From Serendipity to Precision: Integrating AI, Multi-Omics, and Human-Specific Models for Personalized Neuropsychiatric Care
Abstract
:1. Introduction
Year | Drug Name | Primary Targets | Expected Diseases to Treat | Mental Illnesses Treated | Ref. |
---|---|---|---|---|---|
1940s–1950s | Iproniazid | Monoamine Oxidase | Tuberculosis | Depression | [9,22] |
1950s | Lithium | Unknown | N/A | BP | [8] |
1950s | Chlorpromazine | Dopamine Receptors | Sedation | SCZ | [10,22,86] |
1950s | Imipramine | Serotonin/Norepinephrine Reuptake | N/A | Depression | [9,22] |
1950s | Chlordiazepoxide | GABA Receptors | N/A | Anxiety | [22] |
1960s | Psilocybin | Serotonin Receptors | N/A | Depression | [10] |
2000s | Ketamine | NMDA Receptors | Anesthesia | Depression | [9,10,11] |
2010s | Minocycline | Unknown | Infection | SCZ | [10] |
2010s | Warfarin | Blood Clotting Factors | Blood Clotting Disorders | SCZ | [10] |
2. Integrative Models of Wet and Dry Research
3. Cyclic Data Processing
4. Interpreting Experimental Results
5. Towards Patient-Specific Models
6. Discussion
7. Outlook
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AD | Alzheimer’s disease |
AI | artificial intelligence |
BP | bipolar disorder |
DSM-5 | Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition |
GWAS | genome-wide association studies |
HiTOP | Hierarchical Taxonomy of Psychopathology |
iPSCs | Induced pluripotent stem cells |
ML | machine learning |
ncRNA | non-coding RNA |
PPI | patient and public involvement |
RDoC | Research Domain Criteria |
SCZ | schizophrenia |
References
- Pepys, M.B. Science and serendipity. Clin. Med. 2007, 7, 562–578. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Vedula, S.S.; Hadar, N.; Parkin, C.; Lau, J.; Dickersin, K. Innovations in data collection, management, and archiving for systematic reviews. Ann. Intern. Med. 2015, 162, 287–294. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Qin, C.; Ma, X.; Liang, H. Serendipity in human information behavior: A systematic review. J. Doc. 2022, 78, 435–462. [Google Scholar] [CrossRef]
- Meyers, M.A. Happy Accidents: Serendipity in Major Medical Breakthroughs in the Twentieth Century; Simon and Schuster: New York, NY, USA, 2011. [Google Scholar]
- Pievani, T. Serendipity: The Unexpected in Science; MIT Press: Cambridge, MA, USA, 2024. [Google Scholar]
- Bauer, M. Lithium: About discrepancies between efficacy and clinical use. Acta Psychiatr. Scand. 2020, 142, 159–160. [Google Scholar] [CrossRef] [PubMed]
- Zarate, C.A., Jr.; Brutsche, N.E.; Ibrahim, L.; Franco-Chaves, J.; Diazgranados, N.; Cravchik, A.; Selter, J.; Marquardt, C.A.; Liberty, V.; Luckenbaugh, D.A. Replication of ketamine’s antidepressant efficacy in bipolar depression: A randomized controlled add-on trial. Biol. Psychiatry 2012, 71, 939–946. [Google Scholar] [CrossRef] [PubMed]
- Smoller, J.W. Psychiatric genetics and the future of personalized treatment. Depress. Anxiety 2014, 31, 893. [Google Scholar] [CrossRef] [PubMed]
- Rappa, L.R.; Larose-Pierre, M.; Branch, E., III; Iglesias, A.J.; Norwood, D.A.; Simon, W.A. Desperately seeking serendipity: The past, present, and future of antidepressant therapy. J. Pharm. Pract. 2001, 14, 560–569. [Google Scholar] [CrossRef]
- Nutt, D. Help luck along to find psychiatric medicines. Nature 2014, 515, 165. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A. Inflammatory and immune responses in depression. Curr. Neuropharmacol. 2016, 14, 663. [Google Scholar] [CrossRef] [PubMed]
- McMahon, F.J. Prediction of treatment outcomes in psychiatry—Where do we stand? Dialogues Clin. Neurosci. 2014, 16, 455–464. [Google Scholar] [CrossRef]
- Vaudano, E. Public–private partnerships as enablers of progress in the fight against mental disorders: The example of the European Innovative Medicines Initiative. Eur. Psychiatry 2018, 50, 57–59. [Google Scholar] [CrossRef] [PubMed]
- Chekroud, A.M.; Bondar, J.; Delgadillo, J.; Doherty, G.; Wasil, A.; Fokkema, M.; Cohen, Z.; Belgrave, D.; DeRubeis, R.; Iniesta, R. The promise of machine learning in predicting treatment outcomes in psychiatry. World Psychiatry 2021, 20, 154–170. [Google Scholar] [CrossRef]
- Kessler, R.C.; Luedtke, A. Pragmatic precision psychiatry—A new direction for optimizing treatment selection. JAMA Psychiatry 2021, 78, 1384–1390. [Google Scholar] [CrossRef]
- Millan, M.J.; Goodwin, G.M.; Meyer-Lindenberg, A.; Ögren, S.O. Learning from the past and looking to the future: Emerging perspectives for improving the treatment of psychiatric disorders. Eur. Neuropsychopharmacol. 2015, 25, 599–656. [Google Scholar] [CrossRef]
- Tanaka, M.; Vécsei, L. A Decade of Dedication: Pioneering Perspectives on Neurological Diseases and Mental Illnesses. Biomedicines 2024, 12, 1083. [Google Scholar] [CrossRef] [PubMed]
- Leichsenring, F.; Steinert, C.; Rabung, S.; Ioannidis, J.P. The efficacy of psychotherapies and pharmacotherapies for mental disorders in adults: An umbrella review and meta-analytic evaluation of recent meta-analyses. World Psychiatry 2022, 21, 133–145. [Google Scholar] [CrossRef] [PubMed]
- Marx, W.; Moseley, G.; Berk, M.; Jacka, F. Nutritional psychiatry: The present state of the evidence. Proc. Nutr. Soc. 2017, 76, 427–436. [Google Scholar] [CrossRef] [PubMed]
- Pesci, N.R.; Peracchia, S.; Teobaldi, E.; Maina, G.; Rosso, G. Impact of mean monthly temperature on psychiatric admissions: Data from an acute inpatient unit. Eur. Psychiatry 2024, 67, S473. [Google Scholar] [CrossRef]
- Pieper, A.A.; Baraban, J.M. Moving beyond serendipity to mechanism-driven psychiatric therapeutics. Neurotherapeutics 2017, 14, 533–536. [Google Scholar] [CrossRef] [PubMed]
- Ban, T.A. The role of serendipity in drug discovery. Dialogues Clin. Neurosci. 2006, 8, 335–344. [Google Scholar] [CrossRef] [PubMed]
- Punjabi, P.P. Serendipity and margin of safety. Perfusion 2018, 33, 88. [Google Scholar] [CrossRef] [PubMed]
- Campbell, W.C. Serendipity and new drugs for infectious disease. ILAR J. 2005, 46, 352–356. [Google Scholar] [CrossRef] [PubMed]
- Đurić, L.; Milanović, M.; Milošević, N.; Milić, N. New pharmaceuticals: The importance of serendipity. Med. Časopis 2020, 54, 143–148. [Google Scholar] [CrossRef]
- Jeste, D.V.; Gillin, J.C.; Wyatt, R.J. Serendipity in biological psychiatry—A myth? Arch. Gen. Psychiatry 1979, 36, 1173–1178. [Google Scholar] [CrossRef] [PubMed]
- Sverdlov, O.; Ryeznik, Y.; Wong, W.K. Opportunity for efficiency in clinical development: An overview of adaptive clinical trial designs and innovative machine learning tools, with examples from the cardiovascular field. Contemp. Clin. Trials 2021, 105, 106397. [Google Scholar] [CrossRef]
- Barkal, J.; Poi, M.; Dalton, W. Abstract IA27: An innovative approach to improve clinical trials using adaptive in silico design. Cancer Epidemiol. Biomark. Prev. 2020, 29, IA27. [Google Scholar] [CrossRef]
- Wolkenhauer, O.; Auffray, C.; Jaster, R.; Steinhoff, G.; Dammann, O. The road from systems biology to systems medicine. Pediatr. Res. 2013, 73, 502–507. [Google Scholar] [CrossRef] [PubMed]
- Winter, N.R.; Blanke, J.; Leenings, R.; Ernsting, J.; Fisch, L.; Sarink, K.; Barkhau, C.; Emden, D.; Thiel, K.; Flinkenflügel, K. A Systematic Evaluation of Machine Learning–Based Biomarkers for Major Depressive Disorder. JAMA Psychiatry 2024, 81, 386–395. [Google Scholar] [CrossRef] [PubMed]
- Di Camillo, F.; Grimaldi, D.A.; Cattarinussi, G.; Di Giorgio, A.; Locatelli, C.; Khuntia, A.; Enrico, P.; Brambilla, P.; Koutsouleris, N.; Sambataro, F. Magnetic resonance imaging–based machine learning classification of schizophrenia spectrum disorders: A meta-analysis. Psychiatry Clin. Neurosci. 2024, 78, 732–743. [Google Scholar] [CrossRef] [PubMed]
- Abi-Dargham, A.; Moeller, S.J.; Ali, F.; DeLorenzo, C.; Domschke, K.; Horga, G.; Jutla, A.; Kotov, R.; Paulus, M.P.; Rubio, J.M. Candidate biomarkers in psychiatric disorders: State of the field. World Psychiatry 2023, 22, 236–262. [Google Scholar] [CrossRef] [PubMed]
- Cifci, D.; Foersch, S.; Kather, J.N. Artificial intelligence to identify genetic alterations in conventional histopathology. J. Pathol. 2022, 257, 430–444. [Google Scholar] [CrossRef] [PubMed]
- Ofek, E.; Haj, R.; Molchanov, Y.; Yacobi, R.; Mayer, C.; Barliya, T.; Gazy, I.; Dvir, A.; Hayun, I.; Zalach, J. High-confidence AI-based biomarker profiling for H&E slides to optimize pathology workflow in lung cancer. J. Clin. Oncol. 2023, 41, e21207. [Google Scholar]
- Bera, K.; Schalper, K.A.; Rimm, D.L.; Velcheti, V.; Madabhushi, A. Artificial intelligence in digital pathology—New tools for diagnosis and precision oncology. Nat. Rev. Clin. Oncol. 2019, 16, 703–715. [Google Scholar] [CrossRef]
- Salvi, M.; Acharya, M.R.; Seoni, S.; Faust, O.; Tan, R.S.; Barua, P.D.; García, S.; Molinari, F.; Acharya, U.R. Artificial intelligence for atrial fibrillation detection, prediction, and treatment: A systematic review of the last decade (2013–2023). Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2024, 14, e1530. [Google Scholar] [CrossRef]
- Manetas-Stavrakakis, N.; Sotiropoulou, I.M.; Paraskevas, T.; Maneta Stavrakaki, S.; Bampatsias, D.; Xanthopoulos, A.; Papageorgiou, N.; Briasoulis, A. Accuracy of artificial intelligence-based technologies for the diagnosis of atrial fibrillation: A systematic review and meta-analysis. J. Clin. Med. 2023, 12, 6576. [Google Scholar] [CrossRef] [PubMed]
- Calhoun, V.D.; Pearlson, G.D.; Sui, J. Data-driven approaches to neuroimaging biomarkers for neurological and psychiatric disorders: Emerging approaches and examples. Curr. Opin. Neurol. 2021, 34, 469–479. [Google Scholar] [CrossRef] [PubMed]
- Wolfers, T.; Buitelaar, J.K.; Beckmann, C.F.; Franke, B.; Marquand, A.F. From estimating activation locality to predicting disorder: A review of pattern recognition for neuroimaging-based psychiatric diagnostics. Neurosci. Biobehav. Rev. 2015, 57, 328–349. [Google Scholar] [CrossRef]
- Fonseka, T.M.; MacQueen, G.M.; Kennedy, S.H. Neuroimaging biomarkers as predictors of treatment outcome in major depressive disorder. J. Affect. Disord. 2018, 233, 21–35. [Google Scholar] [CrossRef] [PubMed]
- Papageorgiou, I.E. Neuroscience Scaffolded by Informatics: A Raging Interdisciplinary Field. Symmetry 2023, 15, 153. [Google Scholar] [CrossRef]
- Mirmohammadi, H.; Fahmy, M.D.; Bidabadi, F.S.; Liang, H. Editorial Letter: Breaking Down Boundaries: Unleashing the Power of Interdisciplinary Research. Sci. Hypotheses 2024, 1, 1–3. [Google Scholar] [CrossRef]
- Doom, T.; Raymer, M.; Krane, D.; Garcia, O. Crossing the interdisciplinary barrier: A baccalaureate computer science option in bioinformatics. IEEE Trans. Educ. 2003, 46, 387–393. [Google Scholar] [CrossRef]
- Logan, S.; Arzua, T.; Canfield, S.G.; Seminary, E.R.; Sison, S.L.; Ebert, A.D.; Bai, X. Studying human neurological disorders using induced pluripotent stem cells: From 2D monolayer to 3D organoid and blood brain barrier models. Compr. Physiol. 2019, 9, 565. [Google Scholar] [PubMed]
- Aboul-Soud, M.A.; Alzahrani, A.J.; Mahmoud, A. Induced pluripotent stem cells (iPSCs)—Roles in regenerative therapies, disease modelling and drug screening. Cells 2021, 10, 2319. [Google Scholar] [CrossRef]
- Ho, B.X.; Pek, N.M.Q.; Soh, B.-S. Disease modeling using 3D organoids derived from human induced pluripotent stem cells. Int. J. Mol. Sci. 2018, 19, 936. [Google Scholar] [CrossRef]
- Karagiannis, P.; Takahashi, K.; Saito, M.; Yoshida, Y.; Okita, K.; Watanabe, A.; Inoue, H.; Yamashita, J.K.; Todani, M.; Nakagawa, M. Induced pluripotent stem cells and their use in human models of disease and development. Physiol. Rev. 2019, 99, 79–114. [Google Scholar] [CrossRef] [PubMed]
- Marchetto, M.C.; Brennand, K.J.; Boyer, L.F.; Gage, F.H. Induced pluripotent stem cells (iPSCs) and neurological disease modeling: Progress and promises. Hum. Mol. Genet. 2011, 20, R109–R115. [Google Scholar] [CrossRef] [PubMed]
- Beevers, J.E.; Caffrey, T.M.; Wade-Martins, R. Induced pluripotent stem cell (iPSC)-derived dopaminergic models of Parkinson’s disease. Biochem. Soc. Trans. 2013, 41, 1503–1508. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, R.; Bae, S.D.W.; Qiao, L.; George, J. Developing liver organoids from induced pluripotent stem cells (iPSCs): An alternative source of organoid generation for liver cancer research. Cancer Lett. 2021, 508, 13–17. [Google Scholar] [CrossRef] [PubMed]
- Trillhaase, A.; Maertens, M.; Aherrahrou, Z.; Erdmann, J. Induced pluripotent stem cells (iPSCs) in vascular research: From two-to three-dimensional organoids. Stem Cell Rev. Rep. 2021, 17, 1741–1753. [Google Scholar] [CrossRef]
- Wörheide, M.A.; Krumsiek, J.; Kastenmüller, G.; Arnold, M. Multi-omics integration in biomedical research–A metabolomics-centric review. Anal. Chim. Acta 2021, 1141, 144–162. [Google Scholar] [CrossRef]
- Sanches, P.H.G.; de Melo, N.C.; Porcari, A.M.; de Carvalho, L.M. Integrating Molecular Perspectives: Strategies for Comprehensive Multi-Omics Integrative Data Analysis and Machine Learning Applications in Transcriptomics, Proteomics, and Metabolomics. Biology 2024, 13, 848. [Google Scholar] [CrossRef] [PubMed]
- Ge, H.; Walhout, A.J.; Vidal, M. Integrating ‘omic’information: A bridge between genomics and systems biology. TRENDS Genet. 2003, 19, 551–560. [Google Scholar] [CrossRef] [PubMed]
- Menyhárt, O.; Győrffy, B. Multi-omics approaches in cancer research with applications in tumor subtyping, prognosis, and diagnosis. Comput. Struct. Biotechnol. J. 2021, 19, 949–960. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Kuster, B. Proteomics is not an island: Multi-omics integration is the key to understanding biological systems. Mol. Cell. Proteom. 2019, 18, S1–S4. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Xu, X.; Wang, W.; Tian, T.; Zhu, Z.; Yang, C. Single cell transcriptomics: Moving towards multi-omics. Analyst 2019, 144, 3172–3189. [Google Scholar] [CrossRef] [PubMed]
- Graw, S.; Chappell, K.; Washam, C.L.; Gies, A.; Bird, J.; Robeson, M.S.; Byrum, S.D. Multi-omics data integration considerations and study design for biological systems and disease. Mol. Omics 2021, 17, 170–185. [Google Scholar] [CrossRef]
- Jendoubi, T. Approaches to integrating metabolomics and multi-omics data: A primer. Metabolites 2021, 11, 184. [Google Scholar] [CrossRef] [PubMed]
- Pozhar, K.V.; Chuprakov, D.A.; Strukova, E.I.; Litinskaia, E.L. Modeling of blood glucose dynamics to automate personalized insulin therapy for patients with type 1 diabetes mellitus. In Proceedings of the 2023 IEEE Ural-Siberian Conference on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT), Yekaterinburg, Russia, 15–17 May 2023; pp. 049–052. [Google Scholar]
- Wang, Q.; Molenaar, P.; Harsh, S.; Freeman, K.; Xie, J.; Gold, C.; Rovine, M.; Ulbrecht, J. Personalized state-space modeling of glucose dynamics for type 1 diabetes using continuously monitored glucose, insulin dose, and meal intake: An extended Kalman filter approach. J. Diabetes Sci. Technol. 2014, 8, 331–345. [Google Scholar] [CrossRef]
- Fan, Y.N.; Fan, B.; Lim, C.; Lau, E.S.; Tsoi, S.T.; Wan, R.; Lai, W.Y.; Poon, E.W.; Ho, J.; Ho, C.C.Y. Precision Medicine to Redefine Insulin Secretion and Monogenic Diabetes-Randomized Controlled Trial (PRISM-RCT) in Chinese patients with young-onset diabetes: Design, methods and baseline characteristics. BMJ Open Diabetes Res. Care 2024, 12, e004120. [Google Scholar]
- Emery, P.; Dörner, T. Optimising treatment in rheumatoid arthritis: A review of potential biological markers of response. Ann. Rheum. Dis. 2011, 70, 2063–2070. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, S.; Saegusa, J.; Onishi, A.; Morinobu, A. Biomarkers identified by serum metabolomic analysis to predict biologic treatment response in rheumatoid arthritis patients. Rheumatology 2019, 58, 2153–2161. [Google Scholar] [CrossRef] [PubMed]
- Choi, I.Y.; Gerlag, D.M.; Herenius, M.J.; Thurlings, R.M.; Wijbrandts, C.A.; Foell, D.; Vogl, T.; Roth, J.; Tak, P.P.; Holzinger, D. MRP8/14 serum levels as a strong predictor of response to biological treatments in patients with rheumatoid arthritis. Ann. Rheum. Dis. 2015, 74, 499–505. [Google Scholar] [CrossRef]
- Saxe, G.N.; Statnikov, A.; Fenyo, D.; Ren, J.; Li, Z.; Prasad, M.; Wall, D.; Bergman, N.; Briggs, E.C.; Aliferis, C. A complex systems approach to causal discovery in psychiatry. PLoS ONE 2016, 11, e0151174. [Google Scholar] [CrossRef] [PubMed]
- Nelson, B.; McGorry, P.D.; Wichers, M.; Wigman, J.T.; Hartmann, J.A. Moving from static to dynamic models of the onset of mental disorder: A review. JAMA Psychiatry 2017, 74, 528–534. [Google Scholar] [CrossRef]
- Hernández, R.M.; Ponce-Meza, J.C.; Saavedra-López, M.Á.; Ugaz, W.A.C.; Chanduvi, R.M.; Monteza, W.C. Brain Complexity and Psychiatric Disorders. Iran. J. Psychiatry 2023, 18, 493. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Castellanos, F.X. Annual research review: Discovery science strategies in studies of the pathophysiology of child and adolescent psychiatric disorders-promises and limitations. J. Child Psychol. Psychiatry 2016, 57, 421–439. [Google Scholar] [CrossRef] [PubMed]
- Totah, N.; Akil, H.; Huys, Q.J.; Krystal, J.H.; MacDonald, A.W.; Maia, T.V.; Malenka, R.C.; Pauli, W.M. Complexity and Heterogeneity in Psychiatric Disorders: Opportunities for Computational Psychiatry. In Computational Psychiatry: New Perspectives on Mental Illness; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Gibbs, R.M.; Lipnick, S.; Bateman, J.W.; Chen, L.; Cousins, H.C.; Hubbard, E.G.; Jowett, G.; LaPointe, D.S.; McGredy, M.J.; Odonkor, M.N. Toward precision medicine for neurological and neuropsychiatric disorders. Cell Stem Cell 2018, 23, 21–24. [Google Scholar] [CrossRef] [PubMed]
- Wen, Z.; Christian, K.M.; Song, H.; Ming, G.-l. Modeling psychiatric disorders with patient-derived iPSCs. Curr. Opin. Neurobiol. 2016, 36, 118–127. [Google Scholar] [CrossRef] [PubMed]
- Rashid, B.; Calhoun, V. Towards a brain-based predictome of mental illness. Hum. Brain Mapp. 2020, 41, 3468–3535. [Google Scholar] [CrossRef] [PubMed]
- Nicora, G.; Vitali, F.; Dagliati, A.; Geifman, N.; Bellazzi, R. Integrated multi-omics analyses in oncology: A review of machine learning methods and tools. Front. Oncol. 2020, 10, 1030. [Google Scholar] [CrossRef] [PubMed]
- Demirel, H.C.; Arici, M.K.; Tuncbag, N. Computational approaches leveraging integrated connections of multi-omic data toward clinical applications. Mol. Omics 2022, 18, 7–18. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Lecours Boucher, X.; Rogers, C.; Makowski, C.; Chouinard-Decorte, F.; Oros Klein, K.; Beck, N.; Rioux, P.; Brown, S.T.; Mohaddes, Z. Integration of “omics” Data and phenotypic data within a unified extensible multimodal framework. Front. Neuroinformatics 2018, 12, 91. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Xie, L. AI-driven multi-omics integration for multi-scale predictive modeling of causal genotype-environment-phenotype relationships. arXiv 2024, arXiv:2407.06405. [Google Scholar]
- Chan, Y.H.; Wang, C.; Soh, W.K.; Rajapakse, J.C. Combining neuroimaging and omics datasets for disease classification using graph neural networks. Front. Neurosci. 2022, 16, 866666. [Google Scholar] [CrossRef] [PubMed]
- Wang, H. The Application and Progress of Deep Learning in Bioinformatics. Comput. Mol. Biol. 2024, 14, 76–83. [Google Scholar] [CrossRef]
- Vahabi, N.; Michailidis, G. Unsupervised multi-omics data integration methods: A comprehensive review. Front. Genet. 2022, 13, 854752. [Google Scholar] [CrossRef] [PubMed]
- Chai, H.; Zhou, X.; Zhang, Z.; Rao, J.; Zhao, H.; Yang, Y. Integrating multi-omics data through deep learning for accurate cancer prognosis prediction. Comput. Biol. Med. 2021, 134, 104481. [Google Scholar] [CrossRef] [PubMed]
- Gauld, C.; Depannemaecker, D. Dynamical systems in computational psychiatry: A toy-model to apprehend the dynamics of psychiatric symptoms. Front. Psychol. 2023, 14, 1099257. [Google Scholar] [CrossRef] [PubMed]
- Frank, B.; Jacobson, N.C.; Hurley, L.; McKay, D. A theoretical and empirical modeling of anxiety integrated with RDoC and temporal dynamics. J. Anxiety Disord. 2017, 51, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Scheffer, M.; Bockting, C.L.; Borsboom, D.; Cools, R.; Delecroix, C.; Hartmann, J.A.; Kendler, K.S.; van de Leemput, I.; van der Maas, H.L.; van Nes, E. A Dynamical Systems View of Psychiatric Disorders—Practical Implications: A Review. JAMA Psychiatry 2024, 81, 624–630. [Google Scholar] [CrossRef] [PubMed]
- Scheffer, M.; Bockting, C.L.; Borsboom, D.; Cools, R.; Delecroix, C.; Hartmann, J.A.; Kendler, K.S.; van de Leemput, I.; van der Maas, H.L.; van Nes, E. A dynamical systems view of psychiatric disorders—Theory: A review. JAMA Psychiatry 2024, 81, 618–623. [Google Scholar] [CrossRef]
- Shin, J.K.; Malone, D.T.; Crosby, I.T.; Capuano, B. Schizophrenia: A systematic review of the disease state, current therapeutics and their molecular mechanisms of action. Curr. Med. Chem. 2011, 18, 1380–1404. [Google Scholar] [CrossRef] [PubMed]
- Meijboom, F.L.; Kostrzewa, E.; Leenaars, C.H. Joining forces: The need to combine science and ethics to address problems of validity and translation in neuropsychiatry research using animal models. Philos. Ethics Humanit. Med. 2020, 15, 1. [Google Scholar] [CrossRef] [PubMed]
- Thorp, H.H. Bridging two views of autism. Science 2024, 384, 939. [Google Scholar] [CrossRef] [PubMed]
- Kozler, P.; Marešová, D.; Pokorný, J. Determination of brain water content by dry/wet weight measurement for the detection of experimental brain edema. Physiol. Res. 2022, 71, S277. [Google Scholar] [CrossRef] [PubMed]
- Benrimoh, D.A.; Friston, K.J. All grown up: Computational theories of psychosis, complexity, and progress. J. Abnorm. Psychol. 2020, 129, 624–628. [Google Scholar] [CrossRef] [PubMed]
- Ambrosen, K.S.; Skjerbæk, M.W.; Foldager, J.; Axelsen, M.C.; Bak, N.; Arvastson, L.; Christensen, S.R.; Johansen, L.B.; Raghava, J.M.; Oranje, B. A machine-learning framework for robust and reliable prediction of short-and long-term treatment response in initially antipsychotic-naïve schizophrenia patients based on multimodal neuropsychiatric data. Transl. Psychiatry 2020, 10, 276. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Song, C.; Ma, Y.; Zou, Y. “Half-wet-half-dry”: An innovation in undergraduate laboratory classes to generate transgenic mouse models using CRISPR/Cas9 and computer simulation. J. Biol. Educ. 2023, 57, 1083–1091. [Google Scholar] [CrossRef]
- Nelson, B.; Lavoie, S.; Li, E.; Sass, L.; Koren, D.; McGorry, P.; Jack, B.; Parnas, J.; Polari, A.; Allott, K. The neurophenomenology of early psychosis: An integrative empirical study. Conscious. Cogn. 2020, 77, 102845. [Google Scholar] [CrossRef]
- Yao, S.; Zhu, J.; Li, S.; Zhang, R.; Zhao, J.; Yang, X.; Wang, Y. Bibliometric analysis of quantitative electroencephalogram research in neuropsychiatric disorders from 2000 to 2021. Front. Psychiatry 2022, 13, 830819. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.-H.; Li, J.; Cho, W.C. Integrative analysis for complex disease biomarker discovery. Front. Bioeng. Biotechnol. 2023, 11, 1273084. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, D.; Marques, G.; de la Torre-Díez, I.; Franco Martin, M.A.; García Zapiraín, B.; Martín Rodríguez, F. Transfer learning for Alzheimer’s disease through neuroimaging biomarkers: A systematic review. Sensors 2021, 21, 7259. [Google Scholar] [CrossRef] [PubMed]
- Nyatega, C.O.; Qiang, L.; Adamu, M.J.; Kawuwa, H.B. Gray matter, white matter and cerebrospinal fluid abnormalities in Parkinson’s disease: A voxel-based morphometry study. Front. Psychiatry 2022, 13, 1027907. [Google Scholar] [CrossRef] [PubMed]
- Younis, A.; Qiang, L.; Nyatega, C.O.; Adamu, M.J.; Kawuwa, H.B. Brain tumor analysis using deep learning and VGG-16 ensembling learning approaches. Appl. Sci. 2022, 12, 7282. [Google Scholar] [CrossRef]
- de Lima, E.P.; Tanaka, M.; Lamas, C.B.; Quesada, K.; Detregiachi, C.R.P.; Araújo, A.C.; Guiguer, E.L.; Catharin, V.M.C.S.; de Castro, M.V.M.; Junior, E.B. Vascular Impairment, Muscle Atrophy, and Cognitive Decline: Critical Age-Related Conditions. Biomedicines 2024, 12, 2096. [Google Scholar] [CrossRef] [PubMed]
- Nunes, Y.C.; Mendes, N.M.; Pereira de Lima, E.; Chehadi, A.C.; Lamas, C.B.; Haber, J.F.; dos Santos Bueno, M.; Araújo, A.C.; Catharin, V.C.S.; Detregiachi, C.R.P. Curcumin: A golden approach to healthy aging: A systematic review of the evidence. Nutrients 2024, 16, 2721. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, M.; Tuka, B.; Vécsei, L. Navigating the Neurobiology of Migraine: From pathways to potential therapies. Cells 2024, 13, 1098. [Google Scholar] [CrossRef] [PubMed]
- Mirkin, S.; Albensi, B.C. Should artificial intelligence be used in conjunction with Neuroimaging in the diagnosis of Alzheimer’s disease? Front. Aging Neurosci. 2023, 15, 1094233. [Google Scholar] [CrossRef] [PubMed]
- Tilahun, B.B.S.; Thompson, N.R.; Sankary, L.R.; Laryea, F.; Trunick, C.M.; Jehi, L.E. Outcomes in the treatment of psychogenic nonepileptic seizures (PNES) with CBTip: Response in seizure frequency, depression, anxiety, and quality of life. Epilepsy Behav. 2021, 123, 108277. [Google Scholar] [CrossRef] [PubMed]
- Velani, H.; Gledhill, J. Psychological & Behavioural Treatments of Nonepileptic Seizures in Children and Adolescents. BJPsych Open 2021, 7, S299. [Google Scholar]
- Aziz, M.O.; Mehrinejad, S.A.; Hashemian, K.; Paivastegar, M. Integrative therapy (short-term psychodynamic psychotherapy & cognitive-behavioral therapy) and cognitive-behavioral therapy in the treatment of generalized anxiety disorder: A randomized controlled trial. Complement. Ther. Clin. Pract. 2020, 39, 101122. [Google Scholar]
- Hall, M.-F.E.; Church, F.C. Integrative medicine and health therapy for Parkinson disease. Top. Geriatr. Rehabil. 2020, 36, 176–186. [Google Scholar] [CrossRef]
- Church, F.C. Treatment options for motor and non-motor symptoms of Parkinson’s disease. Biomolecules 2021, 11, 612. [Google Scholar] [CrossRef]
- Nguyen, S.A.; Oughli, H.A.; Lavretsky, H. Use of complementary and integrative medicine for Alzheimer’s disease and cognitive decline. J. Alzheimer’s Dis. 2024, 97, 523–540. [Google Scholar] [CrossRef]
- Tanaka, M.; Vécsei, L. Revolutionizing our understanding of Parkinson’s disease: Dr. Heinz Reichmann’s pioneering research and future research direction. J. Neural Transm. 2024, 131, 1367–1387. [Google Scholar] [CrossRef] [PubMed]
- Pagotto, G.L.d.O.; Santos, L.M.O.d.; Osman, N.; Lamas, C.B.; Laurindo, L.F.; Pomini, K.T.; Guissoni, L.M.; Lima, E.P.d.; Goulart, R.d.A.; Catharin, V.M.S. Ginkgo biloba: A Leaf of Hope in the Fight against Alzheimer’s Dementia: Clinical Trial Systematic Review. Antioxidants 2024, 13, 651. [Google Scholar] [CrossRef] [PubMed]
- Burnett, S.D.; Blanchette, A.D.; Chiu, W.A.; Rusyn, I. Human induced pluripotent stem cell (iPSC)-derived cardiomyocytes as an in vitro model in toxicology: Strengths and weaknesses for hazard identification and risk characterization. Expert Opin. Drug Metab. Toxicol. 2021, 17, 887–902. [Google Scholar] [CrossRef] [PubMed]
- Marcoux, P.; Hwang, J.W.; Desterke, C.; Imeri, J.; Bennaceur-Griscelli, A.; Turhan, A.G. Modeling RET-Rearranged Non-Small Cell Lung Cancer (NSCLC): Generation of Lung Progenitor Cells (LPCs) from Patient-Derived Induced Pluripotent Stem Cells (iPSCs). Cells 2023, 12, 2847. [Google Scholar] [CrossRef]
- Tanaka, M.; Vécsei, L. From Lab to Life: Exploring Cutting-Edge Models for Neurological and Psychiatric Disorders. Biomedicines 2024, 12, 613. [Google Scholar] [CrossRef] [PubMed]
- Ho, S.Y.; Phua, K.; Wong, L.; Bin Goh, W.W. Extensions of the External Validation for Checking Learned Model Interpretability and Generalizability. Patterns 2020, 1, 100129. [Google Scholar] [CrossRef] [PubMed]
- Paolini Sguazzi, G.; Muto, V.; Tartaglia, M.; Bertini, E.; Compagnucci, C. Induced Pluripotent Stem Cells (iPSCs) and Gene Therapy: A New Era for the Treatment of Neurological Diseases. Int. J. Mol. Sci. 2021, 22, 13674. [Google Scholar] [CrossRef] [PubMed]
- Yao, X.; Glessner, J.T.; Li, J.; Qi, X.; Hou, X.; Zhu, C.; Li, X.; March, M.E.; Yang, L.; Mentch, F.D.; et al. Integrative analysis of genome-wide association studies identifies novel loci associated with neuropsychiatric disorders. Transl. Psychiatry 2021, 11, 69. [Google Scholar] [CrossRef] [PubMed]
- Mallard, T.T.; Grotzinger, A.D.; Smoller, J.W. Examining the shared etiology of psychopathology with genome-wide association studies. Physiol. Rev. 2023, 103, 1645–1665. [Google Scholar] [CrossRef] [PubMed]
- Eyring, K.W.; Geschwind, D.H. Three decades of ASD genetics: Building a foundation for neurobiological understanding and treatment. Hum. Mol. Genet. 2021, 30, R236–R244. [Google Scholar] [CrossRef]
- Schwartzentruber, J.; Cooper, S.; Liu, J.Z.; Barrio-Hernandez, I.; Bello, E.; Kumasaka, N.; Young, A.M.H.; Franklin, R.J.M.; Johnson, T.; Estrada, K.; et al. Genome-wide meta-analysis, fine-mapping and integrative prioritization implicate new Alzheimer’s disease risk genes. Nat. Genet. 2021, 53, 392–402. [Google Scholar] [CrossRef] [PubMed]
- Dalmasso, M.C.; de Rojas, I.; Olivar, N.; Muchnik, C.; Angel, B.; Gloger, S.; Sanchez Abalos, M.S.; Chacón, M.V.; Aránguiz, R.; Orellana, P.; et al. The first genome-wide association study in the Argentinian and Chilean populations identifies shared genetics with Europeans in Alzheimer’s disease. Alzheimers Dement. 2024, 20, 1298–1308. [Google Scholar] [CrossRef] [PubMed]
- Andrews, S.J.; Fulton-Howard, B.; Goate, A. Interpretation of risk loci from genome-wide association studies of Alzheimer’s disease. Lancet Neurol. 2020, 19, 326–335. [Google Scholar] [CrossRef] [PubMed]
- Uffelmann, E.; Posthuma, D. Emerging Methods and Resources for Biological Interrogation of Neuropsychiatric Polygenic Signal. Biol. Psychiatry 2021, 89, 41–53. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, L.M.; Kim, M.; Hoftman, G.D.; Haney, J.R.; de la Torre-Ubieta, L.; Pasaniuc, B.; Gandal, M.J. Transcriptomic Insight Into the Polygenic Mechanisms Underlying Psychiatric Disorders. Biol. Psychiatry 2021, 89, 54–64. [Google Scholar] [CrossRef]
- Gedik, H.; Nguyen, T.H.; Peterson, R.E.; Chatzinakos, C.; Vladimirov, V.I.; Riley, B.P.; Bacanu, S.A. Identifying potential risk genes and pathways for neuropsychiatric and substance use disorders using intermediate molecular mediator information. Front. Genet. 2023, 14, 1191264. [Google Scholar] [CrossRef]
- Yao, Y.; Guo, W.; Zhang, S.; Yu, H.; Yan, H.; Zhang, H.; Sanders, A.R.; Yue, W.; Duan, J. Cell type-specific and cross-population polygenic risk score analyses of MIR137 gene pathway in schizophrenia. iScience 2021, 24, 102785. [Google Scholar] [CrossRef] [PubMed]
- Kibinge, N.K.; Relton, C.L.; Gaunt, T.R.; Richardson, T.G. Characterizing the Causal Pathway for Genetic Variants Associated with Neurological Phenotypes Using Human Brain-Derived Proteome Data. Am. J. Hum. Genet. 2020, 106, 885–892. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, E.L.; Pegolotti, L.; Pfaller, M.R.; Marsden, A.L. Beyond CFD: Emerging methodologies for predictive simulation in cardiovascular health and disease. Biophys. Rev. 2023, 4, 011301. [Google Scholar] [CrossRef] [PubMed]
- Hirschhorn, M.; Tchantchaleishvili, V.; Stevens, R.; Rossano, J.; Throckmorton, A. Fluid-structure interaction modeling in cardiovascular medicine—A systematic review 2017-2019. Med. Eng. Phys. 2020, 78, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Cluitmans, M.; Walton, R.; Plank, G. Editorial: Computational methods in cardiac electrophysiology. Front. Physiol. 2023, 14, 1231342. [Google Scholar] [CrossRef]
- Ramachandran, R.P.; Akbarzadeh, M.; Paliwal, J.; Cenkowski, S. Computational fluid dynamics in drying process modelling—A technical review. Food Bioprocess Technol. 2018, 11, 271–292. [Google Scholar] [CrossRef]
- Defraeye, T. Advanced computational modelling for drying processes–A review. Appl. Energy 2014, 131, 323–344. [Google Scholar] [CrossRef]
- Duruflé, H.; Selmani, M.; Ranocha, P.; Jamet, E.; Dunand, C.; Déjean, S. A powerful framework for an integrative study with heterogeneous omics data: From univariate statistics to multi-block analysis. Brief. Bioinform. 2021, 22, bbaa166. [Google Scholar] [CrossRef] [PubMed]
- Reel, P.S.; Reel, S.; Pearson, E.; Trucco, E.; Jefferson, E. Using machine learning approaches for multi-omics data analysis: A review. Biotechnol. Adv. 2021, 49, 107739. [Google Scholar] [CrossRef] [PubMed]
- Bodein, A.; Scott-Boyer, M.P.; Perin, O.; Lê Cao, K.A.; Droit, A. Interpretation of network-based integration from multi-omics longitudinal data. Nucleic Acids Res. 2022, 50, e27. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, A.; Li, Y.; Love, M.I. MOSTWAS: Multi-Omic Strategies for Transcriptome-Wide Association Studies. PLoS Genet. 2021, 17, e1009398. [Google Scholar] [CrossRef]
- Akiyama, M. Multi-omics study for interpretation of genome-wide association study. J. Hum. Genet. 2021, 66, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Paczkowska, M.; Barenboim, J.; Sintupisut, N.; Fox, N.S.; Zhu, H.; Abd-Rabbo, D.; Mee, M.W.; Boutros, P.C.; Reimand, J. Integrative pathway enrichment analysis of multivariate omics data. Nat. Commun. 2020, 11, 735. [Google Scholar] [CrossRef] [PubMed]
- Kawuwa, H.B.; Nyatega, C.O.; Younis, A.; Adamu, M.J. Neuroanatomical alterations in brain disorder: A magnetic resonance imaging analysis. Int. J. Sci. Res. Arch. 2024, 12, 492–507. [Google Scholar] [CrossRef]
- Adamu, M.J.; Qiang, L.; Nyatega, C.O.; Younis, A.; Kawuwa, H.B.; Jabire, A.H.; Saminu, S. Unraveling the pathophysiology of schizophrenia: Insights from structural magnetic resonance imaging studies. Front. Psychiatry 2023, 14, 1188603. [Google Scholar] [CrossRef] [PubMed]
- Kourou, K.; Exarchos, T.P.; Exarchos, K.P.; Karamouzis, M.V.; Fotiadis, D.I. Machine learning applications in cancer prognosis and prediction. Comput. Struct. Biotechnol. J. 2015, 13, 8–17. [Google Scholar] [CrossRef]
- Battaglia, S.; Nazzi, C.; Fullana, M.A.; di Pellegrino, G.; Borgomaneri, S. ‘Nip it in the bud’: Low-frequency rTMS of the prefrontal cortex disrupts threat memory consolidation in humans. Behav. Res. Ther. 2024, 178, 104548. [Google Scholar] [CrossRef] [PubMed]
- Battineni, G.; Sagaro, G.G.; Chinatalapudi, N.; Amenta, F. Applications of Machine Learning Predictive Models in the Chronic Disease Diagnosis. J. Pers. Med. 2020, 10, 21. [Google Scholar] [CrossRef]
- El Naqa, I.; Bradley, J.D.; Lindsay, P.E.; Hope, A.J.; Deasy, J.O. Predicting radiotherapy outcomes using statistical learning techniques. Phys. Med. Biol. 2009, 54, S9–S30. [Google Scholar] [CrossRef] [PubMed]
- Liang, Z.; Verkhivker, G.M.; Hu, G. Integration of network models and evolutionary analysis into high-throughput modeling of protein dynamics and allosteric regulation: Theory, tools and applications. Brief. Bioinform. 2020, 21, 815–835. [Google Scholar] [CrossRef] [PubMed]
- Huang, N.F.; Chaudhuri, O.; Cahan, P.; Wang, A.; Engler, A.J.; Wang, Y.; Kumar, S.; Khademhosseini, A.; Li, S. Multi-scale cellular engineering: From molecules to organ-on-a-chip. APL Bioeng. 2020, 4, 010906. [Google Scholar] [CrossRef] [PubMed]
- John-Herpin, A.; Kavungal, D.; von Mücke, L.; Altug, H. Infrared Metasurface Augmented by Deep Learning for Monitoring Dynamics between All Major Classes of Biomolecules. Adv. Mater. 2021, 33, e2006054. [Google Scholar] [CrossRef] [PubMed]
- Battaglia, S.; Avenanti, A.; Vécsei, L.; Tanaka, M. Neural correlates and molecular mechanisms of memory and learning. Int. J. Mol. Sci. 2024, 25, 2724. [Google Scholar] [CrossRef] [PubMed]
- Quettier, T.; Ippolito, G.; Però, L.; Cardellicchio, P.; Battaglia, S.; Borgomaneri, S. Individual differences in intracortical inhibition predict action control when facing emotional stimuli. Front. Psychol. 2024, 15, 1391723. [Google Scholar] [CrossRef] [PubMed]
- Fakhri, S.; Darvish, E.; Narimani, F.; Moradi, S.Z.; Abbaszadeh, F.; Khan, H. The regulatory role of non-coding RNAs and their interactions with phytochemicals in neurodegenerative diseases: A systematic review. Brief. Funct. Genom. 2023, 22, 143–160. [Google Scholar] [CrossRef]
- Brennan, G.P.; Henshall, D.C. MicroRNAs as regulators of brain function and targets for treatment of epilepsy. Nat. Rev. Neurol. 2020, 16, 506–519. [Google Scholar] [CrossRef] [PubMed]
- Rajendra, P.; Brahmajirao, V. Modeling of dynamical systems through deep learning. Biophys. Rev. 2020, 12, 1311–1320. [Google Scholar] [CrossRef] [PubMed]
- Terranova, N.; Venkatakrishnan, K. Machine Learning in Modeling Disease Trajectory and Treatment Outcomes: An Emerging Enabler for Model-Informed Precision Medicine. Clin. Pharmacol. Ther. 2024, 115, 720–726. [Google Scholar] [CrossRef]
- Koumakis, L. Deep learning models in genomics; are we there yet? Comput. Struct. Biotechnol. J. 2020, 18, 1466–1473. [Google Scholar] [CrossRef]
- Watson, D.S. Interpretable machine learning for genomics. Hum. Genet. 2022, 141, 1499–1513. [Google Scholar] [CrossRef]
- Martínez-García, M.; Hernández-Lemus, E. Data Integration Challenges for Machine Learning in Precision Medicine. Front. Med. 2021, 8, 784455. [Google Scholar] [CrossRef]
- Wright, J.T.; Herzberg, M.C. Science for the Next Century: Deep Phenotyping. J. Dent. Res. 2021, 100, 785–789. [Google Scholar] [CrossRef] [PubMed]
- Schalkamp, A.K.; Rahman, N.; Monzón-Sandoval, J.; Sandor, C. Deep phenotyping for precision medicine in Parkinson’s disease. Dis. Model. Mech. 2022, 15, dmm049376. [Google Scholar] [CrossRef] [PubMed]
- Bourgeais, V.; Zehraoui, F.; Ben Hamdoune, M.; Hanczar, B. Deep GONet: Self-explainable deep neural network based on Gene Ontology for phenotype prediction from gene expression data. BMC Bioinform. 2021, 22, 455. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Shen, X.; Pan, W. Deep reinforcement learning for personalized treatment recommendation. Stat. Med. 2022, 41, 4034–4056. [Google Scholar] [CrossRef]
- Chang, C.Y.; Ting, H.C.; Liu, C.A.; Su, H.L.; Chiou, T.W.; Lin, S.Z.; Harn, H.J.; Ho, T.J. Induced Pluripotent Stem Cell (iPSC)-Based Neurodegenerative Disease Models for Phenotype Recapitulation and Drug Screening. Molecules 2020, 25, 2000. [Google Scholar] [CrossRef] [PubMed]
- Jusop, A.S.; Thanaskody, K.; Tye, G.J.; Dass, S.A.; Wan Kamarul Zaman, W.S.; Nordin, F. Development of brain organoid technology derived from iPSC for the neurodegenerative disease modelling: A glance through. Front. Mol. Neurosci. 2023, 16, 1173433. [Google Scholar] [CrossRef] [PubMed]
- Valadez-Barba, V.; Cota-Coronado, A.; Hernández-Pérez, O.R.; Lugo-Fabres, P.H.; Padilla-Camberos, E.; Díaz, N.F.; Díaz-Martínez, N.E. iPSC for modeling neurodegenerative disorders. Regen. Ther. 2020, 15, 332–339. [Google Scholar] [CrossRef] [PubMed]
- Qian, L.; Tcw, J. Human iPSC-Based Modeling of Central Nerve System Disorders for Drug Discovery. Int. J. Mol. Sci. 2021, 22, 1203. [Google Scholar] [CrossRef] [PubMed]
- Pomeshchik, Y.; Klementieva, O.; Gil, J.; Martinsson, I.; Hansen, M.G.; de Vries, T.; Sancho-Balsells, A.; Russ, K.; Savchenko, E.; Collin, A.; et al. Human iPSC-Derived Hippocampal Spheroids: An Innovative Tool for Stratifying Alzheimer Disease Patient-Specific Cellular Phenotypes and Developing Therapies. Stem Cell Rep. 2020, 15, 256–273. [Google Scholar] [CrossRef]
- Trombetta-Lima, M.; Sabogal-Guáqueta, A.M.; Dolga, A.M. Mitochondrial dysfunction in neurodegenerative diseases: A focus on iPSC-derived neuronal models. Cell Calcium 2021, 94, 102362. [Google Scholar] [CrossRef]
- Amponsah, A.E.; Guo, R.; Kong, D.; Feng, B.; He, J.; Zhang, W.; Liu, X.; Du, X.; Ma, Z.; Liu, B.; et al. Patient-derived iPSCs, a reliable in vitro model for the investigation of Alzheimer’s disease. Rev. Neurosci. 2021, 32, 379–402. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Fraenkel, E. Phenotyping Neurodegeneration in Human iPSCs. Annu. Rev. Biomed. Data Sci. 2021, 4, 83–100. [Google Scholar] [CrossRef] [PubMed]
- Hyman, S.E. Use of mouse models to investigate the contributions of CNVs associated with schizophrenia and autism to disease mechanisms. Curr. Opin. Genet. Dev. 2021, 68, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Neuhaus, C.P. Threats to Benefits: Assessing Knowledge Production in Nonhuman Models of Human Neuropsychiatric Disorders. Hastings Cent. Rep. 2022, 52 (Suppl. S2), S34–S40. [Google Scholar] [CrossRef] [PubMed]
- Voikar, V.; Gaburro, S. Three Pillars of Automated Home-Cage Phenotyping of Mice: Novel Findings, Refinement, and Reproducibility Based on Literature and Experience. Front. Behav. Neurosci. 2020, 14, 575434. [Google Scholar] [CrossRef] [PubMed]
- Palmer, D.; Dumont, J.R.; Dexter, T.D.; Prado, M.A.M.; Finger, E.; Bussey, T.J.; Saksida, L.M. Touchscreen cognitive testing: Cross-species translation and co-clinical trials in neurodegenerative and neuropsychiatric disease. Neurobiol. Learn. Mem. 2021, 182, 107443. [Google Scholar] [CrossRef] [PubMed]
- Winiarski, M.; Kondrakiewicz, L.; Kondrakiewicz, K.; Jędrzejewska-Szmek, J.; Turzyński, K.; Knapska, E.; Meyza, K. Social deficits in BTBR T+ Itpr3tf/J mice vary with ecological validity of the test. Genes. Brain Behav. 2022, 21, e12814. [Google Scholar] [CrossRef] [PubMed]
- Cwiek, A.; Rajtmajer, S.M.; Wyble, B.; Honavar, V.; Grossner, E.; Hillary, F.G. Feeding the machine: Challenges to reproducible predictive modeling in resting-state connectomics. Netw. Neurosci. 2022, 6, 29–48. [Google Scholar] [CrossRef]
- Naaktgeboren, C.A.; Ochodo, E.A.; Van Enst, W.A.; de Groot, J.A.H.; Hooft, L.; Leeflang, M.M.G.; Bossuyt, P.M.; Moons, K.G.M.; Reitsma, J.B. Assessing variability in results in systematic reviews of diagnostic studies. BMC Med. Res. Methodol. 2016, 16, 6. [Google Scholar] [CrossRef] [PubMed]
- Rasero, J.; Sentis, A.I.; Yeh, F.C.; Verstynen, T. Integrating across neuroimaging modalities boosts prediction accuracy of cognitive ability. PLoS Comput. Biol. 2021, 17, e1008347. [Google Scholar] [CrossRef] [PubMed]
- Jiang, R.; Woo, C.W.; Qi, S.; Wu, J.; Sui, J. Interpreting Brain Biomarkers: Challenges and solutions in interpreting machine learning-based predictive neuroimaging. IEEE Signal Process Mag. 2022, 39, 107–118. [Google Scholar] [CrossRef] [PubMed]
- Kohoutová, L.; Heo, J.; Cha, S.; Lee, S.; Moon, T.; Wager, T.D.; Woo, C.W. Toward a unified framework for interpreting machine-learning models in neuroimaging. Nat. Protoc. 2020, 15, 1399–1435. [Google Scholar] [CrossRef] [PubMed]
- Eitel, F.; Schulz, M.A.; Seiler, M.; Walter, H.; Ritter, K. Promises and pitfalls of deep neural networks in neuroimaging-based psychiatric research. Exp. Neurol. 2021, 339, 113608. [Google Scholar] [CrossRef] [PubMed]
- Wachinger, C.; Rieckmann, A.; Pölsterl, S. Detect and correct bias in multi-site neuroimaging datasets. Med. Image Anal. 2021, 67, 101879. [Google Scholar] [CrossRef] [PubMed]
- Sui, J.; Jiang, R.; Bustillo, J.; Calhoun, V. Neuroimaging-based Individualized Prediction of Cognition and Behavior for Mental Disorders and Health: Methods and Promises. Biol. Psychiatry 2020, 88, 818–828. [Google Scholar] [CrossRef]
- Vaden, K.I., Jr.; Gebregziabher, M.; Dyslexia Data, C.; Eckert, M.A. Fully synthetic neuroimaging data for replication and exploration. Neuroimage 2020, 223, 117284. [Google Scholar] [CrossRef] [PubMed]
- Saha, D.K.; Calhoun, V.D.; Du, Y.; Fu, Z.; Kwon, S.M.; Sarwate, A.D.; Panta, S.R.; Plis, S.M. Privacy-preserving quality control of neuroimaging datasets in federated environments. Hum. Brain Mapp. 2022, 43, 2289–2310. [Google Scholar] [CrossRef] [PubMed]
- Mohammed Yakubu, A.; Chen, Y.P. Ensuring privacy and security of genomic data and functionalities. Brief Bioinform. 2020, 21, 511–526. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, M.; Battaglia, S.; Giménez-Llort, L.; Chen, C.; Hepsomali, P.; Avenanti, A.; Vécsei, L. Innovation at the intersection: Emerging translational research in neurology and psychiatry. Cells 2024, 13, 790. [Google Scholar] [CrossRef]
- Panov, G.; Panova, P. Neurobiochemical disturbances in psychosis and their implications for therapeutic intervention. Curr. Top. Med. Chem. 2024, 24, 1784–1798. [Google Scholar] [CrossRef]
- Bonanno, M.; Calabrò, R.S. Bridging the Gap between Basic Research and Clinical Practice: The Growing Role of Translational Neurorehabilitation. Medicines 2023, 10, 45. [Google Scholar] [CrossRef] [PubMed]
- Heider, J.; Vogel, S.; Volkmer, H.; Breitmeyer, R. Human iPSC-Derived Glia as a Tool for Neuropsychiatric Research and Drug Development. Int. J. Mol. Sci. 2021, 22, 10254. [Google Scholar] [CrossRef] [PubMed]
- Lakiotaki, K.; Papadovasilakis, Z.; Lagani, V.; Fafalios, S.; Charonyktakis, P.; Tsagris, M.; Tsamardinos, I. Automated machine learning for genome wide association studies. Bioinformatics 2023, 39, btad545. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Q.; Bai, X.; Zhang, C.; He, Y. Advanced high-throughput plant phenotyping techniques for genome-wide association studies: A review. J. Adv. Res. 2022, 35, 215–230. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, T.; Johnson, E.C.; Huggett, S.B.; Bubier, J.A.; Palmer, R.H.C.; Agrawal, A.; Baker, E.J.; Chesler, E.J. Interpretation of psychiatric genome-wide association studies with multispecies heterogeneous functional genomic data integration. Neuropsychopharmacology 2021, 46, 86–97. [Google Scholar] [CrossRef] [PubMed]
- McGill, M.P.; Threadgill, D.W. Adding robustness to rigor and reproducibility for the three Rs of improving translational medical research. J. Clin. Investig. 2023, 133, e173750. [Google Scholar] [CrossRef] [PubMed]
- Schubert, R.; Geoffroy, E.; Gregga, I.; Mulford, A.J.; Aguet, F.; Ardlie, K.; Gerszten, R.; Clish, C.; Van Den Berg, D.; Taylor, K.D.; et al. Protein prediction for trait mapping in diverse populations. PLoS ONE 2022, 17, e0264341. [Google Scholar] [CrossRef]
- Sesia, M.; Bates, S.; Candès, E.; Marchini, J.; Sabatti, C. False discovery rate control in genome-wide association studies with population structure. Proc. Natl. Acad. Sci. USA 2021, 118, e2105841118. [Google Scholar] [CrossRef]
- Wegner, C.D.; Mount, B.A.; Colvis, C.M. A public-private collaboration model for clinical innovation. Clin. Transl. Sci. 2022, 15, 1581–1591. [Google Scholar] [CrossRef] [PubMed]
- Vogel, A.L.; Knebel, A.R.; Faupel-Badger, J.M.; Portilla, L.M.; Simeonov, A. A systems approach to enable effective team science from the internal research program of the National Center for Advancing Translational Sciences. J. Clin. Transl. Sci. 2021, 5, e163. [Google Scholar] [CrossRef]
- Becich, M.J. Clinical Trial Strategies Fueled by Informatics Innovation Catalyze Translational Research. JAMA Netw. Open 2023, 6, e2336480. [Google Scholar] [CrossRef] [PubMed]
- Munro, C.L.; Savel, R.H. Rigor and Reproducibility in Critical Care Research. Am. J. Crit. Care 2017, 26, 265–267. [Google Scholar] [CrossRef]
- Díaz-Faes, A.A.; Llopis, O.; D’Este, P.; Molas-Gallart, J. Assessing the variety of collaborative practices in translational research: An analysis of scientists’ ego-networks. Res. Eval. 2023, 32, 426–440. [Google Scholar] [CrossRef]
- Lenze, E.J.; Nicol, G.E.; Barbour, D.L.; Kannampallil, T.; Wong, A.W.K.; Piccirillo, J.; Drysdale, A.T.; Sylvester, C.M.; Haddad, R.; Miller, J.P.; et al. Precision clinical trials: A framework for getting to precision medicine for neurobehavioural disorders. J. Psychiatry Neurosci. 2021, 46, E97–E110. [Google Scholar] [CrossRef] [PubMed]
- Nabbout, R.; Kuchenbuch, M. Impact of predictive, preventive and precision medicine strategies in epilepsy. Nat. Rev. Neurol. 2020, 16, 674–688. [Google Scholar] [CrossRef] [PubMed]
- Rees, E.; Owen, M.J. Translating insights from neuropsychiatric genetics and genomics for precision psychiatry. Genome Med. 2020, 12, 43. [Google Scholar] [CrossRef] [PubMed]
- Salazar de Pablo, G.; Studerus, E.; Vaquerizo-Serrano, J.; Irving, J.; Catalan, A.; Oliver, D.; Baldwin, H.; Danese, A.; Fazel, S.; Steyerberg, E.W.; et al. Implementing Precision Psychiatry: A Systematic Review of Individualized Prediction Models for Clinical Practice. Schizophr. Bull. 2021, 47, 284–297. [Google Scholar] [CrossRef] [PubMed]
- Alciati, A.; Reggiani, A.; Caldirola, D.; Perna, G. Human-Induced Pluripotent Stem Cell Technology: Toward the Future of Personalized Psychiatry. J. Pers. Med. 2022, 12, 1340. [Google Scholar] [CrossRef] [PubMed]
- Battaglia, S.; Avenanti, A.; Vécsei, L.; Tanaka, M. Neurodegeneration in cognitive impairment and mood disorders for experimental, clinical and translational neuropsychiatry. Biomedicines 2024, 12, 574. [Google Scholar] [CrossRef] [PubMed]
- Jester, D.J.; Thomas, M.L.; Sturm, E.T.; Harvey, P.D.; Keshavan, M.; Davis, B.J.; Saxena, S.; Tampi, R.; Leutwyler, H.; Compton, M.T.; et al. Review of Major Social Determinants of Health in Schizophrenia-Spectrum Psychotic Disorders: I. Clinical Outcomes. Schizophr. Bull. 2023, 49, 837–850. [Google Scholar] [CrossRef] [PubMed]
- Panov, G. Gender-associated role in patients with schizophrenia. Is there a connection with the resistance? Front. Psychiatry 2022, 13, 995455. [Google Scholar] [CrossRef]
- Panov, G.; Dyulgerova, S.; Panova, P.; Stefanova, S. Untangling Depression in Schizophrenia: The Role of Disorganized and Obsessive-Compulsive Symptoms and the Duration of Untreated Psychosis. Biomedicines 2024, 12, 2646. [Google Scholar] [CrossRef] [PubMed]
- Panov, G.; Dyulgerova, S.; Panova, P. Cognition in Patients with Schizophrenia: Interplay between Working Memory, Disorganized Symptoms, Dissociation, and the Onset and Duration of Psychosis, as Well as Resistance to Treatment. Biomedicines 2023, 11, 3114. [Google Scholar] [CrossRef] [PubMed]
- Panov, G.; Panova, P. Obsessive-compulsive symptoms in patient with schizophrenia: The influence of disorganized symptoms, duration of schizophrenia, and drug resistance. Front. Psychiatry 2023, 14, 1120974. [Google Scholar] [CrossRef] [PubMed]
- Blackwell, M.A.; Goodkind, J.R.; Yeater, E.A.; Van Horn, M.L. Predictors of mental health outcomes of three refugee groups in an advocacy-based intervention: A precision medicine perspective. J. Consult. Clin. Psychol. 2024, 92, 16–25. [Google Scholar] [CrossRef] [PubMed]
- Beaudoin, M.; Hudon, A.; Giguère, C.E.; Potvin, S.; Dumais, A. Prediction of quality of life in schizophrenia using machine learning models on data from Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE) schizophrenia trial. Schizophrenia 2022, 8, 29. [Google Scholar] [CrossRef]
- Gaeta, A.M.; Quijada-López, M.; Barbé, F.; Vaca, R.; Pujol, M.; Minguez, O.; Sánchez-de-la-Torre, M.; Muñoz-Barrutia, A.; Piñol-Ripoll, G. Predicting Alzheimer’s disease CSF core biomarkers: A multimodal Machine Learning approach. Front. Aging Neurosci. 2024, 16, 1369545. [Google Scholar] [CrossRef] [PubMed]
- Shim, M.; Lee, S.H.; Hwang, H.J. Inflated prediction accuracy of neuropsychiatric biomarkers caused by data leakage in feature selection. Sci. Rep. 2021, 11, 7980. [Google Scholar] [CrossRef]
- Davatzikos, C.; Barnholtz-Sloan, J.S.; Bakas, S.; Colen, R.; Mahajan, A.; Quintero, C.B.; Capellades Font, J.; Puig, J.; Jain, R.; Sloan, A.E.; et al. AI-based prognostic imaging biomarkers for precision neuro-oncology: The ReSPOND consortium. Neuro Oncol. 2020, 22, 886–888. [Google Scholar] [CrossRef]
- Khanna, N.N.; Maindarkar, M.A.; Viswanathan, V.; Puvvula, A.; Paul, S.; Bhagawati, M.; Ahluwalia, P.; Ruzsa, Z.; Sharma, A.; Kolluri, R.; et al. Cardiovascular/Stroke Risk Stratification in Diabetic Foot Infection Patients Using Deep Learning-Based Artificial Intelligence: An Investigative Study. J. Clin. Med. 2022, 11, 6844. [Google Scholar] [CrossRef] [PubMed]
- Ben-Naim, S.; Dienstag, A.; Freedman, S.A.; Ekstein, D.; Foul, Y.A.; Gilad, M.; Peled, O.; Waldman, A.; Oster, S.; Azoulay, M.; et al. A Novel Integrative Psychotherapy for Psychogenic Nonepileptic Seizures Based on the Biopsychosocial Model: A Retrospective Pilot Outcome Study. Psychosomatics 2020, 61, 353–362. [Google Scholar] [CrossRef] [PubMed]
- Cobb, S.J.; Vaughn, B.V.; Sagherian, K. Nonpharmacologic Interventions and Seizure Frequency in Patients With Psychogenic Nonepileptic Seizures: An Integrative Review. J. Am. Psychiatr. Nurses Assoc. 2023, 29, 290–306. [Google Scholar] [CrossRef]
- Jeyaraman, M.; Balaji, S.; Jeyaraman, N.; Yadav, S. Unraveling the Ethical Enigma: Artificial Intelligence in Healthcare. Cureus 2023, 15, e43262. [Google Scholar] [CrossRef] [PubMed]
- Angehrn, Z.; Sostar, J.; Nordon, C.; Turner, A.; Gove, D.; Karcher, H.; Keenan, A.; Mittelstadt, B.; de Reydet-de Vulpillieres, F. Ethical and Social Implications of Using Predictive Modeling for Alzheimer’s Disease Prevention: A Systematic Literature Review. J. Alzheimers Dis. 2020, 76, 923–940. [Google Scholar] [CrossRef] [PubMed]
- Larson, D.B.; Magnus, D.C.; Lungren, M.P.; Shah, N.H.; Langlotz, C.P. Ethics of Using and Sharing Clinical Imaging Data for Artificial Intelligence: A Proposed Framework. Radiology 2020, 295, 675–682. [Google Scholar] [CrossRef] [PubMed]
- Kassam, I.; Ilkina, D.; Kemp, J.; Roble, H.; Carter-Langford, A.; Shen, N. Patient Perspectives and Preferences for Consent in the Digital Health Context: State-of-the-art Literature Review. J. Med. Internet Res. 2023, 25, e42507. [Google Scholar] [CrossRef]
- Yarborough, B.J.H.; Stumbo, S.P. A Stakeholder-Informed Ethical Framework to Guide Implementation of Suicide Risk Prediction Models Derived from Electronic Health Records. Arch. Suicide Res. 2023, 27, 704–717. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Zhao, J.; Chen, Y.; Bandara, E.; Shetty, S. Architectural Design of a Blockchain-Enabled, Federated Learning Platform for Algorithmic Fairness in Predictive Health Care: Design Science Study. J. Med. Internet Res. 2023, 25, e46547. [Google Scholar] [CrossRef]
- Bear Don’t Walk, O.J.t.; Reyes Nieva, H.; Lee, S.S.; Elhadad, N. A scoping review of ethics considerations in clinical natural language processing. JAMIA Open 2022, 5, ooac039. [Google Scholar] [CrossRef]
- Haggarty, S.J.; Karmacharya, R.; Perlis, R.H. Advances toward precision medicine for bipolar disorder: Mechanisms & molecules. Mol. Psychiatry 2021, 26, 168–185. [Google Scholar] [PubMed]
- Malhi, G.S.; Outhred, T. Therapeutic mechanisms of lithium in bipolar disorder: Recent advances and current understanding. CNS Drugs 2016, 30, 931–949. [Google Scholar] [CrossRef]
- Kavalali, E.T.; Monteggia, L.M. Targeting homeostatic synaptic plasticity for treatment of mood disorders. Neuron 2020, 106, 715–726. [Google Scholar] [CrossRef] [PubMed]
- Gao, T.-H.; Ni, R.-J.; Liu, S.; Tian, Y.; Wei, J.; Zhao, L.; Wang, Q.; Ni, P.; Ma, X.; Li, T. Chronic lithium exposure attenuates ketamine-induced mania-like behavior and c-Fos expression in the forebrain of mice. Pharmacol. Biochem. Behav. 2021, 202, 173108. [Google Scholar] [CrossRef] [PubMed]
- Scott, J.; Etain, B.; Bellivier, F. Can an integrated science approach to precision medicine research improve lithium treatment in bipolar disorders? Front. Psychiatry 2018, 9, 360. [Google Scholar] [CrossRef] [PubMed]
- Nasrallah, H.A. The hazards of serendipity. Curr. Psychiatry 2012, 11, 14–16. [Google Scholar]
- Nestler, E.J.; Gould, E.; Manji, H. Preclinical models: Status of basic research in depression. Biol. Psychiatry 2002, 52, 503–528. [Google Scholar] [CrossRef] [PubMed]
- Hayashi-Takagi, A.; Araki, Y.; Nakamura, M.; Vollrath, B.; Duron, S.G.; Yan, Z.; Kasai, H.; Huganir, R.L.; Campbell, D.A.; Sawa, A. PAKs inhibitors ameliorate schizophrenia-associated dendritic spine deterioration in vitro and in vivo during late adolescence. Proc. Natl. Acad. Sci. USA 2014, 111, 6461–6466. [Google Scholar] [CrossRef] [PubMed]
- Papakostas, G.; Ionescu, D. Towards new mechanisms: An update on therapeutics for treatment-resistant major depressive disorder. Mol. Psychiatry 2015, 20, 1142–1150. [Google Scholar] [CrossRef]
- Hartl, D.; de Luca, V.; Kostikova, A.; Laramie, J.; Kennedy, S.; Ferrero, E.; Siegel, R.; Fink, M.; Ahmed, S.; Millholland, J. Translational precision medicine: An industry perspective. J. Transl. Med. 2021, 19, 245. [Google Scholar] [CrossRef]
- Gandal, M.J.; Leppa, V.; Won, H.; Parikshak, N.N.; Geschwind, D.H. The road to precision psychiatry: Translating genetics into disease mechanisms. Nat. Neurosci. 2016, 19, 1397–1407. [Google Scholar] [CrossRef] [PubMed]
- Alzoubi, L.; Aljabali, A.A.A.; Tambuwala, M.M. Empowering Precision Medicine: The Impact of 3D Printing on Personalized Therapeutic. AAPS PharmSciTech. 2023, 24, 228. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, N.; Mehra, E.; Dommaraju, S.; Kakavetsis, E. Neurogenetics: Precision Medicine-Based Approaches to Neurological Disorders with an Emphasis on Addressing Alzheimer’s Disease and Schizophrenia. Berkeley Pharma Tech. J. Med. 2024, 4, 14–33. [Google Scholar] [CrossRef]
- Mumtaz, H.; Saqib, M.; Jabeen, S.; Muneeb, M.; Mughal, W.; Sohail, H.; Safdar, M.; Mehmood, Q.; Khan, M.A.; Ismail, S.M. Exploring alternative approaches to precision medicine through genomics and artificial intelligence–a systematic review. Front. Med. 2023, 10, 1227168. [Google Scholar] [CrossRef] [PubMed]
- Chang, E.H.; Zabner, J. Precision genomic medicine in cystic fibrosis. Clin. Transl. Sci. 2015, 8, 606–610. [Google Scholar] [CrossRef]
- Fanen, P.; Wohlhuter-Haddad, A.; Hinzpeter, A. Genetics of cystic fibrosis: CFTR mutation classifications toward genotype-based CF therapies. Int. J. Biochem. Cell Biol. 2014, 52, 94–102. [Google Scholar] [CrossRef] [PubMed]
- Southern, K.W.; Murphy, J.; Sinha, I.P.; Nevitt, S.J. Corrector therapies (with or without potentiators) for people with cystic fibrosis with class II CFTR gene variants (most commonly F508del). Cochrane Database Syst. Rev. 2020, 12, CD010966. [Google Scholar] [CrossRef] [PubMed]
- Rosenquist, R.; Bernard, E.; Erkers, T.; Scott, D.W.; Itzykson, R.; Rousselot, P.; Soulier, J.; Hutchings, M.; Östling, P.; Cavelier, L. Novel precision medicine approaches and treatment strategies in hematological malignancies. J. Intern. Med. 2023, 294, 413–436. [Google Scholar] [CrossRef] [PubMed]
- Takei, T.; Yokoyama, K.; Yusa, N.; Nakamura, S.; Ogawa, M.; Kondoh, K.; Kobayashi, M.; Kobayashi, A.; Ito, M.; Shimizu, E. Artificial Intelligence Guided Precision Medicine Approach to Hematological Disease. Blood 2018, 132, 2254. [Google Scholar] [CrossRef]
- Uddin, M.; Wang, Y.; Woodbury-Smith, M. Artificial intelligence for precision medicine in neurodevelopmental disorders. NPJ Digit. Med. 2019, 2, 112. [Google Scholar] [CrossRef] [PubMed]
- Marques, L.; Costa, B.; Pereira, M.; Silva, A.; Santos, J.; Saldanha, L.; Silva, I.; Magalhães, P.; Schmidt, S.; Vale, N. Advancing precision medicine: A review of innovative In Silico approaches for drug development, clinical pharmacology and personalized healthcare. Pharmaceutics 2024, 16, 332. [Google Scholar] [CrossRef] [PubMed]
- Kuch, D.; Kearnes, M.; Gulson, K. The promise of precision: Datafication in medicine, agriculture and education. Policy Stud. 2020, 41, 527–546. [Google Scholar] [CrossRef]
- Cirillo, D.; Valencia, A. Big data analytics for personalized medicine. Curr. Opin. Biotechnol. 2019, 58, 161–167. [Google Scholar] [CrossRef] [PubMed]
- Nedungadi, P.; Iyer, A.; Gutjahr, G.; Bhaskar, J.; Pillai, A.B. Data-driven methods for advancing precision oncology. Curr. Pharmacol. Rep. 2018, 4, 145–156. [Google Scholar] [CrossRef] [PubMed]
- Kosorok, M.R.; Laber, E.B. Precision medicine. Annu. Rev. Stat. Its Appl. 2019, 6, 263–286. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, Z. Multi-omics strategies for personalized and predictive medicine: Past, current, and future translational opportunities. Emerg. Top. Life Sci. 2022, 6, 215–225. [Google Scholar] [CrossRef]
- Agur, Z.; Elishmereni, M.; Foryś, U.; Kogan, Y. Accelerating the development of personalized cancer immunotherapy by integrating molecular patients’ profiles with dynamic mathematical models. Clin. Pharmacol. Ther. 2020, 108, 515–527. [Google Scholar] [CrossRef] [PubMed]
- Prosperi, M.; Min, J.S.; Bian, J.; Modave, F. Big data hurdles in precision medicine and precision public health. BMC Med. Inform. Decis. Mak. 2018, 18, 139. [Google Scholar] [CrossRef]
- Cuthbert, B.N. The RDoC framework: Facilitating transition from ICD/DSM to dimensional approaches that integrate neuroscience and psychopathology. World Psychiatry 2014, 13, 28–35. [Google Scholar] [CrossRef] [PubMed]
- Cuthbert, B.N.; Insel, T.R. Toward the future of psychiatric diagnosis: The seven pillars of RDoC. BMC Med. 2013, 11, 126. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, M. Beyond the boundaries: Transitioning from categorical to dimensional paradigms in mental health diagnostics. Adv. Clin. Exp. Med. 2024, 33, 1295–1301. [Google Scholar] [CrossRef]
- Clark, L.A.; Cuthbert, B.; Lewis-Fernández, R.; Narrow, W.E.; Reed, G.M. Three approaches to understanding and classifying mental disorder: ICD-11, DSM-5, and the National Institute of Mental Health’s Research Domain Criteria (RDoC). Psychol. Sci. Public. Interest. 2017, 18, 72–145. [Google Scholar] [CrossRef] [PubMed]
- Möller, H.J.; Bandelow, B.; Bauer, M.; Hampel, H.; Herpertz, S.C.; Soyka, M.; Barnikol, U.B.; Lista, S.; Severus, E.; Maier, W. DSM-5 reviewed from different angles: Goal attainment, rationality, use of evidence, consequences—Part 2: Bipolar disorders, schizophrenia spectrum disorders, anxiety disorders, obsessive-compulsive disorders, trauma- and stressor-related disorders, personality disorders, substance-related and addictive disorders, neurocognitive disorders. Eur. Arch. Psychiatry Clin. Neurosci. 2015, 265, 87–106. [Google Scholar] [CrossRef] [PubMed]
- Lilienfeld, S.O.; Treadway, M.T. Clashing Diagnostic Approaches: DSM-ICD Versus RDoC. Annu. Rev. Clin. Psychol. 2016, 12, 435–463. [Google Scholar] [CrossRef] [PubMed]
- Fusar-Poli, P.; Solmi, M.; Brondino, N.; Davies, C.; Chae, C.; Politi, P.; Borgwardt, S.; Lawrie, S.M.; Parnas, J.; McGuire, P. Transdiagnostic psychiatry: A systematic review. World Psychiatry 2019, 18, 192–207. [Google Scholar] [CrossRef] [PubMed]
- Carcone, D.; Ruocco, A.C. Six years of research on the national institute of mental health’s research domain criteria (RDoC) initiative: A systematic review. Front. Cell. Neurosci. 2017, 11, 46. [Google Scholar] [CrossRef] [PubMed]
- Kelly, J.; Clarke, G.; Cryan, J.; Dinan, T. Dimensional thinking in psychiatry in the era of the Research Domain Criteria (RDoC). Ir. J. Psychol. Med. 2018, 35, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Knudsen, E.I. Fundamental components of attention. Annu. Rev. Neurosci. 2007, 30, 57–78. [Google Scholar] [CrossRef]
- Michelini, G.; Palumbo, I.M.; DeYoung, C.G.; Latzman, R.D.; Kotov, R. Linking RDoC and HiTOP: A new interface for advancing psychiatric nosology and neuroscience. Clin. Psychol. Rev. 2021, 86, 102025. [Google Scholar] [CrossRef] [PubMed]
- Pacheco, J.; Garvey, M.A.; Sarampote, C.S.; Cohen, E.D.; Murphy, E.R.; Friedman-Hill, S.R. Annual Research Review: The contributions of the RDoC research framework on understanding the neurodevelopmental origins, progression and treatment of mental illnesses. J. Child Psychol. Psychiatry 2022, 63, 360–376. [Google Scholar] [CrossRef] [PubMed]
- Rezapour, T.; Rafei, P.; Baldacchino, A.; Conrod, P.J.; Dom, G.; Fishbein, D.H.; Kazemi, A.; Hendriks, V.; Newton, N.; Riggs, N.R. Neuroscience-informed classification of prevention interventions in substance use disorders: An RDoC-based approach. Neurosci. Biobehav. Rev. 2024, 159, 105578. [Google Scholar] [CrossRef] [PubMed]
- Manchia, M.; Pisanu, C.; Squassina, A.; Carpiniello, B. Challenges and future prospects of precision medicine in psychiatry. Pharmacogenomics Pers. Med. 2020, 13, 127–140. [Google Scholar] [CrossRef] [PubMed]
- DeLisi, L.E.; Fleischhacker, W.W. How precise is precision medicine for schizophrenia? Curr. Opin. Psychiatry 2016, 29, 187–189. [Google Scholar] [CrossRef] [PubMed]
- Wamsley, B.; Geschwind, D.H. Functional genomics links genetic origins to pathophysiology in neurodegenerative and neuropsychiatric disease. Curr. Opin. Genet. Dev. 2020, 65, 117–125. [Google Scholar] [CrossRef] [PubMed]
- Lago, S.G.; Tomasik, J.; van Rees, G.F.; Ramsey, J.M.; Haenisch, F.; Cooper, J.D.; Broek, J.A.; Suarez-Pinilla, P.; Ruland, T.; Auyeug, B. Exploring the neuropsychiatric spectrum using high-content functional analysis of single-cell signaling networks. Mol. Psychiatry 2020, 25, 2355–2372. [Google Scholar] [CrossRef] [PubMed]
- Goud Alladi, C.; Etain, B.; Bellivier, F.; Marie-Claire, C. DNA methylation as a biomarker of treatment response variability in serious mental illnesses: A systematic review focused on bipolar disorder, schizophrenia, and major depressive disorder. Int. J. Mol. Sci. 2018, 19, 3026. [Google Scholar] [CrossRef] [PubMed]
- Hollander, J.A.; Cory-Slechta, D.A.; Jacka, F.N.; Szabo, S.T.; Guilarte, T.R.; Bilbo, S.D.; Mattingly, C.J.; Moy, S.S.; Haroon, E.; Hornig, M. Beyond the looking glass: Recent advances in understanding the impact of environmental exposures on neuropsychiatric disease. Neuropsychopharmacology 2020, 45, 1086–1096. [Google Scholar] [CrossRef] [PubMed]
- Fries, G.R. Genetics and epigenetics as tools to inform the pathophysiology of neuropsychiatric disorders. Braz. J. Psychiatry 2019, 41, 5–6. [Google Scholar] [CrossRef] [PubMed]
- van de Leemput, J.; Glatt, S.J.; Tsuang, M.T. The potential of genetic and gene expression analysis in the diagnosis of neuropsychiatric disorders. Expert Rev. Mol. Diagn. 2016, 16, 677–695. [Google Scholar] [CrossRef] [PubMed]
- Soliman, M.; Aboharb, F.; Zeltner, N.; Studer, L. Pluripotent stem cells in neuropsychiatric disorders. Mol. Psychiatry 2017, 22, 1241–1249. [Google Scholar] [CrossRef]
- Magwai, T.; Oginga, F.O.; Chiliza, B.; Mpofana, T.; Xulu, K.R. Genome-wide DNA methylation in an animal model and human studies of schizophrenia: A protocol for a meta-analysis. BMJ Open Sci. 2022, 6, e100264. [Google Scholar] [CrossRef] [PubMed]
- Shah, J.; Rahman Siddiquee, M.M.; Krell-Roesch, J.; Syrjanen, J.A.; Kremers, W.K.; Vassilaki, M.; Forzani, E.; Wu, T.; Geda, Y.E. Neuropsychiatric Symptoms and Commonly Used Biomarkers of Alzheimer’s Disease: A Literature Review from a Machine Learning Perspective. J. Alzheimer’s Dis. 2023, 92, 1131–1146. [Google Scholar] [CrossRef]
- Jo, T.; Nho, K.; Saykin, A.J. Deep learning in Alzheimer’s disease: Diagnostic classification and prognostic prediction using neuroimaging data. Front. Aging Neurosci. 2019, 11, 220. [Google Scholar] [CrossRef] [PubMed]
- Etekochay, M.O.; Amaravadhi, A.R.; González, G.V.; Atanasov, A.G.; Matin, M.; Mofatteh, M.; Steinbusch, H.W.; Tesfaye, T.; Praticò, D. Unveiling new strategies facilitating the implementation of artificial intelligence in neuroimaging for the early detection of Alzheimer’s disease. J. Alzheimer’s Dis. 2024, 99, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Niu, J.; Xing, Y.; Li, B.; Calhoun, V.D. Neuroimage Analysis Methods and Artificial Intelligence Techniques for Reliable Biomarkers and Accurate Diagnosis of Schizophrenia: Achievements Made by Chinese Scholars Around the Past Decade. Schizophr. Bull. 2024, sbae110. [Google Scholar] [CrossRef] [PubMed]
- Dong, C.; Hayashi, S. Deep learning applications in vascular dementia using neuroimaging. Curr. Opin. Psychiatry 2024, 37, 101–106. [Google Scholar] [CrossRef]
- Costamagna, G.; Comi, G.P.; Corti, S. Advancing drug discovery for neurological disorders using iPSC-derived neural organoids. Int. J. Mol. Sci. 2021, 22, 2659. [Google Scholar] [CrossRef]
- Vatansever, S.; Schlessinger, A.; Wacker, D.; Kaniskan, H.Ü.; Jin, J.; Zhou, M.M.; Zhang, B. Artificial intelligence and machine learning-aided drug discovery in central nervous system diseases: State-of-the-arts and future directions. Med. Res. Rev. 2021, 41, 1427–1473. [Google Scholar] [CrossRef] [PubMed]
- Bhattamisra, S.K.; Banerjee, P.; Gupta, P.; Mayuren, J.; Patra, S.; Candasamy, M. Artificial intelligence in pharmaceutical and healthcare research. Big Data Cogn. Comput. 2023, 7, 10. [Google Scholar] [CrossRef]
- Schöning, V.; Khurana, A.; Karolak, A. Spotlight on artificial intelligence in experimental pharmacology and drug discovery. Front. Pharmacol. 2023, 14, 1261141. [Google Scholar] [CrossRef] [PubMed]
- Tran, B.X.; McIntyre, R.S.; Latkin, C.A.; Phan, H.T.; Vu, G.T.; Nguyen, H.L.T.; Gwee, K.K.; Ho, C.S.; Ho, R.C. The current research landscape on the artificial intelligence application in the management of depressive disorders: A bibliometric analysis. Int. J. Environ. Res. Public Health 2019, 16, 2150. [Google Scholar] [CrossRef] [PubMed]
- Squarcina, L.; Villa, F.M.; Nobile, M.; Grisan, E.; Brambilla, P. Deep learning for the prediction of treatment response in depression. J. Affect. Disord. 2021, 281, 618–622. [Google Scholar] [CrossRef] [PubMed]
- Tornero-Costa, R.; Martinez-Millana, A.; Azzopardi-Muscat, N.; Lazeri, L.; Traver, V.; Novillo-Ortiz, D. Methodological and quality flaws in the use of artificial intelligence in mental health research: Systematic review. JMIR Ment. Health 2023, 10, e42045. [Google Scholar] [CrossRef]
- Yuan, Y.; Wu, Y.; Sui, H.; Deng, R. Research on the application of Artificial Intelligence in Bipolar Disorder. In Proceedings of the 2023 4th International Symposium on Artificial Intelligence for Medicine Science, Chengdu, China, 27–29 October 2023; pp. 631–636. [Google Scholar]
- Wang, Y.; Tang, S.; Ma, R.; Zamit, I.; Wei, Y.; Pan, Y. Multi-modal intermediate integrative methods in neuropsychiatric disorders: A review. Comput. Struct. Biotechnol. J. 2022, 20, 6149–6162. [Google Scholar] [CrossRef] [PubMed]
- Myszczynska, M.A.; Ojamies, P.N.; Lacoste, A.M.; Neil, D.; Saffari, A.; Mead, R.; Hautbergue, G.M.; Holbrook, J.D.; Ferraiuolo, L. Applications of machine learning to diagnosis and treatment of neurodegenerative diseases. Nat. Rev. Neurol. 2020, 16, 440–456. [Google Scholar] [CrossRef] [PubMed]
- Fisher, C.K.; Smith, A.M.; Walsh, J.R. Deep learning for comprehensive forecasting of Alzheimer’s Disease progression. arXiv 2018, arXiv:1807.03876. [Google Scholar]
- Gerantia, M. Artificial Intelligence in Psychiatry: A Comprehensive Literature Review. Eur. Psychiatry 2024, 67, S61. [Google Scholar] [CrossRef]
- Kerz, E.; Zanwar, S.; Qiao, Y.; Wiechmann, D. Toward explainable AI (XAI) for mental health detection based on language behavior. Front. Psychiatry 2023, 14, 1219479. [Google Scholar] [CrossRef] [PubMed]
- Graham, S.; Depp, C.; Lee, E.E.; Nebeker, C.; Tu, X.; Kim, H.-C.; Jeste, D.V. Artificial intelligence for mental health and mental illnesses: An overview. Curr. Psychiatry Rep. 2019, 21, 116. [Google Scholar] [CrossRef] [PubMed]
- Biró, A.; Cuesta-Vargas, A.I.; Szilágyi, L. Precognition of mental health and neurogenerative disorders using AI-parsed text and sentiment analysis. Acta Univ. Sapientiae Inform. 2023, 15, 359–403. [Google Scholar] [CrossRef]
- Lovejoy, C.A. Technology and mental health: The role of artificial intelligence. Eur. Psychiatry 2019, 55, 1–3. [Google Scholar] [CrossRef]
- Fernandes, B.S.; Karmakar, C.; Tamouza, R.; Tran, T.; Yearwood, J.; Hamdani, N.; Laouamri, H.; Richard, J.-R.; Yolken, R.; Berk, M. Precision psychiatry with immunological and cognitive biomarkers: A multi-domain prediction for the diagnosis of bipolar disorder or schizophrenia using machine learning. Transl. Psychiatry 2020, 10, 162. [Google Scholar] [CrossRef] [PubMed]
- Sethi, S.; Brietzke, E. Omics-based biomarkers: Application of metabolomics in neuropsychiatric disorders. Int. J. Neuropsychopharmacol. 2016, 19, pyv096. [Google Scholar] [CrossRef] [PubMed]
- Hoehe, M.R.; Morris-Rosendahl, D.J. The role of genetics and genomics in clinical psychiatry. Dialogues Clin. Neurosci. 2018, 20, 169–177. [Google Scholar] [CrossRef]
- Abi-Dargham, A.; Horga, G. The search for imaging biomarkers in psychiatric disorders. Nat. Med. 2016, 22, 1248–1255. [Google Scholar] [CrossRef]
- Fu, C.H.; Costafreda, S.G. Neuroimaging-based biomarkers in psychiatry: Clinical opportunities of a paradigm shift. Can. J. Psychiatry 2013, 58, 499–508. [Google Scholar] [CrossRef] [PubMed]
- Parnas, J. From predisposition to psychosis: Progression of symptoms in schizophrenia. Acta Psychiatr. Scand. 1999, 99, 20–29. [Google Scholar] [CrossRef] [PubMed]
- Cannon, T.D.; Van Erp, T.G.; Bearden, C.E.; Loewy, R.; Thompson, P.; Toga, A.W.; Huttunnen, M.O.; Keshavan, M.S.; Seidman, L.J.; Tsuang, M.T. Early and late neurodevelopmental influences in the prodrome to schizophrenia: Contributions of genes, environment, and their interactions. Schizophr. Bull. 2003, 29, 653–669. [Google Scholar] [CrossRef] [PubMed]
- Salokangas, R.K.; McGlashan, T.H. Early detection and intervention of psychosis. A review. Nord. J. Psychiatry 2008, 62, 92–105. [Google Scholar] [CrossRef] [PubMed]
- Fakra, E.; Kaladjian, A.; Da Fonseca, D.; Maurel, M.; Adida, M.; Besnier, N.; Pringuey, D.; Azorin, J.M. [Prodromal phase in bipolar disorder]. Encephale 2010, 36 (Suppl. S1), S8–S12. [Google Scholar] [CrossRef]
- Poletti, M.; Raballo, A. Developmental Psychotic Risk: Toward a Neurodevelopmentally Informed Staging of Vulnerability to Psychosis. Harv. Rev. Psychiatry 2020, 28, 271–278. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.S.; Kulkarni, P.P.; Galatzer-Levy, I.R.; Bigio, B.; Nasca, C.; Zhang, Y. Modern views of machine learning for precision psychiatry. Patterns 2022, 3, 100602. [Google Scholar] [CrossRef] [PubMed]
- Tai, A.M.Y.; Albuquerque, A.; Carmona, N.E.; Subramanieapillai, M.; Cha, D.S.; Sheko, M.; Lee, Y.; Mansur, R.; McIntyre, R.S. Machine learning and big data: Implications for disease modeling and therapeutic discovery in psychiatry. Artif. Intell. Med. 2019, 99, 101704. [Google Scholar] [CrossRef] [PubMed]
- Gifford, G.; Crossley, N.; Fusar-Poli, P.; Schnack, H.G.; Kahn, R.S.; Koutsouleris, N.; Cannon, T.D.; McGuire, P. Using neuroimaging to help predict the onset of psychosis. Neuroimage 2017, 145, 209–217. [Google Scholar] [CrossRef]
- Bedi, G.; Carrillo, F.; Cecchi, G.A.; Slezak, D.F.; Sigman, M.; Mota, N.B.; Ribeiro, S.; Javitt, D.C.; Copelli, M.; Corcoran, C.M. Automated analysis of free speech predicts psychosis onset in high-risk youths. NPJ Schizophr. 2015, 1, 15030. [Google Scholar] [CrossRef] [PubMed]
- Corcoran, C.M.; Carrillo, F.; Fernández-Slezak, D.; Bedi, G.; Klim, C.; Javitt, D.C.; Bearden, C.E.; Cecchi, G.A. Prediction of psychosis across protocols and risk cohorts using automated language analysis. World Psychiatry 2018, 17, 67–75. [Google Scholar] [CrossRef]
- Del Casale, A.; Sarli, G.; Bargagna, P.; Polidori, L.; Alcibiade, A.; Zoppi, T.; Borro, M.; Gentile, G.; Zocchi, C.; Ferracuti, S.; et al. Machine Learning and Pharmacogenomics at the Time of Precision Psychiatry. Curr. Neuropharmacol. 2023, 21, 2395–2408. [Google Scholar] [CrossRef] [PubMed]
- Bracher-Smith, M.; Crawford, K.; Escott-Price, V. Machine learning for genetic prediction of psychiatric disorders: A systematic review. Mol. Psychiatry 2021, 26, 70–79. [Google Scholar] [CrossRef] [PubMed]
- Alhuwaydi, A.M. Exploring the Role of Artificial Intelligence in Mental Healthcare: Current Trends and Future Directions—A Narrative Review for a Comprehensive Insight. Risk Manag. Healthc. Policy 2024, 17, 1339–1348. [Google Scholar] [CrossRef] [PubMed]
- Ayhan, Y. The Impact of Artificial Intelligence on Psychiatry: Benefits and Concerns-An essay from a disputed ‘author’. Turk. Psikiyatr. Derg. 2023, 34, 65–67. [Google Scholar] [CrossRef] [PubMed]
- Cuthbert, B.N. The role of RDoC in future classification of mental disorders. Dialogues Clin. Neurosci. 2020, 22, 81–85. [Google Scholar] [CrossRef]
- Yager, J.; Feinstein, R.E. Potential Applications of the National Institute of Mental Health’s Research Domain Criteria (RDoC) to Clinical Psychiatric Practice: How RDoC Might Be Used in Assessment, Diagnostic Processes, Case Formulation, Treatment Planning, and Clinical Notes. J. Clin. Psychiatry 2017, 78, 423–432. [Google Scholar] [CrossRef] [PubMed]
- Beauchaine, T.P.; Thayer, J.F. Heart rate variability as a transdiagnostic biomarker of psychopathology. Int. J. Psychophysiol. 2015, 98, 338–350. [Google Scholar] [CrossRef]
- Young, J.J.; Silber, T.; Bruno, D.; Galatzer-Levy, I.R.; Pomara, N.; Marmar, C.R. Is there Progress? An Overview of Selecting Biomarker Candidates for Major Depressive Disorder. Front. Psychiatry 2016, 7, 72. [Google Scholar] [CrossRef]
- Hsin, H.; Fromer, M.; Peterson, B.; Walter, C.; Fleck, M.; Campbell, A.; Varghese, P.; Califf, R. Transforming Psychiatry into Data-Driven Medicine with Digital Measurement Tools. NPJ Digit. Med. 2018, 1, 37. [Google Scholar] [CrossRef] [PubMed]
- Scala, J.J.; Ganz, A.B.; Snyder, M.P. Precision Medicine Approaches to Mental Health Care. Physiology 2023, 38, 82–98. [Google Scholar] [CrossRef]
- Roche, D.; Russell, V. Can precision medicine advance psychiatry? Ir. J. Psychol. Med. 2021, 38, 163–168. [Google Scholar] [CrossRef] [PubMed]
- Parimbelli, E.; Marini, S.; Sacchi, L.; Bellazzi, R. Patient similarity for precision medicine: A systematic review. J. Biomed. Inform. 2018, 83, 87–96. [Google Scholar] [CrossRef] [PubMed]
- Lin, E.; Lin, C.H.; Lane, H.Y. Precision Psychiatry Applications with Pharmacogenomics: Artificial Intelligence and Machine Learning Approaches. Int. J. Mol. Sci. 2020, 21, 969. [Google Scholar] [CrossRef]
- Schwitzer, T.; Leboyer, M.; Laprévote, V.; Louis Dorr, V.; Schwan, R. Using retinal electrophysiology toward precision psychiatry. Eur. Psychiatry 2022, 65, e9. [Google Scholar] [CrossRef] [PubMed]
- Schmaal, L. The curse and opportunity of heterogeneity in the pursuit of psychiatric biomarkers. World Psychiatry. 2023, 22, 271–272. [Google Scholar] [CrossRef] [PubMed]
- O’Halloran, R.; Kopell, B.H.; Sprooten, E.; Goodman, W.K.; Frangou, S. Multimodal neuroimaging-informed clinical applications in neuropsychiatric disorders. Front. Psychiatry 2016, 7, 63. [Google Scholar] [CrossRef] [PubMed]
- Bansal, R.; Staib, L.H.; Laine, A.F.; Hao, X.; Xu, D.; Liu, J.; Weissman, M.; Peterson, B.S. Anatomical brain images alone can accurately diagnose chronic neuropsychiatric illnesses. PLoS ONE 2012, 7, e50698. [Google Scholar] [CrossRef]
- Striano, P.; Minassian, B.A. From genetic testing to precision medicine in epilepsy. Neurotherapeutics 2020, 17, 609–615. [Google Scholar] [CrossRef] [PubMed]
- Lin, M.; Lachman, H.M.; Zheng, D. Transcriptomics analysis of iPSC-derived neurons and modeling of neuropsychiatric disorders. Mol. Cell. Neurosci. 2016, 73, 32–42. [Google Scholar] [CrossRef]
- Wen, J.; Skampardoni, I.; Tian, Y.E.; Yang, Z.; Cui, Y.; Erus, G.; Hwang, G.; Varol, E.; Boquet-Pujadas, A.; Chand, G.B. Nine Neuroimaging-AI Endophenotypes Unravel Disease Heterogeneity and Partial Overlap across Four Brain Disorders: A Dimensional Neuroanatomical Representation. medRxiv 2024. preprint. [Google Scholar] [CrossRef]
- Whitfield-Gabrieli, S.; Ghosh, S.; Nieto-Castanon, A.; Saygin, Z.; Doehrmann, O.; Chai, X.; Reynolds, G.; Hofmann, S.; Pollack, M.; Gabrieli, J. Brain connectomics predict response to treatment in social anxiety disorder. Mol. Psychiatry 2016, 21, 680–685. [Google Scholar] [CrossRef] [PubMed]
- Martin, R.F.; Leppink-Shands, P.; Tlachac, M.; DuBois, M.; Conelea, C.; Jacob, S.; Morellas, V.; Morris, T.; Papanikolopoulos, N. The use of immersive environments for the early detection and treatment of neuropsychiatric disorders. Front. Digit. Health 2021, 2, 576076. [Google Scholar] [CrossRef] [PubMed]
- Grezenko, H.; Rodoshi, Z.N.; Mimms, C.S.; Ahmed, M.; Sabani, A.; Hlaing, M.S.; Batu, B.J.; Hundesa, M.I.; Ayalew, B.D.; Shehryar, A. From Alzheimer’s Disease to Anxiety, Epilepsy to Schizophrenia: A Comprehensive Dive Into Neuro-Psychiatric Disorders. Cureus 2024, 16, e58776. [Google Scholar] [CrossRef] [PubMed]
- Kas, M.J.; Penninx, B.; Sommer, B.; Serretti, A.; Arango, C.; Marston, H. A quantitative approach to neuropsychiatry: The why and the how. Neurosci. Biobehav. Rev. 2019, 97, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Malhi, G.S.; Sachdev, P. Novel physical treatments for the management of neuropsychiatric disorders. J. Psychosom. Res. 2002, 53, 709–719. [Google Scholar] [CrossRef]
- Berk, M. Pathways to new drug discovery in neuropsychiatry. BMC Med. 2012, 10, 151. [Google Scholar] [CrossRef] [PubMed]
- Gandal, M.J.; Geschwind, D.H. The genetics-driven revival in neuropsychiatric drug development. Biol. Psychiatry 2016, 79, 628–630. [Google Scholar] [CrossRef] [PubMed]
- Spicer, T.P.; Hubbs, C.; Vaissiere, T.; Collia, D.; Rojas, C.; Kilinc, M.; Vick, K.; Madoux, F.; Baillargeon, P.; Shumate, J. Improved scalability of neuron-based phenotypic screening assays for therapeutic discovery in neuropsychiatric disorders. Mol. Neuropsychiatry 2018, 3, 141–150. [Google Scholar] [CrossRef] [PubMed]
- Asgharian, P.; Quispe, C.; Herrera-Bravo, J.; Sabernavaei, M.; Hosseini, K.; Forouhandeh, H.; Ebrahimi, T.; Sharafi-Badr, P.; Tarhriz, V.; Soofiyani, S.R. Pharmacological effects and therapeutic potential of natural compounds in neuropsychiatric disorders: An update. Front. Pharmacol. 2022, 13, 926607. [Google Scholar] [CrossRef] [PubMed]
- O’Donnell, P.; Rosen, L.; Alexander, R.; Murthy, V.; Davies, C.H.; Ratti, E. Strategies to address challenges in neuroscience drug discovery and development. Int. J. Neuropsychopharmacol. 2019, 22, 445–448. [Google Scholar] [CrossRef] [PubMed]
- Bearden, C.E.; Winkler, A.; Karlsgodt, K.H.; Bilder, R. Cognitive phenotypes and endophenotypes: Concepts and criteria. In Psychiatry and Neuropsychology in the “OMICS” Era; Springer: Berlin/Heidelberg, Germany, 2016; pp. 61–80. [Google Scholar]
- Hannan, A.J. Nature, Nurture and neurobiology: Gene-environment interactions in neuropsychiatric disorders. Neurobiol. Dis. 2013, 57, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Willsey, A.J.; Morris, M.T.; Wang, S.; Willsey, H.R.; Sun, N.; Teerikorpi, N.; Baum, T.B.; Cagney, G.; Bender, K.J.; Desai, T.A. The psychiatric cell map initiative: A convergent systems biological approach to illuminating key molecular pathways in neuropsychiatric disorders. Cell 2018, 174, 505–520. [Google Scholar] [CrossRef] [PubMed]
- Tropea, D. New challenges and frontiers in the research for neuropsychiatric disorders. Front. Psychiatry 2012, 3, 69. [Google Scholar] [CrossRef]
- Sanders, S.J.; Sahin, M.; Hostyk, J.; Thurm, A.; Jacquemont, S.; Avillach, P.; Douard, E.; Martin, C.L.; Modi, M.E.; Moreno-De-Luca, A. A framework for the investigation of rare genetic disorders in neuropsychiatry. Nat. Med. 2019, 25, 1477–1487. [Google Scholar] [CrossRef] [PubMed]
- Dauncey, M.J. Genomic and epigenomic insights into nutrition and brain disorders. Nutrients 2013, 5, 887–914. [Google Scholar] [CrossRef]
- Afridi, R.; Seol, S.; Kang, H.J.; Suk, K. Brain-immune interactions in neuropsychiatric disorders: Lessons from transcriptome studies for molecular targeting. Biochem. Pharmacol. 2021, 188, 114532. [Google Scholar] [CrossRef] [PubMed]
- Alter, O.; Newman, E.; Ponnapalli, S.P.; Tsai, J.W. AI/ML-derived mechanistically interpretable whole-genome biomarkers of patient survival in pre-treatment primary neuroblastoma tumors and whole blood. J. Clin. Oncol. 2024, 42 (Suppl. S16), 10043. [Google Scholar] [CrossRef]
- Vadapalli, S.; Abdelhalim, H.; Zeeshan, S.; Ahmed, Z. Artificial intelligence and machine learning approaches using gene expression and variant data for personalized medicine. Brief. Bioinform. 2022, 23, bbac191. [Google Scholar] [CrossRef]
- Bello, B.; Bundey, Y.N.; Bhave, R.; Khotimchenko, M.; Baran, S.W.; Chakravarty, K.; Varshney, J. Integrating AI/ML models for patient stratification leveraging omics dataset and clinical biomarkers from COVID-19 patients: A promising approach to personalized medicine. Int. J. Mol. Sci. 2023, 24, 6250. [Google Scholar] [CrossRef] [PubMed]
- Kobeissy, F.; Goli, M.; Yadikar, H.; Shakkour, Z.; Kurup, M.; Haidar, M.A.; Alroumi, S.; Mondello, S.; Wang, K.K.; Mechref, Y. Advances in neuroproteomics for neurotrauma: Unraveling insights for personalized medicine and future prospects. Front. Neurol. 2023, 14, 1288740. [Google Scholar] [CrossRef] [PubMed]
- Graham, S.A.; Lee, E.E.; Jeste, D.V.; Van Patten, R.; Twamley, E.W.; Nebeker, C.; Yamada, Y.; Kim, H.-C.; Depp, C.A. Artificial intelligence approaches to predicting and detecting cognitive decline in older adults: A conceptual review. Psychiatry Res. 2020, 284, 112732. [Google Scholar] [CrossRef] [PubMed]
- Hsiao, Y.-C.; Dutta, A. Network Modeling and Control of Dynamic Disease Pathways, Review and Perspectives. IEEE/ACM Trans. Comput. Biol. Bioinform. 2024, 21, 1211–1230. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Zhu, P.; Tang, X.-Q. VD-analysis: A dynamic network framework for analyzing disease progressions. IEEE Access 2020, 8, 153202–153214. [Google Scholar] [CrossRef]
- Shmulevich, I.; Dougherty, E.R.; Zhang, W. Gene perturbation and intervention in probabilistic Boolean networks. Bioinformatics 2002, 18, 1319–1331. [Google Scholar] [CrossRef]
- Perrone, M.C.; Lerner, M.G.; Dunworth, M.; Ewald, A.J.; Bader, J.S. Prioritizing drug targets by perturbing biological network response functions. PLoS Comput. Biol. 2024, 20, e1012195. [Google Scholar] [CrossRef] [PubMed]
- McGarry, K.; McDonald, S. Complex network theory for the identification and assessment of candidate protein targets. Comput. Biol. Med. 2018, 97, 113–123. [Google Scholar] [CrossRef]
- Cadeddu, C.; Ianuale, C.; Lindert, J. Public mental health. In A Systematic Review of Key Issues in Public Health; Springer: Berlin/Heidelberg, Germany, 2015; pp. 205–221. [Google Scholar]
- Singla, D.R.; Kohrt, B.A.; Murray, L.K.; Anand, A.; Chorpita, B.F.; Patel, V. Psychological treatments for the world: Lessons from low-and middle-income countries. Annu. Rev. Clin. Psychol. 2017, 13, 149–181. [Google Scholar] [CrossRef]
- Maresova, P.; Javanmardi, E.; Barakovic, S.; Barakovic Husic, J.; Tomsone, S.; Krejcar, O.; Kuca, K. Consequences of chronic diseases and other limitations associated with old age - a scoping review. BMC Public Health 2019, 19, 1431. [Google Scholar] [CrossRef] [PubMed]
- Agid, Y.; Buzsáki, G.; Diamond, D.M.; Frackowiak, R.; Giedd, J.; Girault, J.-A.; Grace, A.; Lambert, J.J.; Manji, H.; Mayberg, H. How can drug discovery for psychiatric disorders be improved? Nat. Rev. Drug Discov. 2007, 6, 189–201. [Google Scholar] [CrossRef] [PubMed]
- Squassina, A. Personalized treatments in neuropsychiatric disorders. Drug Dev. Res. 2021, 82, 618–620. [Google Scholar] [CrossRef] [PubMed]
- Ilomäki, J.; Bell, J.S.; Chan, A.Y.; Tolppanen, A.-M.; Luo, H.; Wei, L.; Lai, E.C.-C.; Shin, J.-Y.; De Paoli, G.; Pajouheshnia, R. Application of healthcare ‘Big Data’in CNS drug research: The example of the neurological and mental health Global Epidemiology Network (NeuroGEN). CNS Drugs 2020, 34, 897–913. [Google Scholar] [CrossRef] [PubMed]
- Vervoort, I.; Delger, C.; Soubry, A. A multifactorial model for the etiology of neuropsychiatric disorders: The role of advanced paternal age. Pediatr. Res. 2022, 91, 757–770. [Google Scholar] [CrossRef] [PubMed]
- Liloia, D.; Zamfira, D.A.; Tanaka, M.; Manuello, J.; Crocetta, A.; Keller, R.; Cozzolino, M.; Duca, S.; Cauda, F.; Costa, T. Disentangling the role of gray matter volume and concentration in autism spectrum disorder: A meta-analytic investigation of 25 years of voxel-based morphometry research. Neurosci. Biobehav. Rev. 2024, 164, 105791. [Google Scholar] [CrossRef]
- Goulao, B.; Bruhn, H.; Campbell, M.; Ramsay, C.; Gillies, K. Patient and public involvement in numerical aspects of trials (PoINT): Exploring patient and public partners experiences and identifying stakeholder priorities. Trials 2021, 22, 499. [Google Scholar] [CrossRef] [PubMed]
- Michaelis, R.; Tang, V.; Nevitt, S.J.; Wagner, J.L.; Modi, A.C.; LaFrance, W.C., Jr.; Goldstein, L.H.; Gandy, M.; Bresnahan, R.; Valente, K.; et al. Psychological treatments for people with epilepsy. Cochrane Database Syst. Rev. 2020, 8, Cd012081. [Google Scholar] [CrossRef] [PubMed]
- Thompson, P.M.; Jahanshad, N.; Ching, C.R.K.; Salminen, L.E.; Thomopoulos, S.I.; Bright, J.; Baune, B.T.; Bertolín, S.; Bralten, J.; Bruin, W.B.; et al. ENIGMA and global neuroscience: A decade of large-scale studies of the brain in health and disease across more than 40 countries. Transl. Psychiatry 2020, 10, 100. [Google Scholar] [CrossRef] [PubMed]
- Lorents, A.; Colin, M.E.; Bjerke, I.E.; Nougaret, S.; Montelisciani, L.; Diaz, M.; Verschure, P.; Vezoli, J. Human Brain Project Partnering Projects Meeting: Status Quo and Outlook. eNeuro 2023, 10, 1–11. [Google Scholar] [CrossRef]
Challenge | Description | Example/Context | Proposed Solution | Future Implications |
---|---|---|---|---|
Data Bias | Limited diversity in datasets leads to models that perform poorly across populations. | Neuroimaging datasets over-represent individuals from developed countries. | Collect data from underrepresented populations and build balanced datasets. | Improved model generalizability and equitable healthcare. |
Lack of Interpretability | AI models, particularly deep learning, are often “black boxes,” making decisions hard to explain. | Clinical decisions influenced by opaque ML predictions. | Implement XAI techniques, such as SHAP or LIME frameworks. | Builds clinician trust and facilitates regulatory approval. |
Scalability | High computational demands and infrastructure requirements restrict widespread adoption. | Training advanced models like GPT-based NLP systems. | Optimize algorithms and leverage cloud computing or edge AI technologies. | Reduces costs and enhances accessibility for smaller clinics. |
Regulatory Barriers | Slow adaptation of regulatory frameworks for AI integration in clinical workflows. | FDA approval processes for AI tools in diagnostics. | Develop standardized guidelines and real-world evidence collection protocols. | Accelerates AI implementation in healthcare systems. |
Data Privacy Concerns | Sensitive patient information is vulnerable to misuse or breaches during data collection and analysis. | Sharing genomic data for psychiatric biomarker research. | Use federated learning and encrypted data-sharing protocols. | Ensures secure collaboration without compromising privacy. |
Validation and Reproducibility | AI models often lack external validation and reproducibility across clinical settings. | AI-based neuroimaging biomarkers not validated in multi-site trials. | Conduct multi-site, cross-population validation studies. | Increases confidence in clinical utility and robustness. |
Integration with Existing Systems | AI tools often face challenges integrating with legacy EHR systems. | AI models for patient stratification requiring manual data input. | Develop interoperable APIs and adopt standardized data exchange formats. | Seamless AI adoption into routine clinical workflows. |
Ethical Concerns | Potential for AI misuse, such as bias amplification or unfair treatment recommendations. | Disparities in AI-driven mental health treatment outcomes. | Implement ethical AI design principles and multidisciplinary oversight boards. | Ensures ethical and responsible deployment of AI. |
Application | Methodology | Outcome | Challenges | Future Directions | Reference |
---|---|---|---|---|---|
Neuroimaging Biomarkers | Deep Learning Models | Early detection and diagnosis of AD and SCZ | Data bias and limited generalizability | Use diverse training datasets; implement explainable AI | [276,277,278,279,280] |
Drug Discovery | Predictive Modeling | Identification of novel compounds and drug repurposing | Lack of experimental validation pipelines | Develop AI-driven validation platforms using human-derived organoids | [281,282,283,284] |
Personalized Therapy | Patient Stratification Models | Tailored treatment recommendations for depression and BP | Difficulty in accounting for multi-modal patient data | Integrate multi-omics and real-time patient monitoring data | [244,285,286,287,288] |
Disease Progression Prediction | Temporal ML Models | Forecast disease stages and response to treatments | Overfitting due to limited long-term datasets | Establish longitudinal cohort studies with wearable sensors | [91,276,289,290,291] |
Mental Health Screening | Natural Language Processing (NLP) | Automated analysis of patient speech and text for early mental illness detection | Privacy concerns and interpretability | Develop privacy-preserving algorithms and user-consent frameworks | [292,293,294,295,296] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tanaka, M. From Serendipity to Precision: Integrating AI, Multi-Omics, and Human-Specific Models for Personalized Neuropsychiatric Care. Biomedicines 2025, 13, 167. https://doi.org/10.3390/biomedicines13010167
Tanaka M. From Serendipity to Precision: Integrating AI, Multi-Omics, and Human-Specific Models for Personalized Neuropsychiatric Care. Biomedicines. 2025; 13(1):167. https://doi.org/10.3390/biomedicines13010167
Chicago/Turabian StyleTanaka, Masaru. 2025. "From Serendipity to Precision: Integrating AI, Multi-Omics, and Human-Specific Models for Personalized Neuropsychiatric Care" Biomedicines 13, no. 1: 167. https://doi.org/10.3390/biomedicines13010167
APA StyleTanaka, M. (2025). From Serendipity to Precision: Integrating AI, Multi-Omics, and Human-Specific Models for Personalized Neuropsychiatric Care. Biomedicines, 13(1), 167. https://doi.org/10.3390/biomedicines13010167