A Parallel Prognostic Method Integrating Uncertainty Quantification for Probabilistic Remaining Useful Life Prediction of Aero-Engine
<p>The flowchart of the proposed method.</p> "> Figure 2
<p>The structure of the TCN model.</p> "> Figure 3
<p>The visualization of dilated causal convolution.</p> "> Figure 4
<p>The architecture of the Transformer.</p> "> Figure 5
<p>The principle of multi-head self-attention.</p> "> Figure 6
<p>The comparison between the deterministic model and BNN-like model.</p> "> Figure 7
<p>The simplified diagram of C-MAPSS.</p> "> Figure 8
<p>The visualization of selected normalized sensor measurements.</p> "> Figure 9
<p>The schematic of sliding window processing.</p> "> Figure 10
<p>The rectified piece-wise RUL label.</p> "> Figure 11
<p>The performance comparison with other hyperparameters.</p> "> Figure 12
<p>The visualization of comparison results with other methods.</p> "> Figure 13
<p>The prediction results for the testing engines.</p> "> Figure 14
<p>The visualization of the prediction results on testing datasets.</p> "> Figure 15
<p>The visualization of prediction performance comparison with different methods.</p> ">
Abstract
:1. Introduction
- (1)
- A dual-channel framework is proposed to adequately combine the benefits of both the TCN and Transformer and obtain a deep degradation representation to realize more accurate RUL prediction.
- (2)
- The MC dropout is introduced into the framework to realize the Bayesian approximation and obtain the uncertainty quantification results.
2. Methodology
2.1. Overview of the Proposed Method
2.2. TCN
2.3. Transformer
2.3.1. Encoder–Decoder Architecture
2.3.2. Multi-Head Self-Attention
2.3.3. Positional Encoding
2.4. Bayesian Neural Network
3. Experimental Results and Discussion
3.1. Data Description
3.2. Data Pre-Processing
3.2.1. Data Normalization
3.2.2. Data Screening
3.2.3. Sliding Window Processing
3.2.4. RUL Label Rectification
3.3. Performance Metrics
3.4. Hyperparameter Selection
3.5. Experimental Result Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, F.; Wu, H.; Liu, L.; Ye, Y.; Wang, Y.; Wu, P. Nonlinear optimal frequency control for dynamic vibration absorber and its application. Mech. Syst. Sig. Process. 2025, 223, 111932. [Google Scholar] [CrossRef]
- Wu, H.; Wei, J.; Wu, P.; Zhang, F.; Liu, Y. Dynamic response analysis of high-speed train gearboxes excited by wheel out-of-round: Experiment and simulation. Veh. Syst. Dyn. 2024, 1–27. [Google Scholar] [CrossRef]
- Wang, X.; Liu, X.; Yang, H.; Wang, Z.; Wen, X.; He, X.; Qing, L.; Chen, H. Degradation Modeling for Restoration-enhanced Object Detection in Adverse Weather Scenes. IEEE Trans. Intell. Veh. 2024, 1–17. [Google Scholar] [CrossRef]
- Zhao, Y.; Teng, Q.; Chen, H.; Zhang, S.; He, X.; Li, Y.; Sheriff, R.E. Activating more information in arbitrary-scale image super-resolution. IEEE Trans. Multimed. 2024, 26, 7946–7961. [Google Scholar] [CrossRef]
- Wang, X.; Chen, H.; Gou, H.; He, J.; Wang, Z.; He, X.; Qing, L.; Sheriff, R.E. RestorNet: An efficient network for multiple degradation image restoration. Knowl.-Based Syst. 2023, 282, 111116. [Google Scholar] [CrossRef]
- Li, Y.; Sun, L.; Geng, J.; Zhao, X. Semi-analytical investigation on hydrodynamic efficiency and loading of perforated breakwater-integrated OWCs. Ocean Eng. 2024, 309, 118460. [Google Scholar] [CrossRef]
- Shao, Z.; Yin, Y.; Lyu, H.; Soares, C.G. A robust method for multi object tracking in autonomous ship navigation systems. Ocean Eng. 2024, 311, 118560. [Google Scholar] [CrossRef]
- Guo, J.; Li, D.; Du, B. A stacked ensemble method based on TCN and convolutional bi-directional GRU with multiple time windows for remaining useful life estimation. Appl. Soft Comput. 2024, 150, 111071. [Google Scholar] [CrossRef]
- Xia, M.; Zheng, X.; Imran, M.; Shoaib, M. Data-driven prognosis method using hybrid deep recurrent neural network. Appl. Soft Comput. 2020, 93, 106351. [Google Scholar] [CrossRef]
- Wang, L.; Guo, W.; Guo, J.; Zheng, S.; Wang, Z.; Kang, H.S.; Li, H. An Integrated Deep Learning Model for Intelligent Recognition of Long-distance Natural Gas Pipeline Features. Reliab. Eng. Syst. Saf. 2024, 255, 110664. [Google Scholar] [CrossRef]
- Lin, X.; Liu, X.; Yang, H.; He, X.; Chen, H. Perception-and Fidelity-aware Reduced-Reference Super-Resolution Image Quality Assessment. IEEE Trans. Broadcast. 2024. [Google Scholar] [CrossRef]
- Guo, J.; Yang, Y.; Li, H.; Wang, J.; Tang, A.; Shan, D.; Huang, B. A hybrid deep learning model towards fault diagnosis of drilling pump. Appl. Energy 2024, 372, 123773. [Google Scholar] [CrossRef]
- Huang, C.G.; Li, H.; Peng, W.; Tang, L.C.; Ye, Z.S. Personalized Federated Transfer Learning for Cycle-Life Prediction of Lithium-Ion Batteries in Heterogeneous Clients with Data Privacy Protection. IEEE Internet Things J. 2024, 11, 36895–36906. [Google Scholar] [CrossRef]
- Hu, G.; Deng, J.; Wang, G.; Tang, K.; Ren, G.; Wen, X. Experimental and Simulation Study on Fatigue Damage Characteristics of HNBR by HTHP Aging in Oil-Based Mud Environment. In Fatigue & Fracture of Engineering Materials & Structures; John Wiley & Sons Ltd: Hoboken, NJ, USA, 2025. [Google Scholar] [CrossRef]
- Liu, H.; Sun, Y.; Ding, W.; Wu, H.; Zhang, H. Enhancing non-stationary feature learning for remaining useful life prediction of aero-engine under multiple operating conditions. Measurement 2024, 227, 114242. [Google Scholar] [CrossRef]
- Huang, C.; Bu, S.; Lee, H.H.; Chan, C.H.; Kong, S.W.; Yung, W.K. Prognostics and health management for predictive maintenance: A review. J. Manuf. Syst. 2024, 75, 78–101. [Google Scholar] [CrossRef]
- Li, W.; Shang, Z.; Gao, M.; Qian, S.; Feng, Z. Remaining useful life prediction based on transfer multi-stage shrinkage attention temporal convolutional network under variable working conditions. Reliab. Eng. Syst. Saf. 2022, 226, 108722. [Google Scholar] [CrossRef]
- Guo, J.; Wang, Z.; Yang, Y.; Song, Y.; Wan, J.L.; Huang, C.G. A dual-channel transferable RUL prediction method integrated with Bayesian deep learning and domain adaptation for rolling bearings. Qual. Reliab. Eng. Int. 2024, 40, 2348–2366. [Google Scholar] [CrossRef]
- Lei, Y.; Li, N.; Guo, L.; Li, N.; Yan, T.; Lin, J. Machinery health prognostics: A systematic review from data acquisition to RUL prediction. Mech. Syst. Sig. Process. 2018, 104, 799–834. [Google Scholar] [CrossRef]
- Shao, Z.; Yin, Y.; Lyu, H.; Soares, C.G.; Cheng, T.; Jing, Q.; Yang, Z. An efficient model for small object detection in the maritime environment. Appl. Ocean Res. 2024, 152, 104194. [Google Scholar] [CrossRef]
- Guo, J.; Yang, Y.; Li, H.; Dai, L.; Huang, B. A parallel deep neural network for intelligent fault diagnosis of drilling pumps. Eng. Appl. Artif. Intell. 2024, 133, 108071. [Google Scholar] [CrossRef]
- Huang, C.G.; Huang, H.Z.; Li, Y.F.; Peng, W. A novel deep convolutional neural network-bootstrap integrated method for RUL prediction of rolling bearing. J. Manuf. Syst. 2021, 61, 757–772. [Google Scholar] [CrossRef]
- Wang, Y.; Deng, L.; Zheng, L.; Gao, R.X. Temporal convolutional network with soft thresholding and attention mechanism for machinery prognostics. J. Manuf. Syst. 2021, 60, 512–526. [Google Scholar] [CrossRef]
- Guo, J.; Zan, X.; Wang, L.; Lei, L.; Ou, C.; Bai, S. A random forest regression with Bayesian optimization-based method for fatigue strength prediction of ferrous alloys. Eng. Fract. Mech. 2023, 293, 109714. [Google Scholar] [CrossRef]
- Soualhi, M.; Nguyen, K.T.P.; Medjaher, K. Explainable RUL estimation of turbofan engines based on prognostic indicators and heterogeneous ensemble machine learning predictors. Eng. Appl. Artif. Intell. 2024, 133, 108186. [Google Scholar] [CrossRef]
- Peng, K.; Jiao, R.; Dong, J.; Pi, Y. A deep belief network based health indicator construction and remaining useful life prediction using improved particle filter. Neurocomputing 2019, 361, 19–28. [Google Scholar] [CrossRef]
- Wang, T.; Li, B.; Fei, Q.; Xu, S.; Ma, Z. Parallel processing of sensor signals using deep learning method for aero-engine remaining useful life prediction. Meas. Sci. Technol. 2024, 35, 096129. [Google Scholar] [CrossRef]
- Lu, X.; Pan, H.; Zhang, L.; Ma, L.; Wan, H. A dual path hybrid neural network framework for remaining useful life prediction of aero-engine. Qual. Reliab. Eng. Int. 2024, 40, 1795–1810. [Google Scholar] [CrossRef]
- Liu, L.; Song, X.; Zhou, Z. Aircraft engine remaining useful life estimation via a double attention-based data-driven architecture. Reliab. Eng. Syst. Saf. 2022, 221, 108330. [Google Scholar] [CrossRef]
- Jiang, L.; Zhang, T.; Lei, W.; Zhuang, K.; Li, Y. A new convolutional dual-channel Transformer network with time window concatenation for remaining useful life prediction of rolling bearings. Adv. Eng. Inf. 2023, 56, 101966. [Google Scholar] [CrossRef]
- Lin, L.; Wu, J.; Fu, S.; Zhang, S.; Tong, C.; Zu, L. Channel attention & temporal attention based temporal convolutional network: A dual attention framework for remaining useful life prediction of the aircraft engines. Adv. Eng. Inf. 2024, 60, 102372. [Google Scholar]
- Chen, F.; Yu, Y.; Li, Y. An aero–engine remaining useful life prediction model based on clustering analysis and the improved GRU–TCN. Meas. Sci. Technol. 2024, 36, 016001. [Google Scholar] [CrossRef]
- Guo, J.; Wang, Z.; Li, H.; Yang, Y.; Huang, C.G.; Yazdi, M.; Kang, H.S. A hybrid prognosis scheme for rolling bearings based on a novel health indicator and nonlinear Wiener process. Reliab. Eng. Syst. Saf. 2024, 245, 110014. [Google Scholar] [CrossRef]
- Saxena, A.; Goebel, K.; Simon, D.; Eklund, N. Damage propagation modeling for aircraft engine run-to-failure simulation. In Proceedings of the 2008 International Conference on Prognostics and Health Management, Denver, CO, USA, 6–9 October 2008; IEEE: Piscataway, NJ, USA, 2008; pp. 1–9. [Google Scholar]
- Wen, L.; Su, S.; Wang, B.; Ge, J.; Gao, L.; Lin, K. A new multi-sensor fusion with hybrid Convolutional Neural Network with Wiener model for remaining useful life estimation. Eng. Appl. Artif. Intell. 2023, 126, 106934. [Google Scholar] [CrossRef]
- Zhao, C.; Huang, X.; Li, Y.; Li, S. A novel remaining useful life prediction method based on gated attention mechanism capsule neural network. Measurement 2022, 189, 110637. [Google Scholar] [CrossRef]
Literature | Model | Advantages | Research Gaps |
---|---|---|---|
Wang et al. [27] | Improved Inception module with gated recurrent unit | Reduces feature omission problem; high feature extraction capacity | Lack of uncertainty quantification |
Lu et al. [28] | A multi-scale CNN and bidirectional GRU with temporal attention | High prediction efficiency; high feature extraction capacity | Lack of uncertainty quantification |
Liu et al. [29] | A dual attention-based CNN and Transformer | Little prior knowledge; integration of channel and temporal information | Lack of uncertainty quantification |
Jiang et al. [30] | A convolutional dual-channel Transformer | Low amounts of trainable parameters; extraction of local features from different domains | Lack of uncertainty quantification |
Lin et al. [31] | A double attention TCN framework | Increase in the attention to key time points; high feature extraction capacity | Lack of uncertainty quantification; parallel channel |
Chen et al. [32] | An improved GRU-TCN model | Extraction of deeper degradation features; incorporation of the recognition results | Lack of uncertainty quantification; parallel channel |
Dataset | FD001 | FD002 | FD003 | FD004 |
---|---|---|---|---|
Number of training engines | 100 | 260 | 100 | 249 |
Number of test engines | 100 | 259 | 100 | 248 |
Operating conditions | 1 | 6 | 1 | 6 |
Fault modes | 1 | 1 | 2 | 2 |
Maximum cycles | 362 | 378 | 525 | 543 |
Minimum cycles | 128 | 128 | 145 | 128 |
Categories | Sensor Number |
---|---|
Increasing trend | 2, 3, 4, 8, 9, 11, 13, 14, 15, 17 |
Decreasing trend | 7, 12, 20, 21 |
Constant trend | 1, 5, 6, 10, 16, 18, 19 |
Parameter | Value |
---|---|
TCN block 1 | Filters = 8, kernel size = 4, dilation rate = 1 |
TCN block 2 | Filters = 6, kernel size = 4, dilation rate = 2 |
TCN block 3 | Filters = 4, kernel size = 4, dilation rate = 4 |
d_model | 14 |
Heads | 2 |
Encoder layer | 2 |
Dropout | 0.2 |
Learning rate | 0.001 |
Batch size | 128 |
Optimizer | Adam |
Epoch | 50 |
Window size | 30 |
FD001 | FD003 | |||
---|---|---|---|---|
RMSE | Score | RMSE | Score | |
CNN-Transformer | 14.90 | 450.80 | 13.55 | 475.37 |
Transformer | 15.44 | 445.83 | 26.46 | 4637.81 |
TCN-BiGRU | 13.76 | 357.83 | 14.07 | 360.02 |
Proposed method | 13.64 | 245.42 | 13.50 | 347.78 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, R.; Zhang, Y.; Hu, C.; Yang, Z.; Li, H.; Liu, F.; Li, L.; Guo, J. A Parallel Prognostic Method Integrating Uncertainty Quantification for Probabilistic Remaining Useful Life Prediction of Aero-Engine. Processes 2024, 12, 2925. https://doi.org/10.3390/pr12122925
Wang R, Zhang Y, Hu C, Yang Z, Li H, Liu F, Li L, Guo J. A Parallel Prognostic Method Integrating Uncertainty Quantification for Probabilistic Remaining Useful Life Prediction of Aero-Engine. Processes. 2024; 12(12):2925. https://doi.org/10.3390/pr12122925
Chicago/Turabian StyleWang, Rongqiu, Ya Zhang, Chen Hu, Zhengquan Yang, Huchang Li, Fuqi Liu, Linling Li, and Junyu Guo. 2024. "A Parallel Prognostic Method Integrating Uncertainty Quantification for Probabilistic Remaining Useful Life Prediction of Aero-Engine" Processes 12, no. 12: 2925. https://doi.org/10.3390/pr12122925
APA StyleWang, R., Zhang, Y., Hu, C., Yang, Z., Li, H., Liu, F., Li, L., & Guo, J. (2024). A Parallel Prognostic Method Integrating Uncertainty Quantification for Probabilistic Remaining Useful Life Prediction of Aero-Engine. Processes, 12(12), 2925. https://doi.org/10.3390/pr12122925