sampling rate for
0.4 s. Two layers of filters were set and four filters were employed in the first layer, while
a single filter was utilized in the second layer, resulting in a feature matrix comprising
29 distinct scattering coefficients and 51 samples per scattering coefficient per photodiode
channel. The extracted wavelet scattering coefficients were subsequently fed into 1D-CAE
for anomaly detection.

The previously employed training, testing, and validation datasets were also utilized
for anomaly detection. Nevertheless, in this study, instances of lack of connection (LoC)
and overpenetration (OP), categorized as weld defects, were jointly classified as anomalies
for anomaly detection. The anomaly detection capability of the proposed 1D-CAE network
was evaluated using reconstruction loss as the primary indicator. It was computed by
comparing the original input signal to the output of the network. Figure 6 displays the
cumulative distribution function (CDF) and a histogram of the reconstruction loss for all
signals. The threshold that separates normal and abnormal signals is determined by the
proportion of data points in the dataset that are considered abnormal by the network. The
choice of threshold is influenced by the acceptable risk level for the application; lower
thresholds are favored in safety-critical systems to detect subtle anomalies, while higher
thresholds may be used in less critical contexts to minimize noise. The threshold value
was set to 0.025 because it effectively separates normal and anomalous data based on the
reconstruction loss distribution observed during training, allowing the 95th percentile of
normal instances to be correctly identified. Moreover, as indicated in Figure 6, the threshold
determined by the 1D-CAE network exceeds the loss values for the majority of normal data
samples but remains below a significant number of abnormal data losses, indicating the
potential presence of anomalies.
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Figure 6. The distribution of reconstruction losses for normal and abnormal data.

Figures 7 and 8 illustrate examples of the original input photodiode signals and the
detected anomalies for each channel. These anomalies are highlighted by the red lines,
contrasting with the green lines representing the input signal. Channels sP, sT and sR exhibit
anomalies with varying intensities and timing, reflecting the impact of physical parameters
measured by each channel. The general trend in anomalies is that there are sudden changes
in signal amplitude or significant deviations from the signal normal baseline in the early
stages of the welding process. By determining the conditions under which anomalies occur,
it was seen that early anomalies occur in the LoC cases and sudden changes occur in the
OP cases.

Figure 7. Detected anomalies in photodiode signals for the given input signal: Lack of Connection
(LoC) case.

Photodiode signals are directly related to the optical emissions generated during the
welding process. In the case of LoC, the optical emission level is quite low since sufficient
contact cannot be established between the materials being welded. This situation can be
considered to explain the anomalies observed, especially at the beginning of the welding
process. On the other hand, in the case of OP, a more intense optical emission is produced
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due to excessive heat. This situation leads to significant fluctuations and abnormal peaks in
the photodiode signals. In addition, the anomalies in different photodiode channels can be
seen at different times and with different intensities due to the differences in the physical
parameters measured by each channel.

Figure 8. Detected anomalies in photodiode signals for the given input signal: Overpenetration
(OP) case.

The confusion matrices shown in Figure 9 demonstrate how well the proposed wavelet
scattering 1D-CAE performs in detecting anomalies in the training and validation datasets.
In the training dataset (Figure 5a), the model successfully detected 51 abnormal samples
and 47 normal samples, with only a few errors: 3 false negatives and 4 false positives,
indicating strong learning ability and reliability. In the validation dataset (Figure 5b), the
model obtained similarly good results, accurately classifying 11 abnormal samples and
10 normal samples, with just 2 false negatives and 1 false positive.
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Figure 9. Confusion matrix for (a) the training dataset and (b) the validation dataset, respectively.

The effectiveness of the proposed anomaly detection method was assessed using
metrics; namely, accuracy, precision, sensitivity, and specificity as summarized in Table 2.
During the training phase, the model achieved an accuracy of 93.3%, with a balanced
precision of 92.7% for detecting abnormalities and 94.0% for normal patterns. Sensitivity
values further indicate the ability of the network to detect anomalies (94.4%) and normal
data (92.1%) effectively. Specificity metrics also confirm the low false-positive rate for both
classes, at 92.1% and 94.4%, respectively. Similarly, in the validation phase, the model
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maintained a competitive accuracy of 87.5%, showing slightly reduced but acceptable
precision for abnormal (91.6%) and normal (83.3%) classes. These findings underscore
the robustness of the proposed network in identifying weld anomalies without the need
for labeled training data. In summary, the proposed unsupervised learning approach
demonstrated reliable performance in detecting anomalies associated with weld defects,
providing a valuable tool for in-process monitoring and quality assurance in laser welding.

Table 2. The performance of the wavelet scattering 1D-CAE network for anomaly detection.

Dataset Accuracy Precision Sensitivity Specificity
Abmornal Normal Abnormal Normal Abnormal Normal

Training 0.933 0.927 0.940 0.944 0.921 0.921 0.944
Validation 0.875 0.916 0.833 0.846 0.909 0.909 0.846

The proposed methods, when applied to real-time industrial settings, necessitate
careful consideration of computational requirements and scalability. To support real-time
processing, the infrastructure must be robust, utilizing high-performance hardware such as
GPUs or specialized edge devices that can handle the intensive computational demands
of the algorithms. These systems should be optimized for low-latency performance, en-
suring fast decision-making through parallel computing or algorithmic simplifications.
Furthermore, addressing scalability is crucial, as industrial applications generate vast
amounts of data that need to be processed and analyzed in real time. Techniques such
as distributed computing, cloud-based systems, or efficient data compression can help
manage the large data streams typical of industrial environments. The proposed methods
must also integrate seamlessly with existing industrial systems, requiring compatibility
with common communication protocols and supporting connectivity with various sensor
networks. Depending on the specific application, a hybrid approach that combines edge
and cloud computing may offer the best balance of low latency and computational power,
with edge devices handling immediate processing and the cloud supporting more complex
computations. Additionally, energy efficiency must be prioritized to ensure long-term op-
erational sustainability, particularly in IoT-heavy environments. Finally, the methods must
be designed to be fault-tolerant and reliable, incorporating redundancy, error detection,
and recovery mechanisms to maintain system uptime and ensure robustness in dynamic
industrial operations.

4. Conclusions
This study successfully applied both supervised and unsupervised machine learning

techniques to analyze photodiode signals for laser weld defect classification and anomaly
detection, offering a robust framework for quality assurance in laser welding processes.
The key findings of the research are as follows:

1. Distinct Signal Patterns for Weld Defects:

• Sound welds (SW) maintained stable signal intensities and consistent temporal
profiles across all emission ranges, indicative of balanced laser-material interac-
tion and uniform plasma formation.

• Over-penetration (OP) was associated with higher plasma (sP) and temperature
(sT) signal intensities, reflecting excessive heat input and deeper penetration.

• Lack of connection (LoC) exhibited lower plasma and temperature signal intensi-
ties and increased back reflection (sR), indicating weak weld integrity.

2. Supervised Learning Performance:
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• Among the supervised methods, Support Vector Machine (SVM) achieved the
highest accuracy (95.%) on the training dataset, excelling in classifying sound
welds (SW), lack of connection (LoC), and over-penetration (OP).

• On the validation dataset, Random Forest (RF) emerged as the most generalizable
model, achieving an accuracy of 83.3%, with balanced precision, sensitivity, and
specificity across all defect classes.

• The k-Nearest Neighbors (kNN) model, while slightly less accurate, demonstrate

3. Unsupervised Anomaly Detection:

• The wavelet scattering one-dimensional convolutional autoencoder (1D-CAE)
demonstrated strong performance in detecting anomalies, achieving accuracies
of 93.3% (training) and 87.5% (validation).

• Wavelet scattering effectively captured robust features from photodiode signals
in both time and frequency domains, enabling the model to distinguish normal
signals from anomalies without requiring labeled data.

• The method demonstrated low false-positive and false-negative rates, making it
suitable for real-world industrial applications where labeled datasets are scarce
or unavailable.

These results highlight the potential of merging supervised and unsupervised learning
methods to improve the monitoring of laser weld quality. Supervised approaches such as
SVM and RF provide excellent accuracy for identifying defects when labeled data is present,
whereas the unsupervised 1D-CAE offers a scalable and effective means of spotting anoma-
lies in unlabeled data. The future work will aim to incorporate the proposed methods into
real-time monitoring systems, addressing key challenges such as latency issues and hard-
ware requirements. To ensure low latency, the framework utilizes computationally efficient
components, including wavelet scattering for feature extraction and a lightweight 1D-CAE
architecture for anomaly detection. Optimization techniques like model quantization and
pruning will be employed to further reduce computational overhead without sacrificing
performance. Additionally, the use of parallel processing on industrial-grade hardware,
such as GPUs and edge-computing devices, enables the system to process high-frequency
photodiode signals (up to 50 kHz) in real time with minimal latency. Regarding hardware
requirements, platforms with adequate processing power offer compact, energy-efficient
solutions that meet the computational demands of real-time monitoring. These platforms
also provide sufficient memory bandwidth to handle multiple photodiode signal channels
simultaneously, ensuring effective monitoring in high-throughput welding environments.
For applications. it is planned to explore deploying pre-trained models on embedded
systems or microcontrollers. This approach involves offline model training, followed by
deployment for in-line monitoring, ensuring adaptability and efficiency in diverse man-
ufacturing settings. Such advancements will not only refine defect detection capabilities
but also contribute to the widespread adoption of intelligent automation in manufacturing,
making it more efficient, reliable, and cost-effective.
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Abbreviations
The following abbreviations are used in this manuscript:

CAE Convolutional AutoEncoder
1D-CNN One-dimensional Convolutional Neural Network
WS Wavelet Scattering
SVM Support Vector Machine
kNN k Nearest Neighbor
RF Random Forest
LoC Lack of Connection
OP Over Penetration
SW Sound Weld
DP Penetration Depth
TS Throat Thickness
TU Thickness Upper
TL Thickness Lower
sP Signal Plasma
sT Signal Temperature
sR Signal Reflection
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