Identification of Hepatocellular Carcinoma Subtypes Based on Global Gene Expression Profiling to Predict the Prognosis and Potential Therapeutic Drugs
<p>Flow chart of this study.</p> "> Figure 2
<p>Identification of HCC subtypes. (<b>A</b>) Heatmap of the consensus matrix for two clusters in TCGA-LIHC (k = 2). (<b>B</b>) Heatmap of the consensus matrix for two clusters in GSE14520 (k = 2). (<b>C</b>) Principal component analysis (PCA) of two subtypes. (<b>D</b>) Clustering heatmap of S1 and S2 subtypes. (<b>E</b>) Differentially expressed genes between S1 and S2 subtypes. (<b>F</b>,<b>G</b>) K-M survival analysis of S1 and S2 subtypes based on OS (log-rank test) in the TCGA training cohort (<b>F</b>) and GSE14520 validation cohort (<b>G</b>). <span class="html-italic">p</span>-values were determined using Student’s <span class="html-italic">t</span>-test and the Wilcoxon test.</p> "> Figure 3
<p>Identification of characteristic genes. (<b>A</b>,<b>B</b>) Screening of characteristic genes in S1 and S2 subtypes using LASSO regression (<b>A</b>) and SVM (<b>B</b>). (<b>C</b>) Cross-validation of LASSO regression and SVM. (<b>D</b>) Univariate and multivariate logistic regression in S1 and S2 subtypes. (<b>E</b>) Protein–protein interaction (PPI) analysis of characteristic genes.</p> "> Figure 4
<p>Construction and evaluation of the subtype prediction formula. (<b>A</b>) Distribution of predictor in S1 and S2 subtypes. (<b>B</b>) ROC analysis of predictor. (<b>C</b>) Nomogram for the identification of S1 and S2 subtypes. (<b>D</b>) K-M survival analysis between low and high predictor groups based on OS (log-rank test). (<b>E</b>) Univariate and multivariate Cox regressions on the characteristic genes. (<b>F</b>) Expression of COL11A1 and ACTL8 in the TCGA cohort. (<b>G</b>) Expression of COL11A1 and ACTL8 between normal and HCC patients (normal n = 5, HCC n = 6).</p> "> Figure 5
<p>Downregulated Col11a1 inhibited the invasion and migration of HepG2 cells. (<b>A</b>) Col11a1 mRNA expression was significantly downregulated in HepG2 cells by col11a1 siRNA (<span class="html-italic">t</span>-test). (<b>B</b>) Invasion of HepG2 cells detected using the trans-well assay (<span class="html-italic">t</span>-test). (<b>C</b>) Migration of HepG2 detected using the scratch assay (<span class="html-italic">t</span>-test).</p> "> Figure 6
<p>Enrichment analysis of signaling pathways in S1 and S2 subtypes. (<b>A</b>) Gene Ontology (GO) analysis of DEGs between two subtypes. (<b>B</b>) Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of DEGs between two subtypes.</p> "> Figure 7
<p>Enrichment analysis of signaling pathways in S1 and S2 subtypes. (<b>A</b>) Gene set variation analysis (GSVA)-GO between two subtypes. (<b>B</b>) GSVA-KEGG between two subtypes. (<b>C</b>) Gene set enrichment analysis (GSEA) between two subtypes.</p> "> Figure 8
<p>Immune microenvironment characteristics in S1 and S2 subtypes. (<b>A</b>,<b>B</b>) Stromal score, immune score, ESTIMATE score, and tumor purity (<b>A</b>) and their correlation with the subtype predictor (<b>B</b>). (<b>C</b>) Immune cell infiltration characteristics of two subgroups. (<b>D</b>) TIDE scores of S1 and S2 subtypes. <span class="html-italic">p</span>-values were determined via Student’s <span class="html-italic">t</span>-test and the Wilcoxon test; correlation analysis was performed via Spearman analysis.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection and Processing
2.2. Clustering Analysis
2.3. Identification of Subtype Signature Genes and Construction of Scoring Model
2.4. Enrichment of Signaling Pathways
2.5. Immune Cell Infiltration
2.6. Prediction of Immunotherapy Response
2.7. Drug Sensitivity
2.8. Collection of Tumor and Normal Tissues
2.9. RT-qPCR
2.10. Cell Culture and Infection
2.11. Cell Invasion and Migration
2.12. Statistical Analysis
3. Result
3.1. Identification of HCC Patient Subtypes
3.2. Construction of the Subtype Prediction System
3.3. Evaluation of the Subtype Scoring System
3.4. Effect of COL11A1 Downregulation on the Invasion and Migration of HepG2 Cells
3.5. Differential Signaling Pathways Between Two HCC Subtypes
3.6. Immune Microenvironment in Two HCC Subtypes
3.7. Drug Sensitivity Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Toh, M.R.; Wong, E.Y.T.; Wong, S.H.; Ng, A.W.T.; Loo, L.-H.; Chow, P.K.-H.; Ngeow, J. Global Epidemiology and Genetics of Hepatocellular Carcinoma. Gastroenterology 2023, 164, 766–782. [Google Scholar] [CrossRef]
- Konyn, P.; Ahmed, A.; Kim, D. Current epidemiology in hepatocellular carcinoma. Expert. Rev. Gastroenterol. Hepatol. 2021, 15, 1295–1307. [Google Scholar] [CrossRef]
- Childs, A.; Aidoo-Micah, G.; Maini, M.K.; Meyer, T. Immunotherapy for hepatocellular carcinoma. JHEP Rep. Innov. Hepatol. 2024, 6, 101130. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Jia, M.; Dai, R. Deciphering the tumour immune microenvironment of hepatocellular carcinoma. Scand. J. Immunol. 2023, 98, e13327. [Google Scholar] [CrossRef]
- Argentiero, A.; Delvecchio, A.; Fasano, R.; Andriano, A.; Caradonna, I.C.; Memeo, R.; Desantis, V. The Complexity of the Tumor Microenvironment in Hepatocellular Carcinoma and Emerging Therapeutic Developments. J. Clin. Med. 2023, 12, 7469. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.-X.; Yan, K.; Chen, L.; Huang, R.-R.; Bian, Z.-H.; Wei, H.-R.; Gu, X.-M.; Zhao, Y.-Y.; Liu, M.-C.; Suo, C.-X.; et al. Targeting OXCT1-mediated ketone metabolism reprograms macrophages to promote antitumor immunity via CD8+ T cells in hepatocellular carcinoma. J. Hepatol. 2024, 81, 690–703. [Google Scholar] [CrossRef]
- Zhang, L.; Xu, J.; Zhou, S.; Yao, F.; Zhang, R.; You, W.; Dai, J.; Yu, K.; Zhang, Y.; Baheti, T.; et al. Endothelial DGKG promotes tumor angiogenesis and immune evasion in hepatocellular carcinoma. J. Hepatol. 2024, 80, 82–98. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.-W. Gene mining of immune microenvironment in hepatocellular carcinoma. Medicine 2022, 101, e30453. [Google Scholar] [CrossRef]
- Llovet, J.M.; Hernandez-Gea, V. Hepatocellular carcinoma: Reasons for phase III failure and novel perspectives on trial design. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2014, 20, 2072–2079. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Yang, C.; Zhang, S.; Geng, H.; Zhu, A.X.; Bernards, R.; Qin, W.; Fan, J.; Wang, C.; Gao, Q. Precision treatment in advanced hepatocellular carcinoma. Cancer Cell 2024, 42, 180–197. [Google Scholar] [CrossRef] [PubMed]
- Tao, Y.; Xing, S.; Zuo, S.; Bao, P.; Jin, Y.; Li, Y.; Li, M.; Wu, Y.; Chen, S.; Wang, X.; et al. Cell-free multi-omics analysis reveals potential biomarkers in gastrointestinal cancer patients’ blood. Cell Rep. Med. 2023, 4, 101281. [Google Scholar] [CrossRef] [PubMed]
- Du, M.; Gu, D.; Xin, J.; Peters, U.; Song, M.; Cai, G.; Li, S.; Ben, S.; Meng, Y.; Chu, H.; et al. Integrated multi-omics approach to distinct molecular characterization and classification of early-onset colorectal cancer. Cell Rep. Med. 2023, 4, 100974. [Google Scholar] [CrossRef] [PubMed]
- Di Camillo, B.; Giugno, R. From translational bioinformatics computational methodologies to personalized medicine. J. Biomed. Inform. 2024, 151, 104619. [Google Scholar] [CrossRef]
- Tijms, B.M.; Vromen, E.M.; Mjaavatten, O.; Holstege, H.; Reus, L.M.; van der Lee, S.; Wesenhagen, K.E.J.; Lorenzini, L.; Vermunt, L.; Venkatraghavan, V.; et al. Cerebrospinal fluid proteomics in patients with Alzheimer’s disease reveals five molecular subtypes with distinct genetic risk profiles. Nat. Aging 2024, 4, 33–47. [Google Scholar] [CrossRef] [PubMed]
- Fallah, J.; Xu, J.; Weinstock, C.; Brave, M.H.; Bloomquist, E.; Fiero, M.H.; Schaefer, T.; Pathak, A.; Abukhdeir, A.; Bhatnagar, V.; et al. FDA Approval Summary: Olaparib in Combination with Abiraterone for Treatment of Patients With BRCA-Mutated Metastatic Castration-Resistant Prostate Cancer. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2024, 42, 605–613. [Google Scholar] [CrossRef] [PubMed]
- Ponti, G.; De Angelis, C.; Ponti, R.; Pongetti, L.; Losi, L.; Sticchi, A.; Tomasi, A.; Ozben, T. Hereditary breast and ovarian cancer: From genes to molecular targeted therapies. Crit. Rev. Clin. Lab. Sci. 2023, 60, 640–650. [Google Scholar] [CrossRef]
- Wang, X.; Huang, J.; Lu, J.; Li, X.; Tang, H.; Shao, P. Risperidone plasma level, and its correlation with CYP2D6 gene polymorphism, clinical response and side effects in chronic schizophrenia patients. BMC Psychiatry 2024, 24, 41. [Google Scholar] [CrossRef]
- Ye, F.; Ni, J.; Li, X.; Wang, J.; Luo, J.; Wang, S.; Xu, X.; Zhong, Y.; Qian, J.; Xiao, Z. The influence of drug-induced metabolic enzyme activity inhibition and CYP3A4 gene polymorphism on aumolertinib metabolism. Front. Pharmacol. 2024, 15, 1392849. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Li, J.; Pang, X.; Zhu, J.; Pan, J.; Li, Y.; Tang, J. Gene polymorphism and prediction of toxicity to platinum-based chemotherapy in patients with gynecologic cancer. Clin. Transl. Sci. 2023, 16, 2519–2529. [Google Scholar] [CrossRef]
- Wang, S.; Zhu, L.; Li, T.; Lin, X.; Zheng, Y.; Xu, D.; Guo, Y.; Zhang, Z.; Fu, Y.; Wang, H.; et al. Disruption of MerTK increases the efficacy of checkpoint inhibitor by enhancing ferroptosis and immune response in hepatocellular carcinoma. Cell Rep. Med. 2024, 5, 101415. [Google Scholar] [CrossRef] [PubMed]
- Alipour, M.; Baneshi, M.; Hosseinkhani, S.; Mahmoudi, R.; Jabari Arabzadeh, A.; Akrami, M.; Mehrzad, J.; Bardania, H. Recent progress in biomedical applications of RGD-based ligand: From precise cancer theranostics to biomaterial engineering: A systematic review. J. Biomed. Mater. Res. A 2020, 108, 839–850. [Google Scholar] [CrossRef]
- Li, X.; Yu, N.; Li, J.; Bai, J.; Ding, D.; Tang, Q.; Xu, H. Novel “Carrier-Free” nanofiber codelivery systems with the synergistic antitumor effect of paclitaxel and tetrandrine through the enhancement of mitochondrial apoptosis. ACS Appl. Mater. Interfaces 2020, 12, 10096–10106. [Google Scholar] [CrossRef] [PubMed]
- Espelin, C.W.; Leonard, S.C.; Geretti, E.; Wickham, T.J.; Hendriks, B.S. Dual HER2 targeting with trastuzumab and liposomal-encapsulated doxorubicin (MM-302) demonstrates synergistic antitumor activity in breast and gastric cancer. Cancer Res. 2016, 76, 1517–1527. [Google Scholar] [CrossRef] [PubMed]
- Sentani, K.; Oue, N.; Tashiro, T.; Sakamoto, N.; Nishisaka, T.; Fukuhara, T.; Taniyama, K.; Matsuura, H.; Arihiro, K.; Ochiai, A. Immunohistochemical staining of Reg IV and claudin-18 is useful in the diagnosis of gastrointestinal signet ring cell carcinoma. Am. J. Surg. Pathol. 2008, 32, 1182–1189. [Google Scholar] [CrossRef] [PubMed]
- Cheng, R.; Feng, F.; Meng, F.; Deng, C.; Feijen, J.; Zhong, Z. Glutathione-responsive nano-vehicles as a promising platform for targeted intracellular drug and gene delivery. J. Control Release Off. J. Control. Release Soc. 2011, 152, 2–12. [Google Scholar] [CrossRef] [PubMed]
- Long, Y.; Wang, Z.; Fan, J.; Yuan, L.; Tong, C.; Zhao, Y.; Liu, B. A hybrid membrane coating nanodrug system against gastric cancer via the VEGFR2/STAT3 signaling pathway. J. Mater. Chem. B 2021, 9, 3838–3855. [Google Scholar] [CrossRef]
- Gowtham, P.; Girigoswami, K.; Pallavi, P.; Harini, K.; Gurubharath, I.; Girigoswami, A. Alginate-derivative encapsulated carbon coated manganese-ferrite nanodots for multimodal medical imaging. Pharmaceutics 2022, 14, 2550. [Google Scholar] [CrossRef]
- Benfante, V.; Stefano, A.; Ali, M.; Laudicella, R.; Arancio, W.; Cucchiara, A.; Caruso, F.; Cammarata, F.P.; Coronnello, C.; Russo, G. An overview of in vitro assays of 64Cu-, 68Ga-, 125I-, and 99mTc-labelled radiopharmaceuticals using radiometric counters in the era of radiotheranostics. Diagnostics 2023, 13, 1210. [Google Scholar] [CrossRef] [PubMed]
- Wilkerson, M.D.; Hayes, D.N. ConsensusClusterPlus: A class discovery tool with confidence assessments and item tracking. Bioinformatics 2010, 26, 1572–1573. [Google Scholar] [CrossRef]
- Ritchie, M.E.; Phipson, B.; Wu, D.; Hu, Y.; Law, C.W.; Shi, W.; Smyth, G.K. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015, 43, e47. [Google Scholar] [CrossRef]
- Yu, G.; Wang, L.-G.; Han, Y.; He, Q.-Y. clusterProfiler: An R package for comparing biological themes among gene clusters. Omics J. Integr. Biol. 2012, 16, 284–287. [Google Scholar] [CrossRef]
- Yoshihara, K.; Shahmoradgoli, M.; Martínez, E.; Vegesna, R.; Kim, H.; Torres-Garcia, W.; Treviño, V.; Shen, H.; Laird, P.W.; Levine, D.A.; et al. Inferring tumour purity and stromal and immune cell admixture from expression data. Nat. Commun. 2013, 4, 2612. [Google Scholar] [CrossRef]
- Newman, A.M.; Liu, C.L.; Green, M.R.; Gentles, A.J.; Feng, W.; Xu, Y.; Hoang, C.D.; Diehn, M.; Alizadeh, A.A. Robust enumeration of cell subsets from tissue expression profiles. Nat. Methods 2015, 12, 453–457. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Qiu, B.; Zhou, H.; Li, L.; Niu, T. Characterization and application of a lactate and branched chain amino acid metabolism related gene signature in a prognosis risk model for multiple myeloma. Cancer Cell Int. 2023, 23, 169. [Google Scholar] [CrossRef]
- Maeser, D.; Gruener, R.F.; Huang, R.S. oncoPredict: An R package for predicting in vivo or cancer patient drug response and biomarkers from cell line screening data. Brief. Bioinform. 2021, 22, bbab260. [Google Scholar] [CrossRef] [PubMed]
- Hoshida, Y.; Toffanin, S.; Lachenmayer, A.; Villanueva, A.; Minguez, B.; Llovet, J.M. Molecular classification and novel targets in hepatocellular carcinoma: Recent advancements. Semin. Liver Dis. 2010, 30, 35–51. [Google Scholar] [CrossRef]
- Llovet, J.M.; Villanueva, A.; Lachenmayer, A.; Finn, R.S. Advances in targeted therapies for hepatocellular carcinoma in the genomic era. Nat. Rev. Clin. Oncol. 2015, 12, 408–424. [Google Scholar] [CrossRef]
- Zucman-Rossi, J.; Villanueva, A.; Nault, J.-C.; Llovet, J.M. Genetic Landscape and Biomarkers of Hepatocellular Carcinoma. Gastroenterology 2015, 149, 1226–1239. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Gu, J.; Wang, K.; Zhang, X.; Bai, J.; Zhang, J.; Liu, C.; Qiu, Q.; Qu, K. Identification of a molecular subtyping system associated with the prognosis of Asian hepatocellular carcinoma patients receiving liver resection. Sci. Rep.-UK 2019, 9, 7073. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.H.; Chang, T.H.; Huang, Y.F.; Huang, H.D.; Chou, C.Y. COL11A1 promotes tumor progression and predicts poor clinical outcome in ovarian cancer. Oncogene 2014, 33, 3432–3440. [Google Scholar] [CrossRef] [PubMed]
- Sok, J.C.; Lee, J.A.; Dasari, S.; Joyce, S.; Contrucci, S.C.; Egloff, A.M.; Trevelline, B.K.; Joshi, R.; Kumari, N.; Grandis, J.R.; et al. Collagen type XI α1 facilitates head and neck squamous cell cancer growth and invasion. Br. J. Cancer 2013, 109, 3049–3056. [Google Scholar] [CrossRef]
- Erkan, M.; Weis, N.; Pan, Z.; Schwager, C.; Samkharadze, T.; Jiang, X.; Wirkner, U.; Giese, N.A.; Ansorge, W.; Debus, J.; et al. Organ-, inflammation- and cancer specific transcriptional fingerprints of pancreatic and hepatic stellate cells. Mol. Cancer 2010, 9, 88. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhou, T.; Li, A.; Yao, H.; He, F.; Wang, L.; Si, J. A potential role of collagens expression in distinguishing between premalignant and malignant lesions in stomach. Anat. Rec. 2009, 292, 692–700. [Google Scholar] [CrossRef] [PubMed]
- Fischer, H.; Stenling, R.; Rubio, C.; Lindblom, A. Colorectal carcinogenesis is associated with stromal expression of COL11A1 and COL5A2. Carcinogenesis 2001, 22, 875–878. [Google Scholar] [CrossRef] [PubMed]
- Kleman, J.P.; Hartmann, D.J.; Ramirez, F.; van der Rest, M. The human rhabdomyosarcoma cell line A204 lays down a highly insoluble matrix composed mainly of alpha 1 type-XI and alpha 2 type-V collagen chains. Eur. J. Biochem. 1992, 210, 329–335. [Google Scholar] [CrossRef] [PubMed]
- Ellsworth, R.E.; Seebach, J.; Field, L.A.; Heckman, C.; Kane, J.; Hooke, J.A.; Love, B.; Shriver, C.D. A gene expression signature that defines breast cancer metastases. Clin. Exp. Metastasis 2009, 26, 205–213. [Google Scholar] [CrossRef] [PubMed]
- Freire, J.; Domínguez-Hormaetxe, S.; Pereda, S.; De Juan, A.; Vega, A.; Simón, L.; Gómez-Román, J. Collagen, type XI, alpha 1: An accurate marker for differential diagnosis of breast carcinoma invasiveness in core needle biopsies. Pathol. Res. Pract. 2014, 210, 879–884. [Google Scholar] [CrossRef] [PubMed]
- Freire, J.; García-Berbel, L.; García-Berbel, P.; Pereda, S.; Azueta, A.; García-Arranz, P.; De Juan, A.; Vega, A.; Hens, Á.; Enguita, A.; et al. Collagen Type XI Alpha 1 Expression in Intraductal Papillomas Predicts Malignant Recurrence. Biomed. Res. Int. 2015, 2015, 812027. [Google Scholar] [CrossRef]
- Li, B.; Zhu, J.; Meng, L. High expression of ACTL8 is poor prognosis and accelerates cell progression in head and neck squamous cell carcinoma. Mol. Med. Rep. 2019, 19, 877–884. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Qin, R.; Qin, R.; Wang, R.; Ding, D.; Yu, Z.; Liu, Y.; Hong, R.; Cheng, Z.; Wang, Y. Sam68 Promotes Invasion, Migration, and Proliferation of Fibroblast-like Synoviocytes by Enhancing the NF-κB/P65 Pathway in Rheumatoid Arthritis. Inflammation 2018, 41, 1661–1670. [Google Scholar] [CrossRef]
- Han, Q.; Sun, M.-L.; Liu, W.-S.; Zhao, H.-S.; Jiang, L.-Y.; Yu, Z.-J.; Wei, M.-J. Upregulated expression of ACTL8 contributes to invasion and metastasis and indicates poor prognosis in colorectal cancer. Onco Targets Ther. 2019, 12, 1749–1763. [Google Scholar] [CrossRef]
- Ma, S.; Wang, X.; Zhang, Z.; Liu, D. Actin-like protein 8 promotes cell proliferation, colony-formation, proangiogenesis, migration and invasion in lung adenocarcinoma cells. Thorac. Cancer 2020, 11, 526–536. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Li, C.; Jiang, Y.; Wan, Y.; Zhou, S.; Cheng, W. Tumor-suppressor role of miR-139-5p in endometrial cancer. Cancer Cell Int. 2018, 18, 51. [Google Scholar] [CrossRef] [PubMed]
- Ren, N.; Liang, B.; Li, Y. Identification of prognosis-related genes in the tumor microenvironment of stomach adenocarcinoma by TCGA and GEO datasets. Biosci. Rep. 2020, 40, BSR20200980. [Google Scholar] [CrossRef]
- Lou, S.; Zhang, J.; Yin, X.; Zhang, Y.; Fang, T.; Wang, Y.; Xue, Y. Comprehensive Characterization of Tumor Purity and Its Clinical Implications in Gastric Cancer. Front. Cell Dev. Biol. 2021, 9, 782529. [Google Scholar] [CrossRef] [PubMed]
Immune Cell | Correlation with Predictor(r) | p-Value |
---|---|---|
Mast cells resting | 0.37 | 0.000 |
Monocytes | 0.31 | 0.000 |
NK cells resting | 0.24 | 0.000 |
T cells CD8 | 0.07 | 0.199 |
B cells naive | 0.06 | 0.210 |
Macrophages M1 | 0.04 | 0.427 |
NK cells activated | 0.04 | 0.497 |
T cells follicular helper | 0.02 | 0.762 |
Macrophages M2 | 0.02 | 0.655 |
Plasma cells | −0.12 | 0.025 |
B cells memory | −0.12 | 0.031 |
T cells regulatory | −0.13 | 0.007 |
Neutrophils | −0.14 | 0.011 |
T cells CD4 memory resting | −0.18 | 0.001 |
Dendritic cells resting | −0.21 | 0.000 |
Macrophages M0 | −0.25 | 0.000 |
Drug | IC50 Median (Quartile) | p-Value | Correlation with COL11A1 (r) | p-Value | |
---|---|---|---|---|---|
Subtype 1 | Subtype 2 | ||||
BMS-754807_2171 | 0.15 (0.04–0.35) | 2.56 (1.2–4.53) | 2.90 × 10−52 | −0.78 | 4.64 × 10−75 |
JQ1_2172 | 5.94 (4.19–8.28) | 17.42 (12.07–24.05) | 7.80 × 10−46 | −0.68 | 3.85 × 10−51 |
Axitinib_1021 | 11.43 (8.63–14.71) | 25.24 (18.89–34.76) | 3.50 × 10−43 | −0.69 | 1.73 × 10−52 |
KU-55933_1030 | 77.72 (72.06–83.68) | 95.49 (88.61–102.31) | 7.90 × 10−40 | −0.76 | 1.84 × 10−71 |
Tozasertib_1096 | 12.17 (8.93–16.84) | 25.38 (19.96–35.67) | 3.20 × 10−38 | −0.66 | 3.13 × 10−47 |
PF-4708671_1129 | 30.52 (25.04–41.5) | 59.8 (46.95–76.3) | 3.40 × 10−38 | −0.58 | 1.29 × 10−34 |
Navitoclax_1011 | 3.77 (2.03–5.73) | 11.24 (7.07–17.8) | 1.30 × 10−37 | −0.61 | 1.37 × 10−38 |
ABT737_1910 | 4.8 (2.31–7.34) | 13.97 (8.93–21.27) | 9.00 × 10−36 | −0.63 | 2.37 × 10−41 |
Ibrutinib_1799 | 56.36 (36.25–80.62) | 131.2 (90.93–204.32) | 2.10 × 10−34 | −0.58 | 4.17 × 10−34 |
SB505124_1194 | 11 (10.57–11.72) | 9.54 (9.01–10.04) | 2.40 × 10−44 | 0.76 | 3.42 × 10−71 |
Pevonedistat_1529 | 3.89 (2.42–6.98) | 1.11 (0.69–1.64) | 9.10 × 10−41 | 0.65 | 1.87 × 10−45 |
Tamoxifen_1199 | 45.62 (37.54–57.41) | 28.32 (23.17–33.12) | 3.30 × 10−38 | 0.55 | 1.74 × 10−30 |
AT13148_2170 | 60.19 (42.77–96.63) | 25.19 (18.22–35.66) | 1.10 × 10−38 | 0.61 | 2.19 × 10−37 |
Rapamycin_1084 | 0.18 (0.12–0.25) | 0.08 (0.06–0.11) | 3.30 × 10−37 | 0.57 | 1.09 × 10−33 |
BMS-536924_1091 | 12.14 (8.78–15.78) | 6.04 (4.57–8) | 8.00 × 10−37 | 0.46 | 1.09 × 10−33 |
BMS-345541_1249 | 43.99 (31.66–67.61) | 19.16 (15.18–25.24) | 9.00 × 10−37 | 0.65 | 1.09 × 10−33 |
Dactolisib_1057 | 0.28 (0.21–0.43) | 0.14 (0.11–0.19) | 2.10 × 10−36 | 0.48 | 1.09 × 10−33 |
Sorafenib_1085 | 19.89 (15.41–26.78) | 10.82 (8.29–13.44) | 1.10 × 10−35 | 0.67 | 6.75 × 10−50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, C.; Wang, J.; Jia, L.; Wen, Q.; Gao, N.; Qiao, H. Identification of Hepatocellular Carcinoma Subtypes Based on Global Gene Expression Profiling to Predict the Prognosis and Potential Therapeutic Drugs. Biomedicines 2025, 13, 236. https://doi.org/10.3390/biomedicines13010236
Zhang C, Wang J, Jia L, Wen Q, Gao N, Qiao H. Identification of Hepatocellular Carcinoma Subtypes Based on Global Gene Expression Profiling to Predict the Prognosis and Potential Therapeutic Drugs. Biomedicines. 2025; 13(1):236. https://doi.org/10.3390/biomedicines13010236
Chicago/Turabian StyleZhang, Cunzhen, Jiyao Wang, Lin Jia, Qiang Wen, Na Gao, and Hailing Qiao. 2025. "Identification of Hepatocellular Carcinoma Subtypes Based on Global Gene Expression Profiling to Predict the Prognosis and Potential Therapeutic Drugs" Biomedicines 13, no. 1: 236. https://doi.org/10.3390/biomedicines13010236
APA StyleZhang, C., Wang, J., Jia, L., Wen, Q., Gao, N., & Qiao, H. (2025). Identification of Hepatocellular Carcinoma Subtypes Based on Global Gene Expression Profiling to Predict the Prognosis and Potential Therapeutic Drugs. Biomedicines, 13(1), 236. https://doi.org/10.3390/biomedicines13010236