Can Celecoxib Assay in Preclinical Studies Be Improved?
<p>Representative HPLC chromatograms of IS (425 nm) and celecoxib (250 nm), in plasma (<b>A</b>), brain (<b>B</b>), spleen (<b>C</b>), liver (<b>D</b>), and kidney (<b>E</b>) homogenate supernatants, respectively, with LLOQ standing for the lower limit of quantification and QC<sub>3</sub>, the high-quality control of the corresponding calibration curves. Chromatograms of blank samples at 425 and 250 nm are also illustrated. IS and celecoxib were eluted at ~3.12 and 5.55 min, respectively.</p> "> Figure 2
<p>Exploratory pharmacokinetic profiles of celecoxib in solution following an intraperitoneal administration in plasma, brain, spleen, liver, and kidney [<a href="#B19-processes-11-00431" class="html-bibr">19</a>]. Results are presented as average per organ; error bars represent calculated standard deviation (n = 3 per time point, mean ± SD).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Blank Mouse Plasma and Tissue
2.3. Stock Solutions and Standards
2.4. HPLC Instrumentations and Chromatographic Conditions
2.5. Sample Preparation and Extraction Procedure
2.6. Method Validation
2.6.1. Selectivity
2.6.2. Calibration Curves and Lower Limits of Quantification
2.6.3. Recovery and Carryover Effect
2.7. Stability
2.8. Method Application
3. Results and Discussion
3.1. Method Validation
3.1.1. Linearity
3.1.2. Limit of Quantification, Precision, and Accuracy
3.1.3. Recovery and Carryover Effect
3.1.4. Stability
3.2. Method Application
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gong, L.; Thorn, C.F.; Bertagnolli, M.M.; Grosser, T.; Altman, R.B.; Klein, T.E. Celecoxib pathways: Pharmacokinetics and pharmacodynamics. Pharmacogenet. Genom. 2012, 22, 310–318. [Google Scholar] [CrossRef] [PubMed]
- Basso, J.; Mendes, M.; Fortuna, A.; Vitorino, R.; Sousa, J.; Pais, A.; Vitorino, C. Nanotechnological approaches in cancer: The role of celecoxib and disulfiram. In Drug Repurposing in Cancer Therapy; Elsevier: Amsterdam, The Netherlands, 2020; pp. 353–393. [Google Scholar] [CrossRef]
- Basso, J.; Miranda, A.; Sousa, J.; Pais, A.; Vitorino, C. Repurposing drugs for glioblastoma: From bench to bedside. Cancer Lett. 2018, 428, 173–183. [Google Scholar] [CrossRef] [PubMed]
- PubChem. Celecoxib. 2018. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/2662 (accessed on 3 April 2018).
- PharmgKB. Celecoxib. Available online: https://www.pharmgkb.org/pathway/PA152241951 (accessed on 11 November 2021).
- Alajami, H.N.; Fouad, E.A.; Ashour, A.E.; Kumar, A.; Yassin, A.E.B. Celecoxib-Loaded Solid Lipid Nanoparticles for Colon Delivery: Formulation Optimization and In Vitro Assessment of Anti-Cancer Activity. Pharmaceutics 2022, 14, 131. [Google Scholar] [CrossRef] [PubMed]
- Margulis, K.; Neofytou, E.A.; Beygui, R.E.; Zare, R.N. Celecoxib Nanoparticles for Therapeutic Angiogenesis. ACS Nano 2015, 9, 9416–9426. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, M.; Rantanen, J.; Yang, M.; Bohr, A. Transformation of nanoparticles into compacts: A study on PLGA and celecoxib nanoparticles. Int. J. Pharm. 2021, 611, 121278. [Google Scholar] [CrossRef] [PubMed]
- Ziaei, E.; Emami, J.; Kazemi, M.; Rezazadeh, M. Simultaneous Determination of Docetaxel and Celecoxib in Porous Microparticles and Rat Plasma by Liquid-Liquid Extraction and HPLC with UV Detection: In vitro and in vivo Validation and Application. J. Pharm. Pharm. Sci. 2020, 23, 289–303. [Google Scholar] [CrossRef] [PubMed]
- Ptáček, P.; Klíma, J.; Macek, J. Determination of celecoxib in human plasma by liquid chromatography–tandem mass spectrometry. J. Chromatogr. B 2012, 899, 163–166. [Google Scholar] [CrossRef] [PubMed]
- Rose, M.J.; Woolf, E.J.; Matuszewski, B.K. Determination of celecoxib in human plasma by normal-phase high-performance liquid chromatography with column switching and ultraviolet absorbance detection. J. Chromatogr. B Biomed. Sci. Appl. 2000, 738, 377–385. [Google Scholar] [CrossRef] [PubMed]
- Hamama, A.K.; Ray, J.; Day, R.O.; Brien, J.E. Simultaneous determination of rofecoxib and celecoxib in human plasma by high-performance liquid chromatography. J. Chromatogr. Sci. 2005, 43, 351–354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, J.; Basso, J.; Sousa, J.; Fortuna, A.; Vitorino, C. Development and full validation of an HPLC methodology to quantify atorvastatin and curcumin after their intranasal co-delivery to mice. Biomed. Chromatogr. 2019, 33, e4621. [Google Scholar] [CrossRef] [PubMed]
- Saha, R.N.; Sajeev, C.; Jadhav, P.R.; Patil, S.P.; Srinivasan, N. Determination of celecoxib in pharmaceutical formulations using UV spectrophotometry and liquid chromatography. J. Pharm. Biomed. Anal. 2002, 28, 741–751. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Gao, S.; Hu, M. Quantitation of celecoxib and four of its metabolites in rat blood by UPLC-MS/MS clarifies their blood distribution patterns and provides more accurate pharmacokinetics profiles. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2015, 1001, 202–211. [Google Scholar] [CrossRef] [PubMed]
- EMA—European Medicines Agency. Guideline on Bioanalytical Method Validation; EMEA/CHMP/EWP/192217/2009; EMA: Amsterdam, The Netherlands , 2011. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/ich-guideline-m10-bioanalytical-method-validation-step-5_en.pdf (accessed on 30 January 2023).
- Meesters, R.; Voswinkel, S. Bioanalytical Method Development and Validation: From the US FDA 2001 to the US FDA 2018 Guidance for Industry. J. Appl. Bioanal. 2018, 4, 67–73. [Google Scholar] [CrossRef]
- Basso, J.; Mendes, M.; Cova, T.F.G.G.; Sousa, J.J.; Pais, A.A.C.C.; Vitorino, C. Analytical Quality by Design (AQbD) as a multiaddressable platform for co-encapsulating drug assays. Anal. Methods 2018, 10, 5659–5671. [Google Scholar] [CrossRef]
- Zhang, Y.; Huo, M.; Zhou, J.; Xie, S. PKSolver: An add-in program for pharmacokinetic and pharmacodynamic data analysis in Microsoft Excel. Comput. Methods Programs Biomed. 2010, 99, 306–314. [Google Scholar] [CrossRef] [PubMed]
Mouse Matrices | Calibration Curve (µg/mL) | Quality Controls (µg/mL) |
---|---|---|
Plasma | 0.6, 1, 5, 10, 25, 50 | QCLLOQ = 0.6 |
QC1 = 1.2 | ||
QC2 = 7.5 | ||
QC3 = 45 | ||
Brain | 0.1, 0.2, 0.5, 1, 3, 5 | QCLLOQ = 0.1 |
QC1 = 0.25 | ||
QC2 = 0.75 | ||
QC3 = 4.5 | ||
Spleen | 0.6, 1, 5, 10, 25, 50 | QCLLOQ = 0.6 |
QC1 = 1.2 | ||
QC2 = 7.5 | ||
QC3 = 45 | ||
Liver | 0.1, 0.5, 1, 5, 10, 15 | QCLLOQ = 0.1 |
QC1 = 0.2 | ||
QC2 = 2.5 | ||
QC3 = 13.5 | ||
Kidney | 0.1, 0.5, 1, 5, 10, 15 | QCLLOQ = 0.1 |
QC1 = 0.2 | ||
QC2 = 2.5 | ||
QC3 = 13.5 |
Animal Matrices | Homogenate Volume | [IS] μg/mL | IS (μL) | ACN (μL) | HPLC Injection Volume (μL) |
---|---|---|---|---|---|
Plasma | 100 | 50 | 10 | 190 | 10 |
Brain | 250 | 25 | 10 | 490 | 20 |
Spleen | 100 | 50 | 10 | 190 | 10 |
Kidney | 500 | 100 | 10 | 990 | 10 |
Liver | 500 | 100 | 10 | 990 | 10 |
Matrix | Calibration Standards (μg/mL) | Mean Slope ± SD | Mean Intercept ± SD | Mean r2 |
---|---|---|---|---|
Plasma | 0.6, 1.2, 5, 10, 25, 50 | 0.0613 ± 0.0025 | 0.0062 ± 0.0065 | 0.996 |
Brain | 0.01, 0.2, 0.5, 1, 3, 5 | 0.3387 ± 0.0630 | 0.0103 ± 0.0065 | 0.996 |
Spleen | 0.6, 1.2, 5, 10, 25, 50 | 0.0648 ± 0.0011 | 0.0092 ± 0.0169 | 0.996 |
Kidney | 0.1, 0.5, 1, 5, 10, 15 | 0.1700 ± 0.0078 | 0.0028 ± 0.0055 | 0.999 |
Liver | 0.1, 0.5, 1, 5, 10, 15 | 0.1756 ± 0.0201 | 0.0117 ± 0.0047 | 0.999 |
Intra-Day (n = 6) | Inter-Day (n = 15) | ||||||
---|---|---|---|---|---|---|---|
Matrix | Concentration (μg/mL) | Mean Experimental Concentration ± SD (μg/mL) | Precision (CV, %) | Accuracy (Bias, %) | Mean Experimental Concentration ± SD (μg/mL) | Precision (CV, %) | Accuracy (Bias, %) |
Plasma | 0.6 | 0.625 ± 0.117 | 18.72 | 10.6 | 0.622 ± 0.105 | 16.82 | 3.73 |
1.2 | 1.021 ± 0.050 | 4.88 | −14.9 | 1.114 ± 0.126 | 11.33 | −7.14 | |
7.5 | 7.152 ± 0.715 | 9.52 | −2.24 | 7.363 ± 0.238 | 3.23 | −1,82 | |
45 | 48.64 ± 4.204 | 8.64 | 8.10 | 45.44 ± 2.019 | 4.44 | 0.99 | |
Brain | 0.1 | 0.102 ± 0.06 | 5.42 | 1.56 | 0.109 ± 0.019 | 17.4 | 8.68 |
0.25 | 0.283 ± 0.030 | 10.4 | 13.2 | 0.250 ± 0.030 | 12.1 | −0.39 | |
0.75 | 0.747 ± 0.042 | 5.60 | −0.44 | 0.762 ± 0.060 | 7.78 | 2.68 | |
4.5 | 5.180 ± 0.249 | 4.81 | 13.1 | 4.737 ± 0.281 | 5.94 | 4.59 | |
Spleen | 0.6 | 0.516 ± 0.065 | 9.82 | −14.0 | 0.615 ± 0.110 | 17.9 | 2.51 |
1.2 | 1.024 ± 0.075 | 6.47 | −14.7 | 1.220 ± 0.181 | 14.9 | 1.67 | |
7.5 | 7.097 ± 0.296 | 4.09 | −5.37 | 7.358 ± 0.499 | 6.82 | −1.90 | |
45 | 44.41 ± 1.112 | 2.50 | −1.31 | 43.05 ± 2.954 | 6.93 | −4.32 | |
Liver | 0.1 | 0.092 ± 0.005 | 5.80 | −7.70 | 0.092 ± 0.014 | 13.8 | −8.04 |
0.2 | 0.190 ± 0.012 | 6.60 | −5.10 | 0.192 ± 0.026 | 12.3 | −4.12 | |
2.5 | 2.722 ± 0.188 | 6.90 | 8.90 | 2.530 ± 0.127 | 6.01 | 1.21 | |
13.5 | 14.03 ± 1.673 | 11.9 | 3.90 | 13.53 ± 0.748 | 5.04 | 0.20 | |
Kidney | 0.1 | 0.100 ± 0.010 | 6.10 | 0.24 | 0.095 ± 0.020 | 12.6 | −5,13 |
0.2 | 0.213 ± 0.011 | 3.85 | 6.44 | 0.211 ± 0.028 | 10.0 | −5.52 | |
2.5 | 2.452 ± 0.119 | 4.09 | −1.90 | 2.607 ± 0.305 | 11.4 | 4.28 | |
13.5 | 13.36 ± 0.231 | 2.36 | −1,01 | 14.01 ± 1.790 | 12.7 | 3.79 |
Recovery (n = 5) | |||
---|---|---|---|
Matrix | Concentration (μg/mL) | Mean ± SD (%) | Precision (CV, %) |
Plasma | 1.2 | 96 ± 3 | 3.28 |
7.5 | 85 ± 3 | 3.68 | |
45 | 84 ± 3 | 3.80 | |
Brain | 0.25 | 103 ± 8 | 8.15 |
0.75 | 100 ± 7 | 7.36 | |
4.5 | 102 ± 5 | 5.17 | |
Spleen | 1.2 | 98 ± 17 | 14.1 |
7.5 | 99 ± 7 | 6.83 | |
45 | 88 ± 6 | 6.70 | |
Liver | 1.2 | 103 ± 6 | 6.03 |
7.5 | 105 ± 8 | 6.86 | |
45 | 109 ± 13 | 11.9 | |
Kidney | 1.2 | 101 ± 6 | 5.61 |
7.5 | 111 ± 4 | 3.81 | |
45 | 106 ± 3 | 2.36 |
Matrix | Nominal Concentration (μg/mL) | Mean ± SD (%) | Precision (CV, %) |
---|---|---|---|
Plasma | 1.2 | 97.3 ± 8.40 | 8.66 |
45 | 87.9 ± 6.50 | 7.45 | |
Brain | 0.25 | 94.1 ± 7.40 | 8.84 |
4.5 | 105.9 ± 13.6 | 11.17 | |
Spleen | 1.2 | 104.7 ± 9.30 | 8.87 |
45 | 93.8 ± 11.1 | 11.22 | |
Liver | 0.2 | 114.6 ± 5.60 | 10.47 |
13.5 | 110.3 ± 2.82 | 2.56 | |
Kidney | 0.2 | 87.5 ± 6.61 | 7.55 |
13.5 | 88.1 ± 5.35 | 6.08 |
Organ | Plasma | Brain | Liver | Spleen | Kidney |
---|---|---|---|---|---|
t1/2 (h) | 1.9 | 1.4 | 2.8 | 4.07 | 2.0 |
tmax (h) | 1 | 1 | 0.5 | 1 | 2.0 |
Cmax (μg/mL or μg/g) | 9.1 | 20.6 | 10.6 | 22.4 | 15.6 |
AUC0-last (h × μg/mL or h × μg/g) | 28.1 | 36.7 | 27.7 | 73.2 | 35.3 |
AUCinf (h × μg/mL or h × μg/g) | 32.3 | 39.5 | 39.8 | 126.2 | 42.2 |
MRT (h) | 2.9 | 2.0 | 4.6 | 6.47 | 3.05 |
DSI | - | 1.30 | 0.99 | 2.60 | 1.26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mendes, M.; Sousa, J.; Pais, A.; Vitorino, C. Can Celecoxib Assay in Preclinical Studies Be Improved? Processes 2023, 11, 431. https://doi.org/10.3390/pr11020431
Mendes M, Sousa J, Pais A, Vitorino C. Can Celecoxib Assay in Preclinical Studies Be Improved? Processes. 2023; 11(2):431. https://doi.org/10.3390/pr11020431
Chicago/Turabian StyleMendes, Maria, João Sousa, Alberto Pais, and Carla Vitorino. 2023. "Can Celecoxib Assay in Preclinical Studies Be Improved?" Processes 11, no. 2: 431. https://doi.org/10.3390/pr11020431
APA StyleMendes, M., Sousa, J., Pais, A., & Vitorino, C. (2023). Can Celecoxib Assay in Preclinical Studies Be Improved? Processes, 11(2), 431. https://doi.org/10.3390/pr11020431