Complex Electromagnetic Fields Reduce Candida albicans Planktonic Growth and Its Adhesion to Titanium Surfaces
<p>Culture samples of <span class="html-italic">Candida albicans</span> ATTC 10,231 during the treatment with complex magnetic fields (C.M.F.s).</p> "> Figure 2
<p>Colony forming units of <span class="html-italic">Candida albicans</span> ATCC 10231 after exposure to C.M.F.s. A = Oxidative Stress, B = Oxidative Stress + Antibacterial, C = Antibacterial, D = Antibacterial +Oxidative Stress, UE = control, unexposed <span class="html-italic">C. albicans</span> ATCC 10231. * <span class="html-italic">p</span>-value < 0.05.</p> "> Figure 3
<p>Live/dead staining of <span class="html-italic">Candida albicans</span> ATCC 10231 exposed to different programs of C.M.F.s. Fluorescent representative images show viable (green) and dead (red) cells after exposure to C.M.F.s with respect to the unexposed ones. Histograms show the percentages of viable and dead cells for each exposed group vs. the unexposed samples obtained with the identical methodologies in every way except for the use of C.M.F.s. The control group UE was used to evaluate the effect of each exposition (* <span class="html-italic">p</span>-value < 0.05). See the legend of <a href="#biomedicines-09-01261-f002" class="html-fig">Figure 2</a> for treatment groups.</p> "> Figure 4
<p>Metabolic activity of <span class="html-italic">Candida albicans</span> ATCC 10231 through the INT assay. See the legend of <a href="#biomedicines-09-01261-f002" class="html-fig">Figure 2</a> for treatment groups *** <span class="html-italic">p</span>-value < 0.01, ** <span class="html-italic">p</span>-value = 0.017, * <span class="html-italic">p</span>-value = 0.008.</p> "> Figure 5
<p>Representative images of the effect of C.M.F.s on the germ tube formation (arrows) in <span class="html-italic">Candida albicans</span> ATCC 10231 (microscopic examination under a magnification of 100×). Histograms show the percentage of germ tube reduction after the C.M.F.s exposure. See the legend of <a href="#biomedicines-09-01261-f002" class="html-fig">Figure 2</a> for treatment groups. * <span class="html-italic">p</span>-value < 0.01, ** <span class="html-italic">p</span>-value = 0.06, *** <span class="html-italic">p</span>-value = 0.002.</p> "> Figure 6
<p><span class="html-italic">Candida albicans</span> ATCC 10231 biofilm growth on saliva-conditioned titanium discs assessed by plate count agar. UE corresponds to saliva conditioned titanium disc covered by unexposed <span class="html-italic">Candida albicans</span> ATCC 10231. The unexposed sample was used to evaluate the effect of each exposition (* = <span class="html-italic">p</span>-value < 0.001; ** <span class="html-italic">p</span>-value = 0.001; *** <span class="html-italic">p</span>-value = 0.003; **** <span class="html-italic">p</span>-value = 0.009; ***** <span class="html-italic">p</span>-value = 0.005). Error bars = +/− standard deviation. See the legend of <a href="#biomedicines-09-01261-f002" class="html-fig">Figure 2</a> for treatment groups.</p> "> Figure 7
<p>SEM images of machined titanium discs covered by adherent <span class="html-italic">Candida albicans</span> ATCC 10231, previously exposed to different C.M.F.s protocols, at different original magnifications, 820× (<b>up</b>) and 5000× (<b>down</b>). UE were titanium discs covered by unexposed <span class="html-italic">Candida albicans</span> ATCC 10231. Arrows display the germ tube presence. See the legend of <a href="#biomedicines-09-01261-f002" class="html-fig">Figure 2</a> for treatment groups.</p> "> Figure 8
<p>Effect of magnetic fields on HGFs viability after 24 h of C.M.F.s exposure. No cytotoxicity effects were observed within all groups. There was no significant difference between each group and unexposed cells (UE). See the legend of <a href="#biomedicines-09-01261-f002" class="html-fig">Figure 2</a> for treatment groups.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Complex Magnetic Fields Source
2.2. Fungal Culture Conditions and Experimental Design
2.3. Determination of Colony-Forming Units (CFU)
2.4. Viability Test
2.5. Metabolic Activity
2.6. Germ Tube Screening Test
2.7. Saliva Collection
2.8. Cultivation of Candida albicans on Titanium Surface
2.9. Scanning Electron Microscope Observation (SEM)
2.10. Cytotoxicity Assay
2.11. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Wiederhold, N.P. Antifungal resistance: Current trends and future strategies to combat. Infect. Drug Resist. 2017, 10, 249–259. [Google Scholar] [CrossRef] [Green Version]
- Niu, G.; Li, W. Next-Generation Drug Discovery to Combat Antimicrobial Resistance. Trends Biochem. Sci. 2019, 44, 961–972. [Google Scholar] [CrossRef]
- Banerjee, A.; Pata, J.; Sharma, S.; Monk, B.C.; Falson, P.; Prasad, R. Directed Mutational Strategies Reveal Drug Binding and Transport by the MDR Transporters of Candida albicans. J. Fungi 2021, 7, 68. [Google Scholar]
- Hamblin, M.R.; Abrahamse, H. Can light-based approaches overcome antimicrobial resistance? Drug Dev. Res. 2019, 80, 48–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, R.; Dai, T.; Avci, P.; Jorge, A.E.S.; de Melo, W.C.M.A.; Vecchio, D.; Huang, Y.-Y.; Gupta, A.; Hamblin, M.R. Light based anti-infectives: Ultraviolet C irradiation, photodynamic therapy, blue light, and beyond. Curr. Opin. Pharm. 2013, 13, 731–762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Ercole, S.; Spoto, G.; Trentini, P.; Tripodi, D.; Petrini, M. In vitro inactivation of Enterococcus faecalis with a led device. J. Photochem. Photobiol. B Biol. 2016, 160, 172–177. [Google Scholar]
- Petrini, M.; Spoto, G.; Scarano, A.; D’Arcangelo, C.; Tripodi, D.; Di Fermo, P.; D’Ercole, S. Near-infrared LEDS provide persistent and increasing protection against E. faecalis. J. Photochem. Photobiol. B Biol. 2019, 197, 111527. [Google Scholar] [CrossRef] [PubMed]
- D’Ercole, S.; Di Fermo, P.; Di Giulio, M.; Di Lodovico, S.; Di Campli, E.; Scarano, A.; Tripodi, D.; Cellini, L.; Petrini, M. Near-infrared NIR irradiation and sodium hypochlorite: An efficacious association to counteract the Enterococcus faecalis biofilm in endodontic infections. J. Photochem. Photobiol. B Biol. 2020, 210, 111989. [Google Scholar] [CrossRef] [PubMed]
- Aaron, S.D.; Vandemheen, K.L.; Ramotar, K.; Giesbrecht-Lewis, T.; Tullis, E.; Freitag, A.; Paterson, N.; Jackson, M.; Lougheed, M.D.; Dowson, C.; et al. Infection With Transmissible Strains of Pseudomonas aeruginosa and Clinical Outcomes in Adults With Cystic Fibrosis. JAMA 2010, 304, 2145. [Google Scholar] [CrossRef] [Green Version]
- Radunović, M.; Petrini, M.; Vlajic, T.; Iezzi, G.; Di Lodovico, S.; Piattelli, A.; D’Ercole, S. Effects of a novel gel containing 5-aminolevulinic acid and red LED against bacteria involved in peri-implantitis and other oral infections. J. Photochem. Photobiol. B Biol. 2020, 205, 111826. [Google Scholar] [CrossRef]
- Yadollahpour, A.; Jalilifar, M.; Rashidi, S. Antimicrobial effects of electromagnetic fields: A review of current techniques and mechanisms of action. J. Pure Appl. Microbiol. 2014, 8, 4031–4043. [Google Scholar]
- Cellini, L.; Grande, R.; Di Campli, E.; Di Bartolomeo, S.; Di Giulio, M.; Robuffo, I.; Trubiani, O.; Mariggiò, M.A. Bacterial response to the exposure of 50 Hz electromagnetic fields. Bioelectromagnetics 2008, 29, 302–311. [Google Scholar] [CrossRef]
- Di Campli, E.; Di Bartolomeo, S.; Grande, R.; Di Giulio, M.; Cellini, L. Effects of extremely low-frequency electromagnetic fields on Helicobacter pylori biofilm. Curr. Microbiol. 2010, 60, 412–418. [Google Scholar] [CrossRef] [PubMed]
- Galli, C.; Pedrazzi, G.; Guizzardi, S. The cellular effects of Pulsed Electromagnetic Fields on osteoblasts: A review. Bioelectromagnetics 2019, 40, 211–233. [Google Scholar]
- Dini, L.; Abbro, L. Bioeffects of moderate-intensity static magnetic fields on cell cultures. Micron 2005, 36, 195–217. [Google Scholar] [CrossRef] [PubMed]
- Pappas, P.G.; Lionakis, M.S.; Arendrup, M.C.; Ostrosky-Zeichner, L.; Kullberg, B.J. Invasive candidiasis. Nat. Rev. Dis. Prim. 2018, 4, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Gulati, M.; Lohse, M.B.; Ennis, C.L.; Gonzalez, R.E.; Perry, A.M.; Bapat, P.; Arevalo, A.V.; Rodriguez, D.L.; Nobile, C.J. In Vitro Culturing and Screening of Candida albicans Biofilms. Curr. Protoc. Microbiol. 2018, 50, e60. [Google Scholar] [CrossRef]
- Vila, T.; Romo, J.A.; Pierce, C.G.; McHardy, S.F.; Saville, S.P.; Lopez-Ribot, J.L. Targeting Candida albicans filamentation for antifungal drug development. Virulence 2017, 8, 150–158. [Google Scholar] [CrossRef] [Green Version]
- Singh, D.K.; Tóth, R.; Gácser, A. Mechanisms of Pathogenic Candida Species to Evade the Host Complement Attack. Front. Cell Infect. Microbiol. 2020, 10, 94. [Google Scholar] [CrossRef] [Green Version]
- Zainal, M.; Mohamad Zain, N.; Mohd Amin, I.; Ahmad, V.N. The antimicrobial and antibiofilm properties of allicin against Candida albicans and Staphylococcus aureus—A therapeutic potential for denture stomatitis. Saudi Dent. J. 2021, 33, 105–111. [Google Scholar] [CrossRef]
- Alrabiah, M.; Alshagroud, R.S.; Alsahhaf, A.; Almojaly, S.A.; Abduljabbar, T.; Javed, F. Presence of Candida species in the subgingival oral biofilm of patients with peri-implantitis. Clin. Implant. Dent. Relat. Res. 2019, 21, 781–785. [Google Scholar] [CrossRef]
- Salerno, C.; Pascale, M.; Contaldo, M.; Esposito, V.; Busciolano, M.; Milillo, L.; Guida, A.; Petruzzi, M.; Serpico, R. Candida-associated denture stomatitis. Med. Oral Patol. Oral Cir. Bucal. 2011, 16, e139–e143. [Google Scholar] [CrossRef] [PubMed]
- Petrini, M.; Di Lodovico, S.; Iezzi, G.; Cipollina, A.; Piattelli, A.; Cellini, L.; D’Ercole, S. Effects of Complex Electromagnetic Fields on Candida albicans Adhesion and Proliferation on Polyacrylic Resin. Appl. Sci. 2021, 11, 6786. [Google Scholar] [CrossRef]
- Cataldi, V.; Di Campli, E.; Fazii, P.; Traini, T.; Cellini, L.; Di Giulio, M. Candida species isolated from different body sites and their antifungal susceptibility pattern: Cross-analysis of Candida albicans and Candida glabrata biofilms. Med. Mycol. 2017, 55, 624–634. [Google Scholar]
- Di Giulio, M.; Di Lodovico, S.; Fontana, A.; Traini, T.; Di Campli, E.; Pilato, S.; D’Ercole, S.; Cellini, L. Graphene Oxide affects Staphylococcus aureus and Pseudomonas aeruginosa dual species biofilm in Lubbock Chronic Wound Biofilm model. Sci. Rep. 2020, 10, 18525. [Google Scholar] [CrossRef] [PubMed]
- García-Martín, E.E.; Aranguren-Gassis, M.; Karl, D.M.; Martínez-García, S.; Robinson, C.; Serret, P.; Teira, E. Validation of the in vivo Iodo-Nitro-Tetrazolium (INT) Salt Reduction Method as a Proxy for Plankton Respiration. Front. Mar. Sci. 2019, 6, 220. [Google Scholar] [CrossRef] [Green Version]
- Alves, M.; Gonçalves, M.J.; Zuzarte, M.; Alves-Silva, J.M.; Cavaleiro, C.; Cruz, M.T.; Salgueiro, L. Unveiling the antifungal potential of two iberian thyme essential oils: Effect on C. albicans germ tube and preformed biofilms. Front. Pharm. 2019, 10, 446. [Google Scholar] [CrossRef]
- D’Ercole, S.; Cellini, L.; Pilato, S.; Di Lodovico, S.; Iezzi, G.; Piattelli, A.; Petrini, M. Material characterization and Streptococcus oralis adhesion on Polyetheretherketone (PEEK) and titanium surfaces used in implantology. J. Mater. Sci. Mater. Med. 2020, 31, 84. [Google Scholar] [CrossRef]
- Petrini, M.; Giuliani, A.; Di Campli, E.; Di Lodovico, S.; Iezzi, G.; Piattelli, A.; D’Ercole, S. The Bacterial Anti-Adhesive Activity of Double-Etched Titanium (DAE) as a Dental Implant Surface. Int. J. Mol. Sci. 2020, 21, 8315. [Google Scholar]
- Costa-de-oliveira, S.; Rodrigues, A.G. Candida albicans antifungal resistance and tolerance in bloodstream infections: The triad yeast-host-antifungal. Microorganisms 2020, 8, 154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Passarelli, P.C.; De Leonardis, M.; Piccirillo, G.B.; Desantis, V.; Papa, R.; Rella, E.; Mastandrea Bonaviri, G.N.; Papi, P.; Pompa, G.; Pasquantonio, G.; et al. The Effectiveness of Chlorhexidine and Air Polishing System in the Treatment of Candida albicans Infected Dental Implants: An Experimental In Vitro Study. Antibiotics 2020, 9, 179. [Google Scholar]
- Zaidi, K.U.; Mani, A.; Thawani, V.; Mehra, A. Total Protein Profile and Drug Resistance in Candida albicans Isolated from Clinical Samples. Mol. Biol. Int. 2016, 2016, 4982131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thompson, D.S.; Carlisle, P.L.; Kadosh, D. Coevolution of Morphology and Virulence in Candida Species. Eukaryot. Cell 2011, 10, 1173–1182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gow, N.A.R.; Brown, A.J.P.; Odds, F.C. Fungal morphogenesis and host invasion. Curr. Opin. Microbiol. 2002, 5, 366–371. [Google Scholar] [CrossRef]
- Mathé, L.; Van Dijck, P. Recent insights into Candida albicans biofilm resistance mechanisms. Curr. Genet. 2013, 59, 251–264. [Google Scholar] [PubMed] [Green Version]
- Sztafrowski, D.; Suchodolski, J.; Muraszko, J.; Sigler, K.; Krasowska, A. The influence of N and S poles of static magnetic field (SMF) on Candida albicans hyphal formation and antifungal activity of amphotericin B. Folia Microbiol. 2019, 64, 727–734. [Google Scholar] [CrossRef] [Green Version]
- Malíková, I.; Janoušek, L.; Fantova, V.; Jíra, J.; Kříha, V. Impact of Low Frequency Electromagnetic Field Exposure on the Candida Albicans. J. Electr. Eng. 2015, 66, 108–112. [Google Scholar] [CrossRef] [Green Version]
- Soghomonyan, D.; Trchounian, K.; Trchounian, A. Millimeter waves or extremely high frequency electromagnetic fields in the environment: What are their effects on bacteria? Appl. Microbiol. Biotechnol. 2016, 100, 4761–4771. [Google Scholar] [CrossRef]
- Binhi, V.N.; Alipov, Y.D.; Belyaev, I.Y. Effect of static magnetic field on E. Coli cells and individual rotations of ion-protein complexes. Bioelectromagnetics 2001, 22, 79–86. [Google Scholar] [CrossRef]
- Liboff, A.R. Geomagnetic cyclotron resonance in living cells. J. Biol. Phys. 1985, 13, 99–102. [Google Scholar]
- Lösche, M.; Feher, G.; Okamura, M.Y. The Stark Effect in Photosynthetic Reaction Centers from Rhodobacter sphaeroides R-26, Rhodopseudomonas viridis and the D1D2 Complex of Photosystem II from Spinach. In The Photosynthetic Bacterial Reaction Center; Springer: Boston, MA, USA, 1988; pp. 151–164. [Google Scholar]
- Hagg, U. The effect of fixed orthodontic appliances on the oral carriage of Candida species and Enterobacteriaceae. Eur. J. Orthod. 2004, 26, 623–629. [Google Scholar] [CrossRef]
- Ramage, G.; Tomsett, K.; Wickes, B.L.; López-Ribot, J.L.; Redding, S.W. Denture stomatitis: A role for Candida biofilms. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontol. 2004, 98, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Dorko, E.; Jenča, A.; Pilipčinec, E.; Danko, J.; Švický, E.; Tkáčiková, L. Candida-associated denture stomatitis. Folia Microbiol. 2001, 46, 443–446. [Google Scholar] [CrossRef]
- Farkash, Y.; Feldman, M.; Ginsburg, I.; Steinberg, D.; Shalish, M. Polyphenols Inhibit Candida albicans and Streptococcus mutans Biofilm Formation. Dent. J. 2019, 7, 42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pfaller, M.A.; Diekema, D.J. Epidemiology of invasive candidiasis: A persistent public health problem. Clin. Microbiol. Rev. 2007, 20, 133–163. [Google Scholar] [CrossRef] [Green Version]
- Xu, C.; Zhen, F.; Chao, Y.L.; Du, L.; Zhang, F.Q. Magnetic fields of 10 mT and 120 mT change cell shape andstructure of F-actins of periodontal ligament cells. Bioelectrochemistry 2008, 72, 1–6. [Google Scholar] [CrossRef]
- Altay, O.T.; Kutkam, T.; Koseoglu, O.; Tanyeri, S. The biological effects of implanted magnetic fields on bone tissue of dogs. Int. J. Oral Maxillofac. Implant. 1991, 6, 345–349. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
D’Ercole, S.; Di Lodovico, S.; Iezzi, G.; Pierfelice, T.V.; D’Amico, E.; Cipollina, A.; Piattelli, A.; Cellini, L.; Petrini, M. Complex Electromagnetic Fields Reduce Candida albicans Planktonic Growth and Its Adhesion to Titanium Surfaces. Biomedicines 2021, 9, 1261. https://doi.org/10.3390/biomedicines9091261
D’Ercole S, Di Lodovico S, Iezzi G, Pierfelice TV, D’Amico E, Cipollina A, Piattelli A, Cellini L, Petrini M. Complex Electromagnetic Fields Reduce Candida albicans Planktonic Growth and Its Adhesion to Titanium Surfaces. Biomedicines. 2021; 9(9):1261. https://doi.org/10.3390/biomedicines9091261
Chicago/Turabian StyleD’Ercole, Simonetta, Silvia Di Lodovico, Giovanna Iezzi, Tania Vanessa Pierfelice, Emira D’Amico, Alessandro Cipollina, Adriano Piattelli, Luigina Cellini, and Morena Petrini. 2021. "Complex Electromagnetic Fields Reduce Candida albicans Planktonic Growth and Its Adhesion to Titanium Surfaces" Biomedicines 9, no. 9: 1261. https://doi.org/10.3390/biomedicines9091261
APA StyleD’Ercole, S., Di Lodovico, S., Iezzi, G., Pierfelice, T. V., D’Amico, E., Cipollina, A., Piattelli, A., Cellini, L., & Petrini, M. (2021). Complex Electromagnetic Fields Reduce Candida albicans Planktonic Growth and Its Adhesion to Titanium Surfaces. Biomedicines, 9(9), 1261. https://doi.org/10.3390/biomedicines9091261