Photocatalytic Degradation of Four Organic Dyes Present in Water Using ZnO Nanoparticles Synthesized with Green Synthesis Using Ambrosia ambrosioides Leaf and Root Extract
<p>FT-IR spectra of nanoparticles synthesized with <span class="html-italic">Ambrosia ambrosioides</span>.</p> "> Figure 2
<p>XRD spectra of ZnO nanoparticles synthesized with <span class="html-italic">Ambrosia ambrosioides</span> using: (<b>a</b>) root and (<b>b</b>) sheet.</p> "> Figure 3
<p>UV–Vis analysis of ZnO nanoparticles synthesized with <span class="html-italic">Ambrosia ambrosioides</span>: (<b>a</b>,<b>c</b>) absorbance of ZnO nanoparticles synthesized with root and leaf, respectively, and (<b>b</b>,<b>d</b>) bandgap calculation of ZnO nanoparticles synthesized with root and leaf, respectively.</p> "> Figure 4
<p>SEM morphology study of ZnO nanoparticles synthesized with <span class="html-italic">Ambrosia ambrosioides:</span> (<b>a</b>,<b>b</b>) Morphology of AA_R_ZnO nanoparticles, (<b>c</b>) size distribution of AA_R_ZnO, (<b>d</b>,<b>e</b>) Morphology of AA_S_ZnO nanoparticles and (<b>f</b>) size distribution of AA_S_ZnO.</p> "> Figure 5
<p>TEM morphology study of ZnO nanoparticles synthesized with <span class="html-italic">Ambrosia ambrosioides</span> extracts. (<b>a</b>,<b>b</b>) Morphology of AA_R_ZnO nanoparticles, (<b>c</b>) SAED of AA_R_ZnO, (<b>d</b>,<b>e</b>) Morphology of AA_S_ZnO nanoparticles and (<b>f</b>) SAED of AA_S_ZnO.</p> "> Figure 6
<p>TGA/DSC of the nanoparticles synthesized using <span class="html-italic">Ambrosia ambrosioides</span> extracts.</p> "> Figure 7
<p>Photocatalytic degradations of (<b>a</b>) MB, (<b>b</b>) MO, (<b>c</b>) CR and (<b>d</b>) MR using ZnO nanoparticles synthesized with <span class="html-italic">Ambrosia ambrosioides</span> extracts.</p> "> Figure 8
<p>Mechanism of photocatalytic degradation proposed by this research.</p> "> Figure 9
<p>Green synthesis process of ZnO nanoparticles using <span class="html-italic">Ambrosia ambrosioides</span>.</p> ">
Abstract
:1. Introduction
2. Results and Discussion
2.1. FT-IR Analysis of the ZnO Nanoparticles
2.2. XRD Analysis of the ZnO Nanoparticle
2.3. UV–Vis Analysis and Bandgap Calculation
2.4. Morphological Analysis by SEM and TEM/SAED
2.5. Thermogravimetric Analysis (TGA/DSC)
2.6. Photocatalytic Degradations
2.7. Reaction Mechanism
3. Materials and Methods
3.1. Materials
3.2. Obtaining the Extract
3.3. Green Synthesis of ZnO Nanoparticles
3.4. Characterization of the Nanoparticles
3.5. Photocatalytic Test
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, X.; Liu, W.; Tang, Q.; Liu, B.; Wada, Y.; Yang, H. Global Agricultural Water Scarcity Assessment Incorporating Blue and Green Water Availability Under Future Climate Change. Earth’s Futur. 2022, 10, e2021EF002567. [Google Scholar] [CrossRef]
- Fouda, A.; Hassan, S.E.-D.; Saied, E.; Azab, M.S. An Eco-Friendly Approach to Textile and Tannery Wastewater Treatment Using Maghemite Nanoparticles (γ-Fe2O3-NPs) Fabricated by Penicillium Expansum Strain (K-W). J. Environ. Chem. Eng. 2021, 9, 104693. [Google Scholar] [CrossRef]
- Buscio, V.; Marín, M.J.; Crespi, M.; Gutiérrez-Bouzán, C. Reuse of Textile Wastewater after Homogenization–Decantation Treatment Coupled to PVDF Ultrafiltration Membranes. Chem. Eng. J. 2015, 265, 122–128. [Google Scholar] [CrossRef]
- Rangabhashiyam, S.; Balasubramanian, P. Adsorption Behaviors of Hazardous Methylene Blue and Hexavalent Chromium on Novel Materials Derived from Pterospermum Acerifolium Shells. J. Mol. Liq. 2018, 254, 433–445. [Google Scholar] [CrossRef]
- Zaruma, P.; Proal, J.; Hernández, I.C.; Salas, H.I. Los Colorantes Textiles Industriales y Tratamientos Óptimos de Sus Efluentes de Agua Residual: Una Breve Revisión. Rev. Fac. Ciencias Químicas 2018, 38–47. [Google Scholar]
- Artifon, W.; Cesca, K.; de Andrade, C.J.; Ulson de Souza, A.A.; de Oliveira, D. Dyestuffs from Textile Industry Wastewaters: Trends and Gaps in the Use of Bioflocculants. Process Biochem. 2021, 111, 181–190. [Google Scholar] [CrossRef]
- Saleh, I.A.; Zouari, N.; Al-Ghouti, M.A. Removal of Pesticides from Water and Wastewater: Chemical, Physical and Biological Treatment Approaches. Environ. Technol. Innov. 2020, 19, 101026. [Google Scholar] [CrossRef]
- Pavithra, K.G.; Jaikumar, V. Removal of Colorants from Wastewater: A Review on Sources and Treatment Strategies. J. Ind. Eng. Chem. 2019, 75, 1–19. [Google Scholar] [CrossRef]
- Jamil, T. Role of Advance Oxidation Processes (AOPs) in Textile Wastewater Treatment: A Critical Review. Desalination Water Treat. 2024, 318, 100387. [Google Scholar] [CrossRef]
- Khan, I.; Saeed, K.; Zekker, I.; Zhang, B.; Hendi, A.H.; Ahmad, A.; Ahmad, S.; Zada, N.; Ahmad, H.; Shah, L.A. Review on Methylene Blue: Its Properties, Uses, Toxicity and Photodegradation. Water 2022, 14, 242. [Google Scholar] [CrossRef]
- Predoană, L.; Ciobanu, E.M.; Petcu, G.; Preda, S.; Pandele-Cușu, J.; Anghel, E.M.; Petrescu, S.V.; Culiță, D.C.; Băran, A.; Surdu, V.-A. Photocatalytic Performance of Sn–Doped TiO2 Nanopowders for Photocatalytic Degradation of Methyl Orange Dye. Catalysts 2023, 13, 534. [Google Scholar] [CrossRef]
- Palai, P.; Muduli, S.; Priyadarshini, B.; Sahoo, T.R. A Facile Green Synthesis of ZnO Nanoparticles and Its Adsorptive Removal of Congo Red Dye from Aqueous Solution. Mater. Today Proc. 2021, 38, 2445–2451. [Google Scholar] [CrossRef]
- Irwan, I.; Jumbi, I.S.; Alimin, A.; Ratna, R.; Nohong, N.; Maulidiyah, M.; Nurdin, M.; Muzakkar, M.Z. Electrochemical Photodegradation of Methyl Red Using Reduction Graphene Oxide of Palm Shells Supported TiO2 Nanoparticle under Visible Irradiation. Anal. Bioanal. Electrochem. 2023, 15, 556–567. [Google Scholar]
- Okoro, G.; Husain, S.; Saukani, M.; Mutalik, C.; Yougbaré, S.; Hsiao, Y.-C.; Kuo, T.-R. Emerging Trends in Nanomaterials for Photosynthetic Biohybrid Systems. ACS Mater. Lett. 2022, 5, 95–115. [Google Scholar] [CrossRef]
- Rodriguez-Nava, C.E.; Escobar-Alarcón, L.; Klimova, T. Nanomateriales Con Aplicaciones En Fotocatálisis. In Materiales Avanzados y Nanomateriales: Aprovechamiento Fuentes Naturales y sus Beneficios Al Medio Ambiente, Vigueras, E.N.E.; Gonzalo, M.-B., Ed.; OmniaScience: Barcelona, Spain, 2022; pp. 169–200. [Google Scholar]
- Morones, J.R.; Elechiguerra, J.L.; Camacho, A.; Holt, K.; Kouri, J.B.; Ramírez, J.T.; Yacaman, M.J. The Bactericidal Effect of Silver Nanoparticles. Nanotechnology 2005, 16, 2346. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wang, Y.; Ma, J.; Peng, Y.; Wang, A. A Review on Bidirectional Analogies between the Photocatalysis and Antibacterial Properties of ZnO. J. Alloys Compd. 2019, 783, 898–918. [Google Scholar] [CrossRef]
- Rane, A.V.; Kanny, K.; Abitha, V.K.; Thomas, S. Methods for Synthesis of Nanoparticles and Fabrication of Nanocomposites. In Synthesis of Inorganic Nanomaterials; Elsevier: Amsterdam, The Netherlands, 2018; pp. 121–139. [Google Scholar]
- Makarov, V.V.; Love, A.J.; Sinitsyna, O.V.; Makarova, S.S.; Yaminsky, I.V.; Taliansky, M.E.; Kalinina, N.O. “Green” Nanotechnologies: Synthesis of Metal Nanoparticles Using Plants. Acta Naturae 2014, 6, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Gour, A.; Jain, N.K. Advances in Green Synthesis of Nanoparticles. Artif. Cells Nanomed. Biotechnol. 2019, 47, 844–851. [Google Scholar] [CrossRef]
- Sobhani-Nasab, A.; Behvandi, S.; Karimi, M.A.; Sohouli, E.; Karimi, M.S.; Gholipour, N.; Ahmadi, F.; Rahimi-Nasrabadi, M. Synergetic Effect of Graphene Oxide and C3N4 as Co-Catalyst for Enhanced Photocatalytic Performance of Dyes on Yb2 (MoO4) 3/YbMoO4 Nanocomposite. Ceram. Int. 2019, 45, 17847–17858. [Google Scholar] [CrossRef]
- Sedefoglu, N. Green Synthesis of ZnO Nanoparticles by Myrtus Communis Plant Extract with Investigation of Effect of Precursor, Calcination Temperature and Study of Photocatalytic Performance. Ceram. Int. 2024, 50, 9884–9895. [Google Scholar] [CrossRef]
- Souma, M.; Bariotakis, M.; Koufaki, M.; Stefanakis, M.K.; Angeli, G.K.; Ntagounakis, G.; Trikalitis, P.; Katerinopoulos, H.E.; Castanas, E.; Pirintsos, S.A. Synthesis of ZnO Nanoparticles from the Medicinal Plant Salvia Fruticosa Mill.: Green Approach for Potential Biomedical Application against Zn Deficiency in Humans. Ceram. Int. 2024, 50, 41810–41819. [Google Scholar] [CrossRef]
- Abegunde, S.M.; Adebayo, M.A.; Olasehinde, E.F. Green Synthesis of ZnO Nanoparticles and Its Application for Methyl Green Dye Adsorption. Green Energy Resour. 2024, 2, 100073. [Google Scholar] [CrossRef]
- Shaghaghi, Z.; Mollaei, S.; Amani-Ghadim, A.R.; Abedini, Z. Green Synthesis of ZnO Nanoparticles Using the Aqueous Extract of Platanus Orientalis: Structural Characterization and Photocatalytic Activity. Mater. Chem. Phys. 2023, 305, 127900. [Google Scholar] [CrossRef]
- Ramírez Gottfried, R.I.; García Carrillo, M.; Álvarez Reyna, V.P.; González Cervantes, G.; Hernández Hernández, V. Potencial Fitorremediador Chicura (Ambrosia ambrosioides) En Suelos Contaminados Por Metales Pesados. Rev. Mex. Cienc. Agrícolas 2019, 10, 1529–1540. [Google Scholar] [CrossRef]
- García Muela, M.L. Estudio Fitoquímico de Ambrosia Ambrosioides. Bachelor’s Thesis, University of Sonora, Hermosillo, Mexico, 1980. [Google Scholar]
- Mata-Miranda, M.M.; Guerrero-Robles, C.I.; Rojas-López, M.; Delgado-Macuil, R.J.; González-Díaz, C.A.; Sánchez-Monroy, V.; Pérez-Ishiwara, D.G.; Vázquez-Zapién, G.J. Componentes Principales Mediante Espectroscopia FTIR Como Tecnica de Caracterizacion Innovadora Durante La Diferenciacion de Celulas Madre Pluripotentes a Celulas Pancreaticas. Rev. Mex. Ing. Biomédica 2017, 38, 225–234. [Google Scholar] [CrossRef]
- Sadiq, H.; Sher, F.; Sehar, S.; Lima, E.C.; Zhang, S.; Iqbal, H.M.N.; Zafar, F.; Nuhanović, M. Green Synthesis of ZnO Nanoparticles from Syzygium Cumini Leaves Extract with Robust Photocatalysis Applications. J. Mol. Liq. 2021, 335, 116567. [Google Scholar] [CrossRef]
- Xiong, G.; Pal, U.; Serrano, J.G.; Ucer, K.B.; Williams, R.T. Photoluminesence and FTIR Study of ZnO Nanoparticles: The Impurity and Defect Perspective. Phys. Status Solidi C 2006, 3, 3577–3581. [Google Scholar] [CrossRef]
- Chan, Y.Y.; Pang, Y.L.; Lim, S.; Chong, W.C. Facile Green Synthesis of ZnO Nanoparticles Using Natural-Based Materials: Properties, Mechanism, Surface Modification and Application. J. Environ. Chem. Eng. 2021, 9, 105417. [Google Scholar] [CrossRef]
- Sasi, S.; Fasna, P.H.F.; Sharmila, T.K.B.; Chandra, C.S.J.; Antony, J.V.; Raman, V.; Nair, A.B.; Ramanathan, H.N. Green Synthesis of ZnO Nanoparticles with Enhanced Photocatalytic and Antibacterial Activity. J. Alloys Compd. 2022, 924, 166431. [Google Scholar] [CrossRef]
- MuthuKathija, M.; Sheik Muhideen Badhusha, M.; Rama, V. Green Synthesis of Zinc Oxide Nanoparticles Using Pisonia Alba Leaf Extract and Its Antibacterial Activity. Appl. Surf. Sci. Adv. 2023, 15, 100400. [Google Scholar] [CrossRef]
- Sahai, A.; Goswami, N. Structural and Vibrational Properties of ZnO Nanoparticles Synthesized by the Chemical Precipitation Method. Phys. E Low-Dimens. Syst. Nanostructures 2014, 58, 130–137. [Google Scholar] [CrossRef]
- Sato-Berrú, R.Y.; Vázquez-Olmos, A.; Fernández-Osorio, A.L.; Sotres-Martínez, S. Micro-Raman Investigation of Transition-metal-doped ZnO Nanoparticles. J. Raman Spectrosc. Int. J. Orig. Work. All Asp. Raman Spectrosc. Incl. High. Order Process. Brillouin Rayleigh Scatt. 2007, 38, 1073–1076. [Google Scholar] [CrossRef]
- Karthik, K.V.; Raghu, A.V.; Reddy, K.R.; Ravishankar, R.; Sangeeta, M.; Shetti, N.P.; Reddy, C.V. Green Synthesis of Cu-Doped ZnO Nanoparticles and Its Application for the Photocatalytic Degradation of Hazardous Organic Pollutants. Chemosphere 2022, 287, 132081. [Google Scholar] [CrossRef] [PubMed]
- González-Fernández, J.V.; Pinzón-Moreno, D.D.; Neciosup-Puican, A.A.; Carranza-Oropeza, M.V. Green Method, Optical and Structural Characterization of ZnO Nanoparticles Synthesized Using Leaves Extract of M. Oleifera. J. Renew. Mater. 2022, 10, 833. [Google Scholar] [CrossRef]
- Rathnasamy, R.; Thangasamy, P.; Thangamuthu, R.; Sampath, S.; Alagan, V. Green Synthesis of ZnO Nanoparticles Using Carica Papaya Leaf Extracts for Photocatalytic and Photovoltaic Applications. J. Mater. Sci. Mater. Electron. 2017, 28, 10374–10381. [Google Scholar] [CrossRef]
- El-Belely, E.F.; Farag, M.M.S.; Said, H.A.; Amin, A.S.; Azab, E.; Gobouri, A.A.; Fouda, A. Green Synthesis of Zinc Oxide Nanoparticles (ZnO-NPs) Using Arthrospira Platensis (Class: Cyanophyceae) and Evaluation of Their Biomedical Activities. Nanomater. 2021, 11, 95. [Google Scholar] [CrossRef] [PubMed]
- Maathuis, F.J.M.; Sanders, D. Mechanisms of Potassium Absorption by Higher Plant Roots. Physiol. Plant. 1996, 96, 158–168. [Google Scholar] [CrossRef]
- Valério, A.; Morelhao, S.L. Usage of Scherrer’s Formula in X-Ray Diffraction Analysis of Size Distribution in Systems of Monocrystalline Nanoparticles. arXiv 2019, arXiv1911.00701. [Google Scholar]
- Ahmed, S.; Annu; Chaudhry, S.A.; Ikram, S. A Review on Biogenic Synthesis of ZnO Nanoparticles Using Plant Extracts and Microbes: A Prospect towards Green Chemistry. J. Photochem. Photobiol. B Biol. 2017, 166, 272–284. [Google Scholar] [CrossRef] [PubMed]
- Meng, F.; Liu, Y.; Wang, J.; Tan, X.; Sun, H.; Liu, S.; Wang, S. Temperature Dependent Photocatalysis of G-C3N4, TiO2 and ZnO: Differences in Photoactive Mechanism. J. Colloid Interface Sci. 2018, 532, 321–330. [Google Scholar] [CrossRef]
- Munawar, T.; Nadeem, M.S.; Mukhtar, F.; Hasan, M.; Mahmood, K.; Arshad, M.I.; Hussain, A.; Ali, A.; Saif, M.S.; Iqbal, F. Rare Earth Metal Co-Doped Zn0·9La0.05M0.05O (M= Yb, Sm, Nd) Nanocrystals; Energy Gap Tailoring, Structural, Photocatalytic and Antibacterial Studies. Mater. Sci. Semicond. Process. 2021, 122, 105485. [Google Scholar] [CrossRef]
- Kumar, S.; Thakur, A.; Rangra, V.S.; Sharma, S. Synthesis and Use of Low-Band-Gap ZnO Nanoparticles for Water Treatment. Arab. J. Sci. Eng. 2016, 41, 2393–2398. [Google Scholar] [CrossRef]
- Mousa, S.A.; Wissa, D.A.; Hassan, H.H.; Ebnalwaled, A.A.; Khairy, S.A. Enhanced Photocatalytic Activity of Green Synthesized Zinc Oxide Nanoparticles Using Low-Cost Plant Extracts. Sci. Rep. 2024, 14, 16713. [Google Scholar] [CrossRef] [PubMed]
- Srikant, V.; Clarke, D.R. On the Optical Band Gap of Zinc Oxide. J. Appl. Phys. 1998, 83, 5447–5451. [Google Scholar] [CrossRef]
- Tammina, S.K.; Mandal, B.K.; Ranjan, S.; Dasgupta, N. Cytotoxicity Study of Piper Nigrum Seed Mediated Synthesized SnO2 Nanoparticles towards Colorectal (HCT116) and Lung Cancer (A549) Cell Lines. J. Photochem. Photobiol. B Biol. 2017, 166, 158–168. [Google Scholar] [CrossRef]
- Davar, F.; Majedi, A.; Mirzaei, A. Green Synthesis of ZnO Nanoparticles and Its Application in the Degradation of Some Dyes. J. Am. Ceram. Soc. 2015, 98, 1739–1746. [Google Scholar] [CrossRef]
- Aldeen, T.S.; Ahmed Mohamed, H.E.; Maaza, M. ZnO Nanoparticles Prepared via a Green Synthesis Approach: Physical Properties, Photocatalytic and Antibacterial Activity. J. Phys. Chem. Solids 2022, 160, 110313. [Google Scholar] [CrossRef]
- Barzinjy, A.A.; Azeez, H.H. Green Synthesis and Characterization of Zinc Oxide Nanoparticles Using Eucalyptus Globulus Labill. Leaf Extract and Zinc Nitrate Hexahydrate Salt. SN Appl. Sci. 2020, 2, 991. [Google Scholar] [CrossRef]
- López-López, J.; Tejeda-Ochoa, A.; López-Beltrán, A.; Herrera-Ramírez, J.; Méndez-Herrera, P. Sunlight Photocatalytic Performance of ZnO Nanoparticles Synthesized by Green Chemistry Using Different Botanical Extracts and Zinc Acetate as a Precursor. Molecules 2022, 27, 6. [Google Scholar] [CrossRef]
- Tran, V.A.; Kadam, A.N.; Lee, S.-W. Adsorption-Assisted Photocatalytic Degradation of Methyl Orange Dye by Zeolite-Imidazole-Framework-Derived Nanoparticles. J. Alloys Compd. 2020, 835, 155414. [Google Scholar] [CrossRef]
- Chakraborty, S.; Farida, J.J.; Simon, R.; Kasthuri, S.; Mary, N.L. Averrhoe Carrambola Fruit Extract Assisted Green Synthesis of Zno Nanoparticles for the Photodegradation of Congo Red Dye. Surf. Interfaces 2020, 19, 100488. [Google Scholar] [CrossRef]
- Gupta, A.K.; Pal, A.; Sahoo, C. Photocatalytic Degradation of a Mixture of Crystal Violet (Basic Violet 3) and Methyl Red Dye in Aqueous Suspensions Using Ag+ Doped TiO2. Dye. Pigment. 2006, 69, 224–232. [Google Scholar] [CrossRef]
- Waseem, S.; Sittar, T.; Kayani, Z.N.; Gillani, S.S.A.; Rafique, M.; Asif Nawaz, M.; Masood Shaheen, S.; Assiri, M.A. Plant Mediated Green Synthesis of Zinc Oxide Nanoparticles Using Citrus Jambhiri Lushi Leaves Extract for Photodegradation of Methylene Blue Dye. Phys. B Condens. Matter 2023, 663, 415005. [Google Scholar] [CrossRef]
- Gupta, K.; Sharma, B.; Garg, V.; Neelratan, P.P.; Kumar, V.; Kumar, D.; Sharma, S.K. Enhanced Photocatalytic Degradation of Methylene Blue and Methyl Orange Using Biogenic ZnO NPs Synthesized via Vachellia Nilotica (Babool) Leaves Extract. Hybrid Adv. 2024, 5, 100160. [Google Scholar] [CrossRef]
- Alhasan, H.S.; Omran, A.R.; Al Mahmud, A.; Mady, A.H.; Thalji, M.R. Toxic Congo Red Dye Photodegradation Employing Green Synthesis of Zinc Oxide Nanoparticles Using Gum Arabic. Water 2024, 16, 2202. [Google Scholar] [CrossRef]
- Demir, C.; Aygun, A.; Gunduz, M.K.; Altınok, B.Y.; Karahan, T.; Meydan, I.; Halvaci, E.; Tiri, R.N.E.; Sen, F. Production of Plant-Based ZnO NPs by Green Synthesis; Anticancer Activities and Photodegradation of Methylene Red Dye under Sunlight. Biomass Convers. Biorefinery 2024, 1–16. [Google Scholar] [CrossRef]
- Yadav, S.; Rani, N.; Aarti; Saini, K. Photocatalytic Degradation of Toxic Organic Dye (Methylene Blue) Using ZnO Nanoparticles Synthesized with Petals Extract of Rosa Rubiginosa Plant. Biomass Convers. Biorefinery 2024, 1–17. [Google Scholar] [CrossRef]
- Abomuti, M.A.; Danish, E.Y.; Firoz, A.; Hasan, N.; Malik, M.A. Green Synthesis of Zinc Oxide Nanoparticles Using Salvia Officinalis Leaf Extract and Their Photocatalytic and Antifungal Activities. Biology 2021, 10, 1075. [Google Scholar] [CrossRef]
- Brishti, R.S.; Habib, M.A.; Ara, M.H.; Karim, K.M.R.; Islam, M.K.; Naime, J.; Rumon, M.M.H.; Khan, M.A.R. Green Synthesis of ZnO NPs Using Aqueous Extract of Epipremnum Aureum Leave: Photocatalytic Degradation of Congo Red. Results Chem. 2024, 7, 101441. [Google Scholar] [CrossRef]
- Gul, T.; Khan, I.; Ahmad, B.; Ahmad, S.; Alsaiari, A.A.; Almehmadi, M.; Abdulaziz, O.; Alsharif, A.; Khan, I.; Saeed, K. Efficient Photodegradation of Methyl Red Dye by Kaolin Clay Supported Zinc Oxide Nanoparticles with Their Antibacterial and Antioxidant Activities. Heliyon 2023, 9, e16738. [Google Scholar] [CrossRef]
- Haspulat Taymaz, B.; Demir, M.; Kamış, H.; Orhan, H.; Aydoğan, Z.; Akıllı, A. Facile and Green Synthesis of ZnO Nanoparticles for Effective Photocatalytic Degradation of Organic Dyes and Real Textile Wastewater. Int. J. Phytoremediat. 2023, 25, 1306–1317. [Google Scholar] [CrossRef]
- Algarni, T.S.; Abduh, N.A.Y.; Aouissi, A.; Al Kahtani, A. Photodegradation of Methyl Orange under Solar Irradiation on Fe-Doped ZnO Nanoparticles Synthesized Using Wild Olive Leaf Extract. Green Process. Synth. 2022, 11, 895–906. [Google Scholar] [CrossRef]
- Gaur, J.; Vikrant, K.; Kim, K.-H.; Kumar, S.; Pal, M.; Badru, R.; Masand, S.; Momoh, J. Photocatalytic Degradation of Congo Red Dye Using Zinc Oxide Nanoparticles Prepared Using Carica Papaya Leaf Extract. Mater. Today Sustain. 2023, 22, 100339. [Google Scholar] [CrossRef]
- Ramesh, A.M.; Purushotham, D.; Kodandaram, A.; Shilpa, N.; Singh, S.B.; Aiyaz, M.; Gowtham, H.G.; Rahdar, A.; Kaviyarasu, K.; Murali, M. Visible Light Driven Photocatalytic and Competent Antioxidant Properties of Phyto-Fabricated Zinc Oxide Nanoparticles (ZnO-NPs) from Borreria Hispida. J. Mol. Struct. 2023, 1293, 136152. [Google Scholar] [CrossRef]
- Golmohammadi, M.; Honarmand, M.; Ghanbari, S. A Green Approach to Synthesis of ZnO Nanoparticles Using Jujube Fruit Extract and Their Application in Photocatalytic Degradation of Organic Dyes. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 229, 117961. [Google Scholar] [CrossRef] [PubMed]
- Saravanan, R.; Karthikeyan, S.; Gupta, V.K.; Sekaran, G.; Narayanan, V.; Stephen, A. Enhanced Photocatalytic Activity of ZnO/CuO Nanocomposite for the Degradation of Textile Dye on Visible Light Illumination. Mater. Sci. Eng. C 2013, 33, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Dodoo-Arhin, D.; Asiedu, T.; Agyei-Tuffour, B.; Nyankson, E.; Obada, D.; Mwabora, J.M. Photocatalytic Degradation of Rhodamine Dyes Using Zinc Oxide Nanoparticles. Mater. Today Proc. 2021, 38, 809–815. [Google Scholar] [CrossRef]
- Xu, J.; Huang, Y.; Zhu, S.; Abbes, N.; Jing, X.; Zhang, L. A Review of the Green Synthesis of ZnO Nanoparticles Using Plant Extracts and Their Prospects for Application in Antibacterial Textiles. J. Eng. Fibers Fabr. 2021, 16, 15589250211046242. [Google Scholar] [CrossRef]
Year | Extract | Nanoparticle | Degraded Dye | Percentage Degradation (%) | Time (min) | Reference |
---|---|---|---|---|---|---|
2024 | Ambrosia ambrosoides | ZnO | MB | 90 | 60 | This work |
2024 | Ambrosia ambrosoides | ZnO | MO | 92 | 100 | This work |
2024 | Ambrosia ambrosoides | ZnO | CR | 90 | 60 | This work |
2024 | Ambrosia ambrosoides | ZnO | MR | 90 | 140 | This work |
2023 | Citrus jambhiri lushi | ZnO | MB | 100 | 120 | [56] |
2024 | Vachellia nilotica | ZnO | MO | 80 | 90 | [57] |
2024 | Gum arabic | ZnO | CR | 99 | 30 | [58] |
2024 | Zingiber officinale | ZnO | MR | 88 | 120 | [59] |
2024 | Rosa rubiginosa | ZnO | MB | 99 | 240 | [60] |
2023 | Cystoseira crinite | ZnO | MO | 88 | 200 | [61] |
2024 | Epipremnum aureum | ZnO | CR | 69 | 100 | [62] |
2023 | Kaolin clay | ZnO | MR | 99 | 10 | [63] |
2022 | Thymus vulgaris | ZnO | MB | 100 | 20 | [64] |
2022 | Wild olive | ZnO | MO | 92 | 90 | [65] |
2023 | Carica papaya | ZnO | CR | 100 | 80 | [66] |
2023 | Borreria hispida | ZnO | MR | 94 | 40 | [67] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Medina-Acosta, M.; Chinchillas-Chinchillas, M.J.; Garrafa-Gálvez, H.E.; Garcia-Maro, C.A.; Rosas-Casarez, C.A.; Lugo-Medina, E.; Luque-Morales, P.A.; Soto-Robles, C.A. Photocatalytic Degradation of Four Organic Dyes Present in Water Using ZnO Nanoparticles Synthesized with Green Synthesis Using Ambrosia ambrosioides Leaf and Root Extract. Processes 2024, 12, 2456. https://doi.org/10.3390/pr12112456
Medina-Acosta M, Chinchillas-Chinchillas MJ, Garrafa-Gálvez HE, Garcia-Maro CA, Rosas-Casarez CA, Lugo-Medina E, Luque-Morales PA, Soto-Robles CA. Photocatalytic Degradation of Four Organic Dyes Present in Water Using ZnO Nanoparticles Synthesized with Green Synthesis Using Ambrosia ambrosioides Leaf and Root Extract. Processes. 2024; 12(11):2456. https://doi.org/10.3390/pr12112456
Chicago/Turabian StyleMedina-Acosta, Martin, Manuel J. Chinchillas-Chinchillas, Horacio E. Garrafa-Gálvez, Caree A. Garcia-Maro, Carlos A. Rosas-Casarez, Eder Lugo-Medina, Priscy A. Luque-Morales, and Carlos A. Soto-Robles. 2024. "Photocatalytic Degradation of Four Organic Dyes Present in Water Using ZnO Nanoparticles Synthesized with Green Synthesis Using Ambrosia ambrosioides Leaf and Root Extract" Processes 12, no. 11: 2456. https://doi.org/10.3390/pr12112456
APA StyleMedina-Acosta, M., Chinchillas-Chinchillas, M. J., Garrafa-Gálvez, H. E., Garcia-Maro, C. A., Rosas-Casarez, C. A., Lugo-Medina, E., Luque-Morales, P. A., & Soto-Robles, C. A. (2024). Photocatalytic Degradation of Four Organic Dyes Present in Water Using ZnO Nanoparticles Synthesized with Green Synthesis Using Ambrosia ambrosioides Leaf and Root Extract. Processes, 12(11), 2456. https://doi.org/10.3390/pr12112456