Characterization of Fume Suppression Effect and Performance of SBS-Modified Asphalt with Deodorant
<p>Schematic diagram of the asphalt fume generation and enrichment system.</p> "> Figure 2
<p>Calibration curve of asphalt fume concentration and absorbance.</p> "> Figure 3
<p>Effectiveness of deodorizers in suppressing the VOC content of SBSMA.</p> "> Figure 4
<p>GC-MS of SBSMA and deodorized SBSMA.</p> "> Figure 4 Cont.
<p>GC-MS of SBSMA and deodorized SBSMA.</p> "> Figure 5
<p>FTIR spectra of SBSMA and deodorized SBSMA.</p> "> Figure 6
<p>Physical properties of SBSMA at different deodorant dosages.</p> "> Figure 7
<p>Rheological parameters of SBS-modified asphalt samples.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Fume Collection Process of SBS-Modified Asphalt
2.3. Test and Evaluation Methods
2.3.1. Ultraviolet–Visible Spectrophotometry
2.3.2. Gas Chromatography–Mass Spectrometry (GC-MS)
2.3.3. Fourier-Transform Infrared Spectroscopy (FT-IR)
2.3.4. Physical Property Tests
2.3.5. Rheological Property Tests
3. Results and Discussion
3.1. Characterization of Total Fumes
3.2. Composition Analysis of Fumes
3.3. Functional Groups of SBSMA Before and After Deodorization
3.4. Physical Properties and Effects of SBSMA with Deodorant
3.5. Rheological Properties and Effects of SBSMA with Deodorant
4. Conclusions
- (1)
- The fumes produced in the preparation and production of SBS-modified asphalt are a mixture of solids, liquids, and gases. The designed fume generation and collection system could effectively collect the various fume components of asphalt, which could then be analyzed and evaluated accurately by different chemical tests.
- (2)
- UV spectrophotometry indicated that both deodorizers showed good inhibition of total VOC emissions from SBS-modified asphalt. When the high-boiling-point ester, deodorant A, was selected (the optimal dosage was 0.3%), it was able to reduce the emission of VOCs by 41.7%. Adsorbent deodorant B (optimal dosage of 1.0%) had a relatively weak inhibitory effect and was able to reduce VOC emissions by 36%.
- (3)
- The GC-MS test revealed that the main components of SBS-modified asphalt were alkanes and benzene congeners, and the hazardous substances were benzene congeners, naphthalene, thiophene, methyl ester, and mercaptan. Deodorizers A and B significantly reduced the production of benzene congeners, especially the former, which reduced them by at least 50%. Both deodorizers achieved both deodorization and environmental protection and did not produce new harmful substances.
- (4)
- FTIR and GC-MS tests clarified the effect and mechanism of deodorant on SBS-modified asphalt. After incorporating deodorant, several absorption peaks in asphalt decreased to different degrees, and no new characteristic peaks appeared.
- (5)
- The addition of both types of deodorizers had little effect on the conventional physical properties of SBS-modified asphalt, which proved that they would not affect the actual road performance. Even the rheological properties of raw SBS asphalt could be effectively enhanced when an optimal amount of deodorant was incorporated.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pan, P.; Wu, S.; Xiao, Y.; Liu, G. A review on hydronic asphalt pavement for energy harvesting and snow melting. Renew. Sustain. Energy Rev. 2015, 48, 624–634. [Google Scholar] [CrossRef]
- Xiao, Y.; Wan, M.; Jenkins, K.J.; Wu, S.P.; Cui, P.Q. Using Activated Carbon to Reduce the Volatile Organic Compounds from Bituminous Materials. J. Mater. Civ. Eng. 2017, 29, 04017166. [Google Scholar] [CrossRef]
- Rasool, R.T.; Wang, S.; Zhang, Y.; Li, Y.; Zhang, G. Improving the aging resistance of SBS modified asphalt with the addition of highly reclaimed rubber. Constr. Build. Mater. 2017, 145, 126–134. [Google Scholar] [CrossRef]
- Wang, F.; Xiao, Y.; Cui, P.; Lin, J.; Li, M.; Chen, Z. Correlation of asphalt performance indicators and aging Degrees: A review. Constr. Build. Mater. 2020, 250, 118824. [Google Scholar] [CrossRef]
- Zhao, Z.G.; Wu, S.P.; Liu, Q.T.; Yang, C.; Zou, Y.X.; Wan, P. Feasibility assessment of CeO2 nanoparticles as aging-resistant agent of asphalt. Constr. Build. Mater. 2022, 330, 127245. [Google Scholar] [CrossRef]
- Li, J.; Su, Z.B.; Huang, J.X.; Feng, W.J.; Wei, T.Y.; Meng, K.; Muhammad, Y. Performance of biomimetic coating modified fiber incorporated styrene butadiene styrene modified asphalt. J. Appl. Polym. Sci. 2021, 138, e49967. [Google Scholar] [CrossRef]
- Su, Z.B.; Muhammad, Y.; Sahibzada, M.; Li, J.; Meng, F.; Wei, Y.H.; Zhao, Z.X.; Zhang, L. Preparation and properties of aminated graphene fiber incorporated modified asphalt. Constr. Build. Mater. 2019, 229, 116836. [Google Scholar] [CrossRef]
- Duan, K.X.; Wang, C.H.; Liu, J.K.; Song, L.; Chen, Q.; Chen, Y.Z. Research progress and performance evaluation of crumb-rubber-modified asphalts and their mixtures. Constr. Build. Mater. 2022, 361, 129687. [Google Scholar] [CrossRef]
- Wang, P.P.; Tian, X.G.; Zhang, R.; Zhen, S.H. Effect of Waterborne Epoxy Resin on Properties of Modified Emulsified Asphalt and Its Microstructure. J. Mater. Civ. Eng. 2021, 33, 04021177. [Google Scholar] [CrossRef]
- Zhang, F.; Hu, C.B. The research for crumb rubber/waste plastic compound modified asphalt. J. Therm. Anal. Calorim. 2016, 124, 729–741. [Google Scholar] [CrossRef]
- Cong, P.L.; Wang, J.Y.; Luo, W.H.; Zhang, Y.H. Effects of aging on the properties of SBS modified asphalt binders containing anti-aging agents. Constr. Build. Mater. 2021, 302, 124413. [Google Scholar] [CrossRef]
- Cong, P.L.; Guo, X.Z.; Mei, L.N. Investigation on rejuvenation methods of aged SBS modified asphalt binder. Fuel 2020, 279, 118556. [Google Scholar] [CrossRef]
- Nie, X.Y.; Li, Z.; Yao, H.G.; Hou, T.J.; Zhou, X.L.; Li, C.L. Waste bio-oil as a compatibilizer for high content SBS modified asphalt. Petrol. Sci. Technol. 2020, 38, 316–322. [Google Scholar] [CrossRef]
- Autelitano, F.; Bianchi, F.; Giuliani, F. Airborne emissions of asphalt/wax blends for warm mix asphalt production. J. Clean. Prod. 2017, 164, 749–756. [Google Scholar] [CrossRef]
- Thives, L.P.; Ghisi, E. Asphalt mixtures emission and energy consumption: A review. Renew. Sustain. Energy Rev. 2017, 72, 473–484. [Google Scholar] [CrossRef]
- Yang, X.; Mills-Beale, J.; You, Z. Chemical characterization and oxidative aging of bio-asphalt and its compatibility with petroleum asphalt. J. Clean. Prod. 2017, 142, 1837–1847. [Google Scholar] [CrossRef]
- Cao, L.P.; Yang, C.; Li, A.; Wang, P.; Zhang, Y.; Dong, Z.J. Flue gas composition of waste rubber modified asphalt (WRMA) and effect of deodorants on hazardous constituents and WRMA. J. Hazard. Mater. 2021, 403, 123814. [Google Scholar] [CrossRef]
- Boczkaj, G.; Przyjazny, A.; Kamiński, M. Characteristics of volatile organic compounds emission profiles from hot road bitumens. Chemosphere 2014, 107, 23–30. [Google Scholar] [CrossRef]
- Li, H.B.; Feng, Z.X.; Liu, H.; Ahmed, A.T.; Zhang, M.M.; Zhao, G.J.; Guo, P.; Sheng, Y.P. Performance and inorganic fume emission reduction of desulfurized rubber powder/styrene-butadiene-styrene composite modified asphalt and its mixture. J. Clean. Prod. 2022, 364, 132690. [Google Scholar] [CrossRef]
- Lei, M.; Wu, S.P.; Liu, G.; Amirkhanian, S. VOCs characteristics and their relation with rheological properties of base and modified bitumens at different temperatures. Constr. Build. Mater. 2018, 160, 794–801. [Google Scholar] [CrossRef]
- Cui, P.Q.; Wu, S.P.; Li, F.Z.; Xiao, Y.; Zhang, H.H. Investigation on Using SBS and Active Carbon Filler to Reduce the VOC Emission from Bituminous Materials. Materials 2014, 7, 6130–6143. [Google Scholar] [CrossRef] [PubMed]
- Dong, Z.J.; Zhou, T.; Luan, H.; Williams, R.C.; Wang, P.; Leng, Z. Composite modification mechanism of blended bio-asphalt combining styrene-butadiene-styrene with crumb rubber: A sustainable and environmental-friendly solution for wastes. J. Clean. Prod. 2019, 214, 593–605. [Google Scholar] [CrossRef]
- Yang, X.; You, Z.P.; Perramb, D.; Hand, D.; Ahmed, Z.; Wei, W.; Luo, S. Emission analysis of recycled tire rubber modified asphalt in hot and warm mix conditions. J. Hazard. Mater. 2019, 365, 942–951. [Google Scholar] [CrossRef] [PubMed]
- Boffetta, P.; Burstyn, I. Studies of carcinogenicity of bitumen fume in humans. Am. J. Ind. Med. 2003, 43, 1–2. [Google Scholar] [CrossRef]
- D’Angelo, J.; Harm, E.; Bartoszek, J.; Baumgardner, G.; Corrigan, M.; Cowsert, J.; Harman, T.; Jamshidi, M.; Jones, W.; Newcomb, D.; et al. Warm-Mix Asphalt: European Practice; Office of International Programs: Washington, DC, USA, 2008. [Google Scholar]
- Ge, D.; Yan, K.; You, L.; Wang, Z. Modification mechanism of asphalt modified with Sasobit and Polyphosphoric acid (PPA). Constr. Build. Mater. 2017, 143, 419–428. [Google Scholar] [CrossRef]
- Gong, J.; Liu, Y.; Wang, Q.J.; Xi, Z.H.; Cai, J.; Ding, G.W.; Xie, H.F. Performance evaluation of warm mix asphalt additive modified epoxy asphalt rubbers. Constr. Build. Mater. 2019, 204, 288–295. [Google Scholar] [CrossRef]
- Chen, S.Q.; Wang, J.Q.; Li, Q.; Zhang, W.X.; Yan, C.J. The investigation of volatile organic compounds (VOCs) emissions in environmentally friendly modified asphalt. Polymers 2022, 14, 3459. [Google Scholar] [CrossRef]
- Zhang, X.; Xiao, Y.; Long, Y.; Chen, Z.; Cui, P.; Wu, R.; Chang, X. VOCs reduction in bitumen binder with optimally designed Ca(OH)2-incorporated zeolite. Constr. Build. Mater. 2021, 279, 122485. [Google Scholar] [CrossRef]
- Qin, Q.; Farrar, M.J.; Pauli, A.T.; Adams, J.J. Morphology, thermal analysis and rheology of Sasobit modified warm mix asphalt binders. Fuel 2014, 115, 416–425. [Google Scholar] [CrossRef]
- Yu, H.Y.; Leng, Z.; Dong, Z.J.; Tan, Z.F.; Guo, F.; Yan, J.H. Workability and mechanical property characterization of asphalt rubber mixtures modified with various warm mix asphalt additives. Constr. Build. Mater. 2018, 175, 392–401. [Google Scholar] [CrossRef]
- Jin, J.; Liu, M.H.; Liu, S.; Chen, B.Z.; Liu, X.Y. Study on CeO2 Pillared Montmorillonite Modified Asphalt and Its Catalytic Performance Based on the Emission Reduction of Ecological Pavement. Mater. Rev. 2023, 36, 26–32. [Google Scholar]
- Ivshina, I.; Kostina, L.; Krivoruchko, A.; Kuyukina, M.; Peshkur, T.; Anderson, P.; Cunningham, C. Removal of polycyclic aromatic hydrocarbons in soil spiked with model mixtures of petroleum hydrocarbons and heterocycles using biosurfactants from Rhodococcus ruber IEGM 231. J. Hazard. Mater. 2019, 365, 942–951. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.; Wu, S.P.; Chen, M.Z.; Zhang, H.H.; Chen, W.Z.; Xu, X.P.; Dai, P.Q.; Chen, Y.L. Evaluation of Volatile Organic Compounds from Asphalt Using UV-visible Spectrometer. Adv. Mater. Res. 2012, 472–475, 432–436. [Google Scholar] [CrossRef]
- Tasdemir, Y. High temperature properties of wax modified binders and asphalt mixtures. Constr. Build. Mater. 2009, 23, 3220–3224. [Google Scholar] [CrossRef]
Materials | Basic Properties | Functions | |
---|---|---|---|
SBS-modified asphalt | Penetration (25 °C, 0.1 mm) | 62.5 | Providing asphalt material before adding deodorant |
Softening point (°C) | 80.3 | ||
Ductility (5 cm/min, 5 °C, cm) | 44.9 | ||
Deodorant A | High-boiling-point ester | Reducing harmful flue emissions in SBS-modified asphalt | |
Transparent liquid | |||
Deodorant B | Bulk density (g/mL) | 0.28 | |
Silicon–magnesium type: magnesium oxide, silicon dioxide, white powder | -- | ||
Cyclohexane | Chemical formula | C6H12 | Absorbing organic substances in asphalt fumes |
Relative density (g/mL) | 0.778 | ||
Purity (analytical purity, %) | 99.5 | ||
Water ≤ 50 ppm | -- | ||
Teflon gas sampling bag | Fluorinated ethylene | -- | Collecting gas |
Propylene | -- |
RT (min) | Compounds | Content (wt%) | |||
---|---|---|---|---|---|
SBSMA (190 °C) | SBSMA (210 °C) | SBSMA+A (210 °C) | SBSMA+B (210 °C) | ||
3.17 | Nonane | 6.42 | 6.24 | 7.28 | 5.81 |
4.77 | 1-decene | 0.08 | 0.79 | 0.1 | 0.32 |
4.93 | Decane | 6.91 | 14.48 | 5.01 | 10.26 |
5.54 | 1,2,3-Trimethylbenzene | 1.03 | 2 | 0.77 | 1.88 |
6.78 | p-Xylene | 0.18 | 0.41 | 0.28 | 0.48 |
7.17 | Undecane | 5.85 | 6.4 | 3.28 | 5.45 |
7.65 | 1,2,3,5-tetramethylbenzene | 0.08 | 0.17 | 0.06 | 0.16 |
7.75 | m-cymene | 0.33 | 0.5 | 0.23 | 0.45 |
8.49 | o-xylene | 1.77 | 4.55 | 1.82 | 4.51 |
9.54 | Dodecane | 4.35 | 6.91 | 3.65 | 4.27 |
11.69 | 1-Dodecanol | 0.05 | 0.25 | 0.32 | 0.35 |
11.85 | Tridecane | 9.78 | 8.79 | 12.71 | 9.69 |
14.06 | Tetradecane | 10.57 | 6.48 | 11.41 | 8.61 |
14.76 | 2-Methylnaphthalene | 0.29 | 1.87 | 0.56 | 1.24 |
16.00 | 1-Undecanethiol | 0.06 | 0.29 | 0.25 | 0.35 |
16.14 | pentadecane | 9.43 | 5.77 | 8.62 | 7.58 |
18.12 | Hexadecane | 6.56 | 3.7 | 5.85 | 5.34 |
19.05 | Pristane | 0.25 | 0.55 | 0.75 | 0.78 |
20.00 | Heptadecane | 3.06 | 2.16 | 5.2 | 3.03 |
20.32 | 4-tert-Octylphenol | 0.87 | 0.69 | 0.71 | 0.97 |
20.96 | 3′-Methylacetanilide | 1.11 | 1.78 | 0.76 | 1.7 |
21.78 | n-Octadecane | 0.71 | 0.73 | 1.45 | 1.02 |
23.47 | Nonadecane | 0.61 | 0.59 | 0.93 | 0.83 |
23.97 | Methyl palmitate | 0 | 0.46 | 0 | 0.15 |
24.65 | 4,6-Dimethyldibenzothiophene | 0.19 | 0.75 | 0.19 | 0.5 |
25.04 | Icosane | 2.45 | 0.92 | 1.13 | 1 |
26.73 | Methyl stearate | 0.91 | 1.89 | 1.06 | 1.88 |
29.46 | Tetracosane | 3.13 | 0.82 | 3.24 | 1.14 |
29.76 | 2,2′-Methylenebis(6-tert-butyl-4-methylphenol) | 2 | 4.45 | 2.3 | 3.66 |
30.33 | Heneicosane | 2.18 | 0.94 | 2.47 | 1.31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Y.; Zhao, Y.; Sun, L.; Xu, X.; Zhang, H. Characterization of Fume Suppression Effect and Performance of SBS-Modified Asphalt with Deodorant. Processes 2024, 12, 2603. https://doi.org/10.3390/pr12112603
Guo Y, Zhao Y, Sun L, Xu X, Zhang H. Characterization of Fume Suppression Effect and Performance of SBS-Modified Asphalt with Deodorant. Processes. 2024; 12(11):2603. https://doi.org/10.3390/pr12112603
Chicago/Turabian StyleGuo, Yinan, Yu Zhao, Lianghao Sun, Xiuchen Xu, and Hongchao Zhang. 2024. "Characterization of Fume Suppression Effect and Performance of SBS-Modified Asphalt with Deodorant" Processes 12, no. 11: 2603. https://doi.org/10.3390/pr12112603
APA StyleGuo, Y., Zhao, Y., Sun, L., Xu, X., & Zhang, H. (2024). Characterization of Fume Suppression Effect and Performance of SBS-Modified Asphalt with Deodorant. Processes, 12(11), 2603. https://doi.org/10.3390/pr12112603