A Comprehensive Analysis of Fibromyalgia and the Role of the Endogenous Opioid System
<p>Signaling cascade initiated by the activation of the opioid receptors. Abbreviations: β-END (β-endorphin); ENKs (enkephalins); DYNs (dynorphins); AC (adenylyl cyclase); MOR (μ-opioid receptor); DOR (δ-opioid receptor); KOR (κ-opioid receptor); cAMP (cyclic adenosine monophosphate); PKA (protein kinase A); VGCCs (voltage-gated calcium channels).</p> "> Figure 2
<p>Biosynthetic pathway of the β-endorphin (β-END). Abbreviations: γ-MSH (γ-melanocyte-stimulating hormone); ACTH (adrenocorticotropic hormone); POMC (proopiomelanocortin); PC1/3 (prohormone convertase 1/3); β-LPH (β-lipotropin); PC2 (prohormone convertase 2); β-END (β-endorphin). The colors indicate: light blue (γ-MSH), pink (joining peptide), dark blue (ACTH), and orange (β-LPH and β-END).</p> "> Figure 3
<p>Biosynthetic pathway of the enkephalins (ENKs). Abbreviations: pENK (proenkephalin A); Met-ENK (met-enkpehalin); Leu-ENK (leu-enkephalin); PC1 and PC2 (prohormone convertase 1 and 2). The colors indicate: green (Met-ENK), yellow (Met-ENK-Arg<sup>6</sup>-Gly<sup>7</sup>-Leu<sup>8</sup>), blue (Leu-ENK), red (enkelytin), and pink (Met-ENK-Arg<sup>6</sup>-Phe<sup>7</sup>).</p> "> Figure 4
<p>Biosynthetic pathway of the dynorphins (DYNs). Abbreviations: PDYN (prodynorphin); PC2 (prohormone convertase 2). The colors indicate: yellow (α-neoendorphin and β-neoendorphin), green (dynorphin A<sub>1-17</sub>), and blue (dynorphin B<sub>1-13</sub>).</p> ">
Abstract
:1. Introduction
2. Overview of the Endogenous Opioid System
2.1. Opioid Receptors
2.1.1. μ-Opioid Receptors (MORs)
2.1.2. δ-Opioid Receptors (DORs)
2.1.3. κ-Opioid Receptors (KORs)
2.2. Opioid Peptides
2.2.1. Biosynthesis
2.2.2. Distribution
3. Fibromyalgia: An Overview
3.1. Signs and Symptoms
3.2. Pathophysiology
4. Relation Between the Endogenous Opioid System and Fibromyalgia
5. Opioid-Based Pharmacological Therapies Against Fibromyalgia
6. Other Fibromyalgia Management Strategies
6.1. Pharmacological Strategies
6.1.1. Tricyclic Antidepressants (TCAs)
6.1.2. Serotonin–Noradrenaline Reuptake Inhibitors (SNRIs)
6.1.3. Selective Noradrenaline Reuptake Inhibitors (NRIs)
6.1.4. Selective Serotonin Reuptake Inhibitors (SSRIs)
6.1.5. Serotonin Receptor Antagonists
6.1.6. Gabapentinoids
6.1.7. Antipsychotics
6.1.8. Dopamine Receptor Agonists
6.1.9. N-methyl-D-aspartate (NMDA) Antagonists
6.1.10. Cannabinoids
6.2. Non-Pharmacological Strategies
7. Future Research Directions
8. Conclusions
Funding
Conflicts of Interest
Abbreviations
5-HT2A | 5-HT2A receptor (serotonin) |
5-HT2C | 5-HT2C receptor (serotonin) |
5-HT3 | 5-HT3 receptor (serotonin) |
ACR | American College of Rheumatology |
AC | Adenylyl cyclase |
ACTH | Adrenocorticotropic hormone |
ASIC | Acid-sensing ion channel |
CAM | Complementary and alternative medicine |
cAMP | Cyclic adenosine monophosphate |
CB1 | Cannabinoid receptor 1 |
CB2 | Cannabinoid receptor 2 |
CBD | Cannabidiol |
CD19 | Cluster of differentiation 19 |
CD4 | Cluster of differentiation 4 |
CGRP | Calcitonin gene-related peptide |
CNS | Central Nervous System |
D2 | Dopamine receptor D2 |
DAG | Diacylglicerol |
DOR | δ-opioid receptor |
DYN | Dynorphin |
ENK | Enkephalin |
ERK | Extracellular signal-regulated kinase |
EULAR | European Alliance of Associations for Rheumatology |
FDA | Food and Drug Administration |
FIQ | Fibromyalgia Impact Questionnaire |
fMRI | Functional magnetic resonance imaging |
GABA | γ-aminobutyric acid |
GIRK | G protein-coupled inward rectifying potassium channel |
GPCR | G protein-coupled receptor |
HPA | Hypothalamic-pituitary-adrenal axis |
IBS | Inflammatory bowel disease |
IFN-γ | Interferon gamma |
IL-10 | Interleukin 10 |
IL-17 | Interleukin 17 |
IL-6 | Interleukin 6 |
IL-8 | Interleukin 8 |
IP3 | Inositol triphosphate |
KOR | κ-opioid receptor |
LDN | Low-dose naltrexone |
Leu-ENK | Leu-enkephalin |
M1 | M1 phenotype macrophage |
M2 | M2 phenotype macrophage |
MAPK | Mitogen-activated protein kinase |
Met-ENK | Met-enkephalin |
MOR | μ-opioid receptor |
MYT1L | Myelin transcription factor 1 like |
NMDA | N-methyl-D-aspartate |
NGF | Nerve growth factor |
NRI | Selective noradrenaline reuptake inhibitor |
NRXN3 | Neurexin 3 |
OPRD1 | Opioid receptor delta 1 |
OPRK1 | Opioid receptor kappa 1 |
OPRM1 | Opioid receptor mu 1 |
P2X3 | P2X purinergic receptor type 3 |
PBMC | Peripheral blood mononuclear cell |
PC | Prohormone convertase |
PDYN | Prodynorphin |
PENK | Proenkephalin |
PKA | Protein kinase A |
PLC | Phospholipase C |
PNS | Peripheral Nervous System |
POMC | Proopiomelanocortin |
RCT | Randomized controlled trial |
RLS | Restless legs syndrome |
ROS | Reactive oxygen species |
SLC6A4 | Solute carrier family 6 member 4 |
SNP | Single nucleotide polymorphism |
SNRI | Serotonin and noradrenaline reuptake inhibitor |
SOD | Superoxide dismutase |
SSRI | Selective serotonin reuptake inhibitor |
TCA | Tricyclic antidepressant |
TGF-β | Transforming growth factor beta |
THC | Tetrahydrocannabinol |
TNF-α | Tumor necrosis factor alpha |
TRPV | Transient receptor potential vanilloid |
TRPV1 | Transient receptor potential vanilloid 1 |
TRPV2 | Transient receptor potential vanilloid 2 |
VGCC | Voltage-gated calcium channel |
α-MSH | α-melanocyte-stimulating hormone |
β-END | β-endorphin |
β-LPH | β-lipotropin |
γ-LPH | γ-lipotropin |
γ-MSH | γ-melanocyte-stimulating hormone |
References
- Jurado-Priego, L.N.; Cueto-Ureña, C.; Ramírez-Expósito, M.J.; Martínez-Martos, J.M. Fibromyalgia: A Review of the Pathophysiological Mechanisms and Multidisciplinary Treatment Strategies. Biomedicines 2024, 12, 1543. [Google Scholar] [CrossRef]
- Cohen-Biton, L.; Buskila, D.; Nissanholtz-Gannot, R. Review of Fibromyalgia (FM) Syndrome Treatments. Int. J. Environ. Res. Public Health 2022, 19, 12106. [Google Scholar] [CrossRef]
- McToal, M.; McVeigh, R.C.; McVeigh, J.G. The impact of fatigue on people with Fibromyalgia Syndrome: A survey. Musculoskelet. Care 2023, 21, 1175–1181. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.L.; Chang, L.Y.; Lee, H.C.; Fang, S.C.; Tsai, P.S. Sleep disturbances in fibromyalgia: A meta-analysis of case-control studies. J. Psychosom. Res. 2017, 96, 89–97. [Google Scholar] [CrossRef] [PubMed]
- Ibraheem, W.; Mckenzie, S.; Wilcox-Omubo, V.; Abdelaty, M.; Saji, S.E.; Siby, R.; Alalyani, W.; Mostafa, J.A. Pathophysiology and Clinical Implications of Cognitive Dysfunction in Fibromyalgia. Cureus 2021, 13, e19123. [Google Scholar] [CrossRef] [PubMed]
- Yepez, D.; Grandes, X.A.; Talanki Manjunatha, R.; Habib, S.; Sangaraju, S.L. Fibromyalgia and Depression: A Literature Review of Their Shared Aspects. Cureus 2022, 14, e24909. [Google Scholar] [CrossRef]
- Augière, T.; Desjardins, A.; Paquette Raynard, E.; Brun, C.; Pinard, A.M.; Simoneau, M.; Mercier, C. Tactile Detection in Fibromyalgia: A Systematic Review and a Meta-Analysis. Front. Pain Res. 2021, 2, 740897. [Google Scholar] [CrossRef] [PubMed]
- Erdrich, S.; Hawrelak, J.A.; Myers, S.P.; Harnett, J.E. A systematic review of the association between fibromyalgia and functional gastrointestinal disorders. Therap. Adv. Gastroenterol. 2020, 13, 1756284820977402. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.S.; Lee, S.S.; Kim, T.J.; Park, Y.W. Serum hyaluronic acid levels do not explain morning stiffness in patients with fibromyalgia. Clin. Rheumatol. 2010, 29, 535–539. [Google Scholar] [CrossRef]
- Sawada, F.; Nomura, Y.; Goto, F.; Murakami, M.; Jike, M.; Toi, T.; Furusaka, T.; Ikeda, M.; Oshima, T. Relationship of physical distress to dizziness in patients with fibromyalgia. Acta Otolaryngol. 2016, 136, 56–61. [Google Scholar] [CrossRef]
- Stehlik, R.; Ulfberg, J. (Neuro)Inflammatory Component May Be a Common Factor in Chronic Widespread Pain and Restless Legs Syndrome. Curr. Sleep Medicine Rep. 2020, 6, 121–128. [Google Scholar] [CrossRef]
- Tu, C.H.; Lin, C.L.; Yang, S.T.; Shen, W.C.; Chen, Y.H. Hormonal Contraceptive Treatment May Reduce the Risk of Fibromyalgia in Women with Dysmenorrhea: A Cohort Study. J. Pers. Med. 2020, 10, 280. [Google Scholar] [CrossRef]
- Clauw, D.J. Fibromyalgia: A clinical review. JAMA 2014, 311, 1547–1555. [Google Scholar] [CrossRef] [PubMed]
- Heidari, F.; Afshari, M.; Moosazadeh, M. Prevalence of fibromyalgia in general population and patients, a systematic review and meta-analysis. Rheumatol. Int. 2017, 37, 1527–1539. [Google Scholar] [CrossRef] [PubMed]
- Otón, T.; Messina, O.D.; Fernández Ávila, D.G.; Robles San Román, M.; Mata, D.; Arguissain, C.; Galindo Guzmán, J.M.; Pérez, M.; Carmona, L.; Grupo Fibrojourney Latam. The patient journey of fibromyalgia in Latin America. Reumatol. Clin. (Engl. Ed.) 2024, 20, 32–42. [Google Scholar] [CrossRef]
- Ruschak, I.; Montesó-Curto, P.; Rosselló, L.; Aguilar Martín, C.; Sánchez-Montesó, L.; Toussaint, L. Fibromyalgia Syndrome Pain in Men and Women: A Scoping Review. Healthcare 2023, 11, 223. [Google Scholar] [CrossRef]
- Al Sharie, S.; Varga, S.J.; Al-Husinat, L.; Sarzi-Puttini, P.; Araydah, M.; Bal’awi, B.R.; Varrassi, G. Unraveling the Complex Web of Fibromyalgia: A Narrative Review. Medicina 2024, 60, 272. [Google Scholar] [CrossRef]
- Giorgi, V.; Sirotti, S.; Romano, M.E.; Marotto, D.; Ablin, J.N.; Salaffi, F.; Sarzi-Puttini, P. Fibromyalgia: One year in review 2022. Clin. Exp. Rheumatol. 2022, 40, 1065–1072. [Google Scholar] [CrossRef] [PubMed]
- Park, D.J.; Lee, S.S. New insights into the genetics of fibromyalgia. Korean J. Intern. Med. 2017, 32, 984–995. [Google Scholar] [CrossRef] [PubMed]
- Creed, F. A review of the incidence and risk factors for fibromyalgia and chronic widespread pain in population-based studies. Pain 2020, 161, 1169–1176. [Google Scholar] [CrossRef]
- Mezhov, V.; Guymer, E.; Littlejohn, G. Central sensitivity and fibromyalgia. Intern. Med. J. 2021, 51, 1990–1998. [Google Scholar] [CrossRef]
- Schrepf, A.; Harper, D.E.; Harte, S.E.; Wang, H.; Ichesco, E.; Hampson, J.P.; Zubieta, J.K.; Clauw, D.J.; Harris, R.E. Endogenous opioidergic dysregulation of pain in fibromyalgia: A PET and fMRI study. Pain 2016, 157, 2217–2225. [Google Scholar] [CrossRef] [PubMed]
- Lambert, D.G. Opioids and opioid receptors; understanding pharmacological mechanisms as a key to therapeutic advances and mitigation of the misuse crisis. BJA Open 2023, 6, 100141. [Google Scholar] [CrossRef]
- García-Domínguez, M. Enkephalins and Pain Modulation: Mechanisms of Action and Therapeutic Perspectives. Biomolecules 2024, 14, 926. [Google Scholar] [CrossRef] [PubMed]
- Friedman, A.; Nabong, L. Opioids: Pharmacology, Physiology, and Clinical Implications in Pain Medicine. Phys. Med. Rehabil. Clin. N. Am. 2020, 31, 289–303. [Google Scholar] [CrossRef]
- Peciña, M.; Karp, J.F.; Mathew, S.; Todtenkopf, M.S.; Ehrich, E.W.; Zubieta, J.K. Endogenous opioid system dysregulation in depression: Implications for new therapeutic approaches. Mol. Psychiatry 2019, 24, 576–587. [Google Scholar] [CrossRef] [PubMed]
- Pacheco-Barrios, K.; Filardi, R.M.; González-González, L.F.; Park, N.; Petrus, F.Q.; Navarro-Flores, A.; Di-Bonaventura, S.; Alves, L.G.; Queiroz, F.; Fregni, F. The Link between Endogenous Pain Modulation Changes and Clinical Improvement in Fibromyalgia Syndrome: A Meta-Regression Analysis. Biomedicines 2024, 12, 2097. [Google Scholar] [CrossRef]
- Higginbotham, J.A.; Markovic, T.; Massaly, N.; Morón, J.A. Endogenous opioid systems alterations in pain and opioid use disorder. Front. Syst. Neurosci. 2022, 16, 1014768. [Google Scholar] [CrossRef] [PubMed]
- Stein, C. Opioid receptors. Annu. Rev. Pathol. 2016, 67, 433–451. [Google Scholar] [CrossRef]
- Liu, S.; Anderson, P.J.; Rajagopal, S.; Lefkowitz, R.J.; Rockman, H.A. G Protein-Coupled Receptors: A Century of Research and Discovery. Circ. Res. 2024, 135, 174–197. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Zhou, Q.; Labroska, V.; Qin, S.; Darbalaei, S.; Wu, Y.; Yuliantie, E.; Xie, L.; Tao, H.; Cheng, J.; et al. G-Protein coupled receptors: Structure and function in drug discovery. RSC Adv. 2020, 10, 36337–36348. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.; Xia, F.; Li, Z.; Shen, C.; Yang, Z.; Hou, H.; Sun, S.; Feng, Y.; Yong, X.; Tian, X.; et al. Structure, function and drug discovery of GPCR signaling. Mol. Biomed. 2023, 4, 46. [Google Scholar] [CrossRef]
- Ballantyne, J.C.; Sullivan, M.D. Discovery of endogenous opioid systems: What it has meant for the clinician’s understanding of pain and its treatment. Pain 2017, 158, 2290–2300. [Google Scholar] [CrossRef]
- Tassou, A.; Huang, K.; Morales, V.; Saju, J.; Garrison, S.; Scherrer, G. Elucidating the function of MU opioid receptors in distinct populations of spinal neurons. J. Pain 2023, 24, 19–20. [Google Scholar] [CrossRef]
- Piltonen, M.; Krokhotin, A.; Parisien, M.; Bérubé, P.; Djambazian, H.; Sladek, R.; Dokholyan, N.V.; Shabalina, S.A.; Diatchenko, L. Alternative Splicing of Opioid Receptor Genes Shows a Conserved Pattern for 6TM Receptor Variants. Cell. Mol. Neurobiol. 2021, 41, 1039–1055. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Sarkar, S.; Chang, S.L. Opioid receptor expression in human brain and peripheral tissues using absolute quantitative real-time RT-PCR. Drug Alcohol Depend. 2012, 124, 223–228. [Google Scholar] [CrossRef] [PubMed]
- Al-Eitan, L.N.; Rababa’h, D.M.; Alghamdi, M.A. Genetic susceptibility of opioid receptor genes polymorphism to drug addiction: A candidate-gene association study. BMC Psychiatry 2021, 21, 5. [Google Scholar] [CrossRef] [PubMed]
- Gamble, M.C.; Williams, B.R.; Singh, N.; Posa, L.; Freyberg, Z.; Logan, R.W.; Puig, S. Mu-opioid receptor and receptor tyrosine kinase crosstalk: Implications in mechanisms of opioid tolerance, reduced analgesia to neuropathic pain, dependence, and reward. Front. Syst. Neurosci. 2022, 16, 1059089. [Google Scholar] [CrossRef]
- Kunselman, J.M.; Zajac, A.S.; Weinberg, Z.Y.; Puthenveedu, M.A. Homologous Regulation of Mu Opioid Receptor Recycling by Gβγ, Protein Kinase C, and Receptor Phosphorylation. Mol. Pharmacol. 2019, 96, 702–710. [Google Scholar] [CrossRef]
- Williams, J.T.; Ingram, S.L.; Henderson, G.; Chavkin, C.; von Zastrow, M.; Schulz, S.; Koch, T.; Evans, C.J.; Christie, M.J. Regulation of μ-opioid receptors: Desensitization, phosphorylation, internalization, and tolerance. Pharmacol. Rev. 2013, 65, 223–254. [Google Scholar] [CrossRef]
- Dunn, K.E.; Huhn, A.S.; Finan, P.H.; Mange, A.; Bergeria, C.L.; Maher, B.S.; Rabinowitz, J.A.; Strain, E.C.; Antoine, D. Polymorphisms in the A118G SNP of the OPRM1 gene produce different experiences of opioids: A human laboratory phenotype-genotype assessment. Addict. Biol. 2024, 29, e13355. [Google Scholar] [CrossRef] [PubMed]
- Le Merrer, J.; Becker, J.A.; Befort, K.; Kieffer, B.L. Reward processing by the opioid system in the brain. Physiol. Rev. 2009, 89, 1379–1412. [Google Scholar] [CrossRef] [PubMed]
- Nummenmaa, L.; Tuominen, L. Opioid system and human emotions. Br. J. Pharmacol. 2018, 175, 2737–2749. [Google Scholar] [CrossRef] [PubMed]
- Nakamoto, K.; Tokuyama, S. Stress-Induced Changes in the Endogenous Opioid System Cause Dysfunction of Pain and Emotion Regulation. Int. J. Mol. Sci. 2023, 24, 11713. [Google Scholar] [CrossRef] [PubMed]
- Galligan, J.J.; Sternini, C. Insights into the Role of Opioid Receptors in the GI Tract: Experimental Evidence and Therapeutic Relevance. Handb. Exp. Pharmacol. 2017, 239, 363–378. [Google Scholar] [PubMed]
- Algera, M.H.; Kamp, J.; van der Schrier, R.; van Velzen, M.; Niesters, M.; Aarts, L.; Dahan, A.; Olofsen, E. Opioid-induced respiratory depression in humans: A review of pharmacokinetic-pharmacodynamic modelling of reversal. Br. J. Anaesth. 2019, 122, e168–e179. [Google Scholar] [CrossRef] [PubMed]
- Pellissier, L.P.; Pujol, C.N.; Becker, J.A.J.; Le Merrer, J. Delta Opioid Receptors: Learning and Motivation. Handb. Exp. Pharmacol. 2018, 247, 227–260. [Google Scholar]
- Levran, O.; Randesi, M.; Adelson, M.; Kreek, M.J. OPRD1 SNPs associated with opioid addiction are cis-eQTLs for the phosphatase and actin regulator 4 gene, PHACTR4, a mediator of cytoskeletal dynamics. Transl. Psychiatry 2021, 11, 316. [Google Scholar] [CrossRef] [PubMed]
- Reiss, D.; Maurin, H.; Audouard, E.; Martínez-Navarro, M.; Xue, Y.; Herault, Y.; Maldonado, R.; Cabañero, D.; Gaveriaux-Ruff, C. Delta Opioid Receptor in Astrocytes Contributes to Neuropathic Cold Pain and Analgesic Tolerance in Female Mice. Front. Cell Neurosci. 2021, 15, 745178. [Google Scholar] [CrossRef]
- Quirion, B.; Bergeron, F.; Blais, V.; Gendron, L. The Delta-Opioid Receptor; a Target for the Treatment of Pain. Front. Mol. Neurosci. 2020, 13, 52. [Google Scholar] [CrossRef]
- Headrick, J.P.; See Hoe, L.E.; Du Toit, E.F.; Peart, J.N. Opioid receptors and cardioprotection - ’opioidergic conditioning’ of the heart. Br. J. Pharmacol. 2015, 172, 2026–2050. [Google Scholar] [CrossRef] [PubMed]
- Mas-Orea, X.; Basso, L.; Blanpied, C.; Gaveriaux-Ruff, C.; Cenac, N.; Dietrich, G. Delta opioid receptors on nociceptive sensory neurons mediate peripheral endogenous analgesia in colitis. J. Neuroinflammation 2022, 19, 7. [Google Scholar] [CrossRef] [PubMed]
- Nagata, K.; Nagase, H.; Okuzumi, A.; Nishiyama, C. Delta Opioid Receptor Agonists Ameliorate Colonic Inflammation by Modulating Immune Responses. Front. Immunol. 2021, 12, 730706. [Google Scholar] [CrossRef]
- Al-Hasani, R.; Bruchas, M.R. Molecular mechanisms of opioid receptor-dependent signaling and behavior. Anesthesiology 2011, 115, 1363–1381. [Google Scholar] [CrossRef] [PubMed]
- Nelson, E.C.; Lynskey, M.T.; Heath, A.C.; Wray, N.; Agrawal, A.; Shand, F.L.; Henders, A.K.; Wallace, L.; Todorov, A.A.; Schrage, A.J.; et al. Association of OPRD1 polymorphisms with heroin dependence in a large case-control series. Addict. Biol. 2014, 19, 111–121. [Google Scholar] [CrossRef] [PubMed]
- Fang, C.P.; Wang, S.C.; Tsou, H.H.; Chung, R.H.; Hsu, Y.T.; Liu, S.C.; Kuo, H.W.; Liu, T.H.; Chen, A.C.H.; Liu, Y.L. Genetic polymorphisms in the opioid receptor delta 1 (OPRD1) gene are associated with methadone dose in methadone maintenance treatment for heroin dependence. J. Hum. Genet. 2020, 65, 381–386. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Zhang, Z.; Long, S.; Li, W.; Wang, B.; Liang, N. Opioids in cancer: The κ-opioid receptor (Review). Mol. Med. Rep. 2022, 25, 44. [Google Scholar] [CrossRef]
- Dalefield, M.L.; Scouller, B.; Bibi, R.; Kivell, B.M. The Kappa Opioid Receptor: A Promising Therapeutic Target for Multiple Pathologies. Front. Pharmacol. 2022, 13, 837671. [Google Scholar] [CrossRef] [PubMed]
- El Daibani, A.; Paggi, J.M.; Kim, K.; Laloudakis, Y.D.; Popov, P.; Bernhard, S.M.; Krumm, B.E.; Olsen, R.H.J.; Diberto, J.; Carroll, F.I.; et al. Molecular mechanism of biased signaling at the kappa opioid receptor. Nat. Commun. 2023, 14, 1338. [Google Scholar] [CrossRef]
- Sturaro, C.; Malfacini, D.; Argentieri, M.; Djeujo, F.M.; Marzola, E.; Albanese, V.; Ruzza, C.; Guerrini, R.; Calo’, G.; Molinari, P. Pharmacology of Kappa Opioid Receptors: Novel Assays and Ligands. Front. Pharmacol. 2022, 13, 873082. [Google Scholar] [CrossRef] [PubMed]
- Lee, G.J.; Kim, S.A.; Kim, Y.J.; Oh, S.B. Naloxone-induced analgesia mediated by central kappa opioid system in chronic inflammatory pain. Brain. Res. 2021, 1762, 147445. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, E.; Smith, K.M.; Cramer, N.; Holland, R.A.; Bleimeister, I.H.; Flores-Felix, K.; Silberberg, H.; Keller, A.; Le Pichon, C.E.; Ross, S.E. Medullary kappa-opioid receptor neurons inhibit pain and itch through a descending circuit. Brain 2022, 145, 2586–2601. [Google Scholar] [CrossRef] [PubMed]
- Shram, M.J.; Spencer, R.H.; Qian, J.; Munera, C.L.; Lewis, M.E.; Henningfield, J.E.; Webster, L.; Menzaghi, F. Evaluation of the abuse potential of difelikefalin, a selective kappa-opioid receptor agonist, in recreational polydrug users. Clin. Transl. Sci. 2022, 15, 535–547. [Google Scholar] [CrossRef] [PubMed]
- Santino, F.; Gentilucci, L. Design of κ-Opioid Receptor Agonists for the Development of Potential Treatments of Pain with Reduced Side Effects. Molecules 2023, 28, 346. [Google Scholar] [CrossRef]
- Crowley, N.A.; Kash, T.L. Kappa opioid receptor signaling in the brain: Circuitry and implications for treatment. Prog. Neuropsychopharmacol. Biol. Psychiatry 2015, 62, 51–60. [Google Scholar] [CrossRef]
- Kumar, D.; Chakraborty, J.; Das, S. Epistatic effects between variants of kappa-opioid receptor gene and A118G of mu-opioid receptor gene increase susceptibility to addiction in Indian population. Prog. Neuropsychopharmacol. Biol. Psychiatry 2012, 36, 225–230. [Google Scholar] [CrossRef] [PubMed]
- Bodnar, R.J. Endogenous opiates and behavior: 2023. Peptides 2024, 179, 171268. [Google Scholar] [PubMed]
- Lee, Y.S. Peptidomimetics and Their Applications for Opioid Peptide Drug Discovery. Biomolecules 2022, 12, 1241. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhuang, Y.; DiBerto, J.F.; Zhou, X.E.; Schmitz, G.P.; Yuan, Q.; Jain, M.K.; Liu, W.; Melcher, K.; Jiang, Y.; et al. Structures of the entire human opioid receptor family. Cell 2023, 186, 413–427.e17. [Google Scholar] [CrossRef] [PubMed]
- Fricker, L.D.; Margolis, E.B.; Gomes, I.; Devi, L.A. Five Decades of Research on Opioid Peptides: Current Knowledge and Unanswered Questions. Mol. Pharmacol. 2020, 98, 96–108. [Google Scholar] [CrossRef] [PubMed]
- Margolis, E.B.; Moulton, M.G.; Lambeth, P.S.; O’Meara, M.J. The life and times of endogenous opioid peptides: Updated understanding of synthesis, spatiotemporal dynamics, and the clinical impact in alcohol use disorder. Neuropharmacology 2023, 225, 109376. [Google Scholar] [CrossRef]
- Harno, E.; Gali Ramamoorthy, T.; Coll, A.P.; White, A. POMC: The Physiological Power of Hormone Processing. Physiol. Rev. 2018, 98, 2381–2430. [Google Scholar] [CrossRef]
- Takahashi, A.; Mizusawa, K. Posttranslational modifications of proopiomelanocortin in vertebrates and their biological significance. Front. Endocrinol. 2013, 4, 143. [Google Scholar] [CrossRef] [PubMed]
- Cawley, N.X.; Li, Z.; Loh, Y.P. 60 YEARS OF POMC: Biosynthesis, trafficking, and secretion of pro-opiomelanocortin-derived peptides. J. Mol. Endocrinol. 2016, 56, T77–T97. [Google Scholar] [CrossRef]
- Mousa, S.A.; Shakibaei, M.; Sitte, N.; Schäfer, M.; Stein, C. Subcellular pathways of beta-endorphin synthesis, processing, and release from immunocytes in inflammatory pain. Endocrinology 2004, 145, 1331–1341. [Google Scholar] [CrossRef] [PubMed]
- Lightman, S.L.; Birnie, M.T.; Conway-Campbell, B.L. Dynamics of ACTH and Cortisol Secretion and Implications for Disease. Endocr. Rev. 2020, 41, bnaa002. [Google Scholar] [CrossRef] [PubMed]
- Smyth, D.G. 60 YEARS OF POMC: Lipotropin and beta-endorphin: A perspective. J. Mol. Endocrinol. 2016, 56, T13–T25. [Google Scholar] [CrossRef]
- Wardlaw, S.L. Hypothalamic proopiomelanocortin processing and the regulation of energy balance. Eur. J. Pharmacol. 2011, 660, 213–219. [Google Scholar] [CrossRef]
- Breslin, M.B.; Lindberg, I.; Benjannet, S.; Mathis, J.P.; Lazure, C.; Seidah, N.G. Differential processing of proenkephalin by prohormone convertases 1(3) and 2 and furin. J. Biol. Chem. 1993, 268, 27084–27093. [Google Scholar] [CrossRef] [PubMed]
- Fricker, L.D. Neuropeptide biosynthesis: Focus on the carboxypeptidase processing enzyme. Trends Neurosci. 1985, 8, 210. [Google Scholar] [CrossRef]
- Lu, W.D.; Funkelstein, L.; Toneff, T.; Reinheckel, T.; Peters, C.; Hook, V. Cathepsin H functions as an aminopeptidase in secretory vesicles for production of enkephalin and galanin peptide neurotransmitters. J. Neurochem. 2012, 122, 512–522. [Google Scholar] [PubMed]
- Minokadeh, A.; Funkelstein, L.; Toneff, T.; Hwang, S.R.; Beinfeld, M.; Reinheckel, T.; Peters, C.; Zadina, J.; Hook, V. Cathepsin L participates in dynorphin production in brain cortex, illustrated by protease gene knockout and expression. Mol. Cell. Neurosci. 2010, 43, 98–107. [Google Scholar] [CrossRef]
- Chavkin, C. Dynorphin--still an extraordinarily potent opioid peptide. Mol. Pharmacol. 2013, 83, 729–736. [Google Scholar] [CrossRef] [PubMed]
- Mousa, S.A.; Krajnik, M.; Sobanski, P.; Kowalewski, J.; Bloch-Boguslawska, E.; Zylicz, Z.; Schäfer, M. Dynorphin expression, processing and receptors in the alveolar macrophages, cancer cells and bronchial epithelium of lung cancer patients. Histol. Histopathol. 2010, 25, 755–764. [Google Scholar] [PubMed]
- Trigo, J.M.; Martin-García, E.; Berrendero, F.; Robledo, P.; Maldonado, R. The endogenous opioid system: A common substrate in drug addiction. Drug. Alcohol Depend. 2010, 108, 183–194. [Google Scholar] [CrossRef] [PubMed]
- Kaur, J.; Kumar, V.; Sharma, K.; Kaur, S.; Gat, Y.; Goyal, A.; Tanwar, B. Opioid Peptides: An Overview of Functional Significance. Int. J. Pept. Res. Ther. 2020, 26, 33–41. [Google Scholar] [CrossRef]
- Araki, T.; Liu, N.A.; Tone, Y.; Cuevas-Ramos, D.; Heltsley, R.; Tone, M.; Melmed, S. E2F1-mediated human POMC expression in ectopic Cushing’s syndrome. Endocr. Relat. Cancer 2016, 23, 857–870. [Google Scholar] [CrossRef] [PubMed]
- Biglari, N.; Gaziano, I.; Schumacher, J.; Radermacher, J.; Paeger, L.; Klemm, P.; Chen, W.; Corneliussen, S.; Wunderlich, C.M.; Sue, M.; et al. Functionally distinct POMC-expressing neuron subpopulations in hypothalamus revealed by intersectional targeting. Nat. Neurosci. 2021, 24, 913–929. [Google Scholar] [CrossRef] [PubMed]
- Zapletal, E.; Kraus, O.; Cupić, B.; Gabrilovac, J. Differential expression of proopiomelanocortin (POMC) transcriptional variants in human skin cells. Neuropeptides 2013, 47, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Aubert, N.; Purcarea, M.; Novarino, J.; Schopp, J.; Audibert, A.; Li, W.; Fornier, M.; Cagnet, L.; Naturel, M.; Casrouge, A.; et al. Enkephalin-mediated modulation of basal somatic sensitivity by regulatory T cells in mice. Elife 2024, 13, RP91359. [Google Scholar] [CrossRef] [PubMed]
- Eiden, L.E. The enkephalin-containing cell: Strategies for polypeptide synthesis and secretion throughout the neuroendocrine system. Cell. Mol. Neurobiol. 1987, 7, 339–352. [Google Scholar] [CrossRef]
- DeBold, C.R.; Nicholson, W.E.; Orth, D.N. Immunoreactive proopiomelanocortin (POMC) peptides and POMC-like messenger ribonucleic acid are present in many rat nonpituitary tissues. Endocrinology 1988, 122, 2648–2657. [Google Scholar] [CrossRef]
- Schäfer, M.K.; Day, R.; Ortega, M.R.; Akil, H.; Watson, S.J. Proenkephalin messenger RNA is expressed both in the rat anterior and posterior pituitary. Neuroendocrinology 1990, 51, 444–448. [Google Scholar] [CrossRef] [PubMed]
- Timmers, K.; Voyles, N.R.; Zalenski, C.; Wilkins, S.; Recant, L. Altered beta-endorphin, Met- and Leu-enkephalins, and enkephalin-containing peptides in pancreas and pituitary of genetically obese diabetic (db/db) mice during development of diabetic syndrome. Diabetes 1986, 35, 1143–1151. [Google Scholar] [CrossRef]
- Slominski, A.; Wortsman, J.; Mazurkiewicz, J.E.; Matsuoka, L.; Dietrich, J.; Lawrence, K.; Gorbani, A.; Paus, R. Detection of proopiomelanocortin-derived antigens in normal and pathologic human skin. J. Lab. Clin. Med. 1993, 122, 658–666. [Google Scholar]
- Slominski, A.T.; Zmijewski, M.A.; Zbytek, B.; Brozyna, A.A.; Granese, J.; Pisarchik, A.; Szczesniewski, A.; Tobin, D.J. Regulated proenkephalin expression in human skin and cultured skin cells. J. Invest. Dermatol. 2011, 131, 613–622. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Liu, X.; He, Z.; Zhang, J.; Tan, X.; Yang, W.; Zhang, Y.; Yu, T.; Liao, S.; Dai, L.; et al. Proenkephalin-A secreted by renal proximal tubules functions as a brake in kidney regeneration. Nat. Commun. 2023, 14, 7167. [Google Scholar] [CrossRef] [PubMed]
- Subirán, N.; Casis, L.; Irazusta, J. Regulation of male fertility by the opioid system. Mol. Med. 2011, 17, 846–853. [Google Scholar] [CrossRef]
- Jin, D.F.; Muffly, K.E.; Okulicz, W.C.; Kilpatrick, D.L. Estrous cycle- and pregnancy-related differences in expression of the proenkephalin and proopiomelanocortin genes in the ovary and uterus. Endocrinology 1988, 122, 1466–1471. [Google Scholar] [CrossRef] [PubMed]
- Basso, L.; Boué, J.; Mahiddine, K.; Blanpied, C.; Robiou-du-Pont, S.; Vergnolle, N.; Deraison, C.; Dietrich, G. Endogenous analgesia mediated by CD4(+) T lymphocytes is dependent on enkephalins in mice. J. Neuroinflammation 2016, 13, 132. [Google Scholar] [CrossRef] [PubMed]
- García-Domínguez, M.; Lastra, A.; Folgueras, A.R.; Cernuda-Cernuda, R.; Fernández-García, M.T.; Hidalgo, A.; Menéndez, L.; Baamonde, A. The Chemokine CCL4 (MIP-1β) Evokes Antinociceptive Effects in Mice: A Role for CD4+ Lymphocytes and Met-Enkephalin. Mol. Neurobiol. 2019, 56, 1578–1595. [Google Scholar] [CrossRef] [PubMed]
- Wawrzczak-Bargieła, A.; Ziółkowska, B.; Piotrowska, A.; Starnowska-Sokół, J.; Rojewska, E.; Mika, J.; Przewłocka, B.; Przewłocki, R. Neuropathic Pain Dysregulates Gene Expression of the Forebrain Opioid and Dopamine Systems. Neurotox. Res. 2020, 37, 800–814. [Google Scholar] [CrossRef] [PubMed]
- Phan, B.N.; Ray, M.H.; Xue, X.; Fu, C.; Fenster, R.J.; Kohut, S.J.; Bergman, J.; Haber, S.N.; McCullough, K.M.; Fish, M.K.; et al. Single nuclei transcriptomics in human and non-human primate striatum in opioid use disorder. Nat. Commun. 2024, 15, 878. [Google Scholar] [CrossRef]
- Cadet, J.L.; Krasnova, I.N.; Walther, D.; Brannock, C.; Ladenheim, B.; McCoy, M.T.; Collector, D.; Torres, O.V.; Terry, N.; Jayanthi, S. Increased expression of proenkephalin and prodynorphin mRNAs in the nucleus accumbens of compulsive methamphetamine taking rats. Sci. Rep. 2016, 6, 37002. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Shin, E.J.; Nguyen, X.K.; Li, Q.; Bach, J.H.; Bing, G.; Kim, W.K.; Kim, H.C.; Hong, J.S. Endogenous dynorphin protects against neurotoxin-elicited nigrostriatal dopaminergic neuron damage and motor deficits in mice. J. Neuroinflammation 2012, 9, 124. [Google Scholar] [CrossRef] [PubMed]
- Ito, H.; Navratilova, E.; Vagnerova, B.; Watanabe, M.; Kopruszinski, C.; Moreira de Souza, L.H.; Yue, X.; Ikegami, D.; Moutal, A.; Patwardhan, A.; et al. Chronic pain recruits hypothalamic dynorphin/kappa opioid receptor signalling to promote wakefulness and vigilance. Brain 2023, 146, 1186–1199. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, C.Y.; Zan, G.Y.; Yao, S.Y.; Deng, Y.Z.; Shu, X.L.; Wu, W.W.; Ma, Y.; Wang, Y.J.; Yu, C.X.; et al. Upregulation of dynorphin/kappa opioid receptor system in the dorsal hippocampus contributes to morphine withdrawal-induced place aversion. Acta Pharmacol. Sin. 2023, 44, 538–545. [Google Scholar] [CrossRef]
- Bérubé, P.; Poulin, J.F.; Laforest, S.; Drolet, G. Enkephalin knockdown in the basolateral amygdala reproduces vulnerable anxiety-like responses to chronic unpredictable stress. Neuropsychopharmacology 2014, 39, 1159–1168. [Google Scholar] [CrossRef] [PubMed]
- Romualdi, P.; Donatini, A.; Bregola, G.; Bianchi, C.; Beani, L.; Ferri, S.; Simonato, M. Early changes in prodynorphin mRNA and ir-dynorphin A levels after kindled seizures in the rat. Eur. J. Neurosci. 1995, 7, 1850–1856. [Google Scholar] [CrossRef] [PubMed]
- Sapio, M.R.; Iadarola, M.J.; Loydpierson, A.J.; Kim, J.J.; Thierry-Mieg, D.; Thierry-Mieg, J.; Maric, D.; Mannes, A.J. Dynorphin and Enkephalin Opioid Peptides and Transcripts in Spinal Cord and Dorsal Root Ganglion During Peripheral Inflammatory Hyperalgesia and Allodynia. J. Pain 2020, 21, 988–1004. [Google Scholar] [CrossRef] [PubMed]
- Spampinato, S.; Ferri, G.L.; Candeletti, S.; Romualdi, P.; Cavicchini, E.; Soimero, L.; Labò, G.; Ferri, S. Regional distribution of immunoreactive dynorphin A in the human gastrointestinal tract. Neuropeptides 1988, 11, 101–105. [Google Scholar] [CrossRef] [PubMed]
- Vincent, S.R.; Dalsgaard, C.J.; Schultzberg, M.; Hökfelt, T.; Christensson, I.; Terenius, L. Dynorphin-immunoreactive neurons in the autonomic nervous system. Neuroscience 1984, 11, 973–987. [Google Scholar] [CrossRef] [PubMed]
- González-Rodríguez, S.; Álvarez, M.G.; García-Domínguez, M.; Lastra, A.; Cernuda-Cernuda, R.; Folgueras, A.R.; Fernández-García, M.T.; Hidalgo, A.; Baamonde, A.; Menéndez, L. Hyperalgesic and hypoalgesic mechanisms evoked by the acute administration of CCL5 in mice. Brain Behav. Immun. 2017, 62, 151–161. [Google Scholar] [CrossRef] [PubMed]
- Queiroz, L.P. Worldwide epidemiology of fibromyalgia. Curr. Pain Headache Rep. 2013, 17, 356. [Google Scholar] [CrossRef]
- Argenbright, C.M.; Bertlesman, A.M.; Russell, I.M.; Greer, T.L.; Peng, Y.B.; Fuchs, P.N. The Fibromyalgia Pain Experience: A Scoping Review of the Preclinical Evidence for Replication and Treatment of the Affective and Cognitive Pain Dimensions. Biomedicines 2024, 12, 778. [Google Scholar] [CrossRef] [PubMed]
- Arnold, L.M.; Gebke, K.B.; Choy, E.H. Fibromyalgia: Management strategies for primary care providers. Int. J. Clin. Pract. 2016, 70, 99–112. [Google Scholar] [CrossRef] [PubMed]
- Galvez-Sánchez, C.M.; Reyes Del Paso, G.A. Diagnostic Criteria for Fibromyalgia: Critical Review and Future Perspectives. J. Clin. Med. 2020, 9, 1219. [Google Scholar] [CrossRef] [PubMed]
- Sarzi-Puttini, P.; Giorgi, V.; Marotto, D.; Atzeni, F. Fibromyalgia: An update on clinical characteristics, aetiopathogenesis and treatment. Nat. Rev. Rheumatol. 2020, 16, 645–660. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.H.; Choi, S.E.; Park, D.J.; Lee, S.S. Disentangling Diagnosis and Management of Fibromyalgia. J. Rheum. Dis. 2022, 29, 4–13. [Google Scholar] [CrossRef] [PubMed]
- Masi, A.T.; Vincent, A. A historical and clinical perspective endorsing person-centered management of fibromyalgia syndrome. Curr. Rheumatol. Rev. 2015, 11, 86–95. [Google Scholar] [CrossRef]
- Ram, P.R.; Jeyaraman, M.; Jeyaraman, N.; Nallakumarasamy, A.; Khanna, M.; Gupta, A.; Yadav, S. Beyond the Pain: A Systematic Narrative Review of the Latest Advancements in Fibromyalgia Treatment. Cureus 2023, 15, e48032. [Google Scholar] [CrossRef] [PubMed]
- Vincent, A.; Benzo, R.P.; Whipple, M.O.; McAllister, S.J.; Erwin, P.J.; Saligan, L.N. Beyond pain in fibromyalgia: Insights into the symptom of fatigue. Arthritis Res. Ther. 2013, 15, 221. [Google Scholar] [CrossRef] [PubMed]
- Galvez-Sánchez, C.M.; Reyes Del Paso, G.A.; Duschek, S. Cognitive Impairments in Fibromyalgia Syndrome: Associations With Positive and Negative Affect, Alexithymia, Pain Catastrophizing and Self-Esteem. Front. Psychol. 2018, 9, 377. [Google Scholar] [CrossRef]
- Kravitz, H.M.; Katz, R.S. Fibrofog and fibromyalgia: A narrative review and implications for clinical practice. Rheumatol. Int. 2015, 35, 1115–1125. [Google Scholar] [CrossRef] [PubMed]
- Rafferty, C.; Ward, J. Fibromyalgia is linked to increased subjective sensory sensitivity across multiple senses. Perception 2024, 53, 276–286. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Lavín, M. Centralized nociplastic pain causing fibromyalgia: An emperor with no cloths? Clin. Rheumatol. 2022, 41, 3915–3917. [Google Scholar] [CrossRef] [PubMed]
- Karlsson, B.; Burell, G.; Kristiansson, P.; Björkegren, K.; Nyberg, F.; Svärdsudd, K. Decline of substance P levels after stress management with cognitive behaviour therapy in women with the fibromyalgia syndrome. Scand. J. Pain 2019, 19, 473–482. [Google Scholar] [CrossRef] [PubMed]
- Pyke, T.L.; Osmotherly, P.G.; Baines, S. Measuring Glutamate Levels in the Brains of Fibromyalgia Patients and a Potential Role for Glutamate in the Pathophysiology of Fibromyalgia Symptoms: A Systematic Review. Clin. J. Pain 2017, 33, 944–954. [Google Scholar] [CrossRef]
- Alnigenis, M.N.; Barland, P. Fibromyalgia syndrome and serotonin. Clin. Exp. Rheumatol. 2001, 19, 205–210. [Google Scholar] [PubMed]
- Soldatelli, M.D.; Siepmann, T.; Illigens, B.M.; Souza Dos Santos, V.; Lucena da S Torres, I.; Fregni, F.; Caumo, W. Mapping of predictors of the disengagement of the descending inhibitory pain modulation system in fibromyalgia: An exploratory study. Br. J. Pain 2021, 15, 221–233. [Google Scholar] [CrossRef] [PubMed]
- Tour, J.; Löfgren, M.; Mannerkorpi, K.; Gerdle, B.; Larsson, A.; Palstam, A.; Bileviciute-Ljungar, I.; Bjersing, J.; Martin, I.; Ernberg, M.; et al. Gene-to-gene interactions regulate endogenous pain modulation in fibromyalgia patients and healthy controls-antagonistic effects between opioid and serotonin-related genes. Pain 2017, 158, 1194–1203. [Google Scholar] [CrossRef] [PubMed]
- Serrano, P.V.; Zortea, M.; Alves, R.L.; Beltran, G.; Deliberali, C.B.; Maule, A.; Torres, I.L.S.; Fregni, F.; Caumo, W. Association between descending pain modulatory system and cognitive impairment in fibromyalgia: A cross-sectional exploratory study. Front. Behav. Neurosci. 2022, 16, 917554. [Google Scholar] [CrossRef]
- Cagnie, B.; Coppieters, I.; Denecker, S.; Six, J.; Danneels, L.; Meeus, M. Central sensitization in fibromyalgia?. A systematic review on structural and functional brain MRI. Semin. Arthritis Rheum. 2014, 44, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Aster, H.C.; Evdokimov, D.; Braun, A.; Üçeyler, N.; Kampf, T.; Pham, M.; Homola, G.A.; Sommer, C. CNS imaging characteristics in fibromyalgia patients with and without peripheral nerve involvement. Sci. Rep. 2022, 12, 6707. [Google Scholar] [CrossRef]
- Hassanpour, S.; Algitami, H.; Umraw, M.; Merletti, J.; Keast, B.; Stroman, P.W. Investigating Descending Pain Regulation in Fibromyalgia and the Link to Altered Autonomic Regulation by Means of Functional MRI Data. Brain Sci. 2024, 14, 450. [Google Scholar] [CrossRef] [PubMed]
- Martucci, K.T.; Weber, K.A., II; Mackey, S.C. Altered Cervical Spinal Cord Resting-State Activity in Fibromyalgia. Arthritis Rheumatol. 2019, 71, 441–450. [Google Scholar] [CrossRef] [PubMed]
- Maugars, Y.; Berthelot, J.M.; Le Goff, B.; Darrieutort-Laffite, C. Fibromyalgia and Associated Disorders: From Pain to Chronic Suffering, From Subjective Hypersensitivity to Hypersensitivity Syndrome. Front. Med. 2021, 8, 666914. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Q.; Dong, X.; Green, D.P.; Dong, X. Peripheral mechanisms of chronic pain. Med. Rev. (2021) 2022, 2, 251–270. [Google Scholar] [CrossRef]
- Lubejko, S.T.; Graham, R.D.; Livrizzi, G.; Schaefer, R.; Banghart, M.R.; Creed, M.C. The role of endogenous opioid neuropeptides in neurostimulation-driven analgesia. Front. Syst. Neurosci. 2022, 16, 1044686. [Google Scholar] [CrossRef]
- Ribeiro, H.; Sarmento-Ribeiro, A.B.; Andrade, J.P.; Dourado, M. Apoptosis and (in) Pain-Potential Clinical Implications. Biomedicines 2022, 10, 1255. [Google Scholar] [CrossRef] [PubMed]
- Lawson, V.H.; Grewal, J.; Hackshaw, K.V.; Mongiovi, P.C.; Stino, A.M. Fibromyalgia syndrome and small fiber, early or mild sensory polyneuropathy. Muscle Nerve 2018, 58, 625–630. [Google Scholar] [CrossRef] [PubMed]
- Gyorfi, M.; Rupp, A.; Abd-Elsayed, A. Fibromyalgia Pathophysiology. Biomedicines 2022, 10, 3070. [Google Scholar] [CrossRef]
- Kany, S.; Vollrath, J.T.; Relja, B. Cytokines in Inflammatory Disease. Int. J. Mol. Sci. 2019, 20, 6008. [Google Scholar] [CrossRef] [PubMed]
- Hoegh, M. Pain Science in Practice (Part 3): Peripheral Sensitization. J. Orthop. Sports Phys. Ther. 2022, 52, 303–306. [Google Scholar] [CrossRef] [PubMed]
- Vecchio, E.; Lombardi, R.; Paolini, M.; Libro, G.; Delussi, M.; Ricci, K.; Quitadamo, S.G.; Gentile, E.; Girolamo, F.; Iannone, F.; et al. Peripheral and central nervous system correlates in fibromyalgia. Eur. J. Pain 2020, 24, 1537–1547. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Pintó, I.; Agmon-Levin, N.; Howard, A.; Shoenfeld, Y. Fibromyalgia and cytokines. Immunol. Lett. 2014, 161, 200–203. [Google Scholar] [CrossRef]
- Littlejohn, G.; Guymer, E. Neurogenic inflammation in fibromyalgia. Semin. Immunopathol. 2018, 40, 291–300. [Google Scholar] [CrossRef] [PubMed]
- Matsuda, M.; Huh, Y.; Ji, R.R. Roles of inflammation, neurogenic inflammation, and neuroinflammation in pain. J. Anesth. 2019, 33, 131–139. [Google Scholar] [CrossRef] [PubMed]
- Ovrom, E.A.; Mostert, K.A.; Khakhkhar, S.; McKee, D.P.; Yang, P.; Her, Y.F. A Comprehensive Review of the Genetic and Epigenetic Contributions to the Development of Fibromyalgia. Biomedicines 2023, 11, 1119. [Google Scholar] [CrossRef]
- Dutta, D.; Brummett, C.M.; Moser, S.E.; Fritsche, L.G.; Tsodikov, A.; Lee, S.; Clauw, D.J.; Scott, L.J. Heritability of the Fibromyalgia Phenotype Varies by Age. Arthritis Rheumatol. 2020, 72, 815–823. [Google Scholar] [CrossRef] [PubMed]
- van Reij, R.R.I.; Joosten, E.A.J.; van den Hoogen, N.J. Dopaminergic neurotransmission and genetic variation in chronification of post-surgical pain. Br. J. Anaesth. 2019, 123, 853–864. [Google Scholar] [CrossRef]
- Björkander, S.; Ernberg, M.; Bileviciute-Ljungar, I. Reduced immune system responsiveness in fibromyalgia-A pilot study. Clin. Immunol. Commun. 2022, 2, 46–53. [Google Scholar] [CrossRef]
- Paroli, M.; Gioia, C.; Accapezzato, D.; Caccavale, R. Inflammation, Autoimmunity, and Infection in Fibromyalgia: A Narrative Review. Int. J. Mol. Sci. 2024, 25, 5922. [Google Scholar] [CrossRef] [PubMed]
- Banfi, G.; Diani, M.; Pigatto, P.D.; Reali, E. T Cell Subpopulations in the Physiopathology of Fibromyalgia: Evidence and Perspectives. Int. J. Mol. Sci. 2020, 21, 1186. [Google Scholar] [CrossRef] [PubMed]
- Rekatsina, M.; Paladini, A.; Piroli, A.; Zis, P.; Pergolizzi, J.V.; Varrassi, G. Pathophysiology and Therapeutic Perspectives of Oxidative Stress and Neurodegenerative Diseases: A Narrative Review. Adv. Ther. 2020, 37, 113–139. [Google Scholar] [CrossRef] [PubMed]
- Akbas, A.; Inanir, A.; Benli, I.; Onder, Y.; Aydogan, L. Evaluation of some antioxidant enzyme activities (SOD and GPX) and their polymorphisms (MnSOD2 Ala9Val, GPX1 Pro198Leu) in fibromyalgia. Eur. Rev. Med. Pharmacol. Sci. 2014, 18, 1199–1203. [Google Scholar] [PubMed]
- Assavarittirong, C.; Samborski, W.; Grygiel-Górniak, B. Oxidative Stress in Fibromyalgia: From Pathology to Treatment. Oxid. Med. Cell. Longev. 2022, 2022, 1582432. [Google Scholar] [CrossRef]
- Becker, S.; Schweinhardt, P. Dysfunctional neurotransmitter systems in fibromyalgia, their role in central stress circuitry and pharmacological actions on these systems. Pain Res. Treat. 2012, 2012, 741746. [Google Scholar] [CrossRef]
- Beiner, E.; Lucas, V.; Reichert, J.; Buhai, D.V.; Jesinghaus, M.; Vock, S.; Drusko, A.; Baumeister, D.; Eich, W.; Friederich, H.C.; et al. Stress biomarkers in individuals with fibromyalgia syndrome: A systematic review with meta-analysis. Pain 2023, 164, 1416–1427. [Google Scholar] [CrossRef] [PubMed]
- Nees, F.; Löffler, M.; Usai, K.; Flor, H. Hypothalamic-pituitary-adrenal axis feedback sensitivity in different states of back pain. Psychoneuroendocrinology 2019, 101, 60–66. [Google Scholar] [CrossRef] [PubMed]
- Bidari, A.; Ghavidel-Parsa, B.; Rajabi, S.; Sanaei, O.; Toutounchi, M. The acute effect of maximal exercise on plasma beta-endorphin levels in fibromyalgia patients. Korean J. Pain 2016, 29, 249–254. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, M.H.; Rizvi, M.A.; Fatima, M.; Mondal, A.C. Pathophysiological implications of neuroinflammation mediated HPA axis dysregulation in the prognosis of cancer and depression. Mol. Cell Endocrinol. 2021, 520, 111093. [Google Scholar] [CrossRef]
- Chen, X.; Gianferante, D.; Hanlin, L.; Fiksdal, A.; Breines, J.G.; Thoma, M.V.; Rohleder, N. HPA-axis and inflammatory reactivity to acute stress is related with basal HPA-axis activity. Psychoneuroendocrinology 2017, 78, 168–176. [Google Scholar] [CrossRef] [PubMed]
- Genc, A.; Tur, B.S.; Aytur, Y.K.; Oztuna, D.; Erdogan, M.F. Does aerobic exercise affect the hypothalamic-pituitary-adrenal hormonal response in patients with fibromyalgia syndrome? J. Phys. Ther. Sci. 2015, 27, 2225–2231. [Google Scholar] [CrossRef]
- Littlejohn, G. Neurogenic neuroinflammation in fibromyalgia and complex regional pain syndrome. Nat. Rev. Rheumatol. 2015, 11, 639–648. [Google Scholar] [CrossRef] [PubMed]
- Baraniuk, J.N.; Whalen, G.; Cunningham, J.; Clauw, D.J. Cerebrospinal fluid levels of opioid peptides in fibromyalgia and chronic low back pain. BMC Musculoskelet. Disord. 2004, 5, 48. [Google Scholar] [CrossRef] [PubMed]
- Harris, R.E.; Clauw, D.J.; Scott, D.J.; McLean, S.A.; Gracely, R.H.; Zubieta, J.K. Decreased central mu-opioid receptor availability in fibromyalgia. J. Neurosci. 2007, 27, 10000–10006. [Google Scholar] [CrossRef] [PubMed]
- Ballester, J.; Baker, A.K.; Martikainen, I.K.; Koppelmans, V.; Zubieta, J.K.; Love, T.M. Risk for opioid misuse in chronic pain patients is associated with endogenous opioid system dysregulation. Transl. Psychiatry 2022, 12, 20. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Ma, R.; Jin, Y.; Fang, J.; Du, J.; Shao, X.; Liang, Y.; Fang, J. Molecular mechanisms of opioid tolerance: From opioid receptors to inflammatory mediators (Review). Exp. Ther. Med. 2021, 22, 1004. [Google Scholar] [CrossRef]
- Nakamura, A.; Hasegawa, M.; Minami, K.; Kanbara, T.; Tomii, T.; Nishiyori, A.; Narita, M.; Suzuki, T.; Kato, A. Differential activation of the μ-opioid receptor by oxycodone and morphine in pain-related brain regions in a bone cancer pain model. Br. J. Pharmacol. 2013, 168, 375–388. [Google Scholar] [CrossRef]
- Ramírez Medina, C.R.; Feng, M.; Huang, Y.T.; Jenkins, D.A.; Jani, M. Machine learning identifies risk factors associated with long-term opioid use in fibromyalgia patients newly initiated on an opioid. RMD Open 2024, 10, e004232. [Google Scholar] [CrossRef] [PubMed]
- Marino, Y.; Inferrera, F.; D’Amico, R.; Impellizzeri, D.; Cordaro, M.; Siracusa, R.; Gugliandolo, E.; Fusco, R.; Cuzzocrea, S.; Di Paola, R. Role of mitochondrial dysfunction and biogenesis in fibromyalgia syndrome: Molecular mechanism in central nervous system. Biochim. Biophys. Acta Mol. Basis Dis. 2024, 1870, 167301. [Google Scholar] [CrossRef] [PubMed]
- Jäkel, S.; Dimou, L. Glial Cells and Their Function in the Adult Brain: A Journey through the History of Their Ablation. Front. Cell. Neurosci. 2017, 11, 24. [Google Scholar] [CrossRef] [PubMed]
- Albrecht, D.S.; Forsberg, A.; Sandström, A.; Bergan, C.; Kadetoff, D.; Protsenko, E.; Lampa, J.; Lee, Y.C.; Höglund, C.O.; Catana, C.; et al. Brain glial activation in fibromyalgia - A multi-site positron emission tomography investigation. Brain Behav. Immun. 2019, 75, 72–83. [Google Scholar] [CrossRef] [PubMed]
- Afridi, R.; Tsuda, M.; Ryu, H.; Suk, K. The Function of Glial Cells in the Neuroinflammatory and Neuroimmunological Responses. Cells 2022, 11, 659. [Google Scholar] [CrossRef]
- Watkins, L.R.; Hutchinson, M.R.; Johnston, I.N.; Maier, S.F. Glia: Novel counter-regulators of opioid analgesia. Trends Neurosci. 2005, 28, 661–669. [Google Scholar] [CrossRef] [PubMed]
- Machelska, H.; Celik, M.Ö. Opioid Receptors in Immune and Glial Cells-Implications for Pain Control. Front. Immunol. 2020, 11, 300. [Google Scholar] [CrossRef]
- Milligan, E.D.; Watkins, L.R. Pathological and protective roles of glia in chronic pain. Nat. Rev. Neurosci. 2009, 10, 23–36. [Google Scholar] [CrossRef]
- Cuitavi, J.; Torres-Pérez, J.V.; Lorente, J.D.; Campos-Jurado, Y.; Andrés-Herrera, P.; Polache, A.; Agustín-Pavón, C.; Hipólito, L. Crosstalk between Mu-Opioid receptors and neuroinflammation: Consequences for drug addiction and pain. Neurosci. Biobehav. Rev. 2023, 145, 105011. [Google Scholar] [CrossRef] [PubMed]
- Scherer, P.C.; Zaccor, N.W.; Neumann, N.M.; Vasavda, C.; Barrow, R.; Ewald, A.J.; Rao, F.; Sumner, C.J.; Snyder, S.H. TRPV1 is a physiological regulator of μ-opioid receptors. Proc. Natl. Acad. Sci. USA 2017, 114, 13561–13566. [Google Scholar] [CrossRef]
- Basso, L.; Aboushousha, R.; Fan, C.Y.; Iftinca, M.; Melo, H.; Flynn, R.; Agosti, F.; Hollenberg, M.D.; Thompson, R.; Bourinet, E.; et al. TRPV1 promotes opioid analgesia during inflammation. Sci. Signal. 2019, 12, eaav0711. [Google Scholar] [CrossRef]
- Abdullah, N.; Altier, C. TRPV1 and MOR working in tandem: Implications for pain and opioids use. Neuropsychopharmacology 2020, 45, 225–226. [Google Scholar] [CrossRef]
- Gao, N.; Li, M.; Wang, W.; Liu, Z.; Guo, Y. The dual role of TRPV1 in peripheral neuropathic pain: Pain switches caused by its sensitization or desensitization. Front. Mol. Neurosci. 2024, 17, 1400118. [Google Scholar] [CrossRef] [PubMed]
- Caxaria, S.; Bharde, S.; Fuller, A.M.; Evans, R.; Thomas, B.; Celik, P.; Dell’Accio, F.; Yona, S.; Gilroy, D.; Voisin, M.B.; et al. Neutrophils infiltrate sensory ganglia and mediate chronic widespread pain in fibromyalgia. Proc. Natl. Acad. Sci. USA 2023, 120, e2211631120. [Google Scholar] [CrossRef] [PubMed]
- Raffaeli, W.; Malafoglia, V.; Bonci, A.; Tenti, M.; Ilari, S.; Gremigni, P.; Iannuccelli, C.; Gioia, C.; Di Franco, M.; Mollace, V.; et al. Identification of MOR-Positive B Cell as Possible Innovative Biomarker (Mu Lympho-Marker) for Chronic Pain Diagnosis in Patients with Fibromyalgia and Osteoarthritis Diseases. Int. J. Mol. Sci. 2020, 21, 1499. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Liu, R.; Chen, C.; Ji, F.; Li, T. Opioid System Modulates the Immune Function: A Review. Transl. Perioper. Pain Med. 2016, 1, 5–13. [Google Scholar] [PubMed]
- Plein, L.M.; Rittner, H.L. Opioids and the immune system - friend or foe. Br. J. Pharmacol. 2018, 175, 2717–2725. [Google Scholar] [CrossRef] [PubMed]
- Moyano, J.; Aguirre, L. Opioids in the immune system: From experimental studies to clinical practice. Rev. Assoc. Med. Bras. (1992) 2019, 65, 262–269. [Google Scholar] [CrossRef] [PubMed]
- Jones, E.A.; Assad, F.; Patel, N.; Jain, E.; Abd-Elsayed, A. Management of Fibromyalgia: An Update. Biomedicines 2024, 12, 1266. [Google Scholar] [CrossRef]
- da Rocha, A.P.; Mizzaci, C.C.; Nunes Pinto, A.C.P.; da Silva Vieira, A.G.; Civile, V.; Trevisani, V.F.M. Tramadol for management of fibromyalgia pain and symptoms: Systematic review. Int. J. Clin. Pract. 2020, 74, e13455. [Google Scholar] [CrossRef] [PubMed]
- Rivera, J.; Molina-Collada, J.; Martínez-Barrio, J.; Serrano-Benavente, B.; Castrejón, I.; Vallejo, M.A.; Álvaro-Gracia, J.M. Opioids and fibromyalgia: Frequency of use and factors associated with increased consumption in patients remitted to a tertiary care center. BMC Musculoskelet Disord 2024, 25, 121. [Google Scholar] [CrossRef] [PubMed]
- MacLean, A.J.; Schwartz, T.L. Tramadol for the treatment of fibromyalgia. Expert. Rev. Neurother. 2015, 15, 469–475. [Google Scholar] [CrossRef] [PubMed]
- van de Donk, T.; van Velzen, M.; Dahan, A.; Niesters, M. Cornea nerve fibre state determines analgesic response to tapentadol in fibromyalgia patients without effective endogenous pain modulation. Eur. J. Pain 2019, 23, 1586–1595. [Google Scholar] [CrossRef] [PubMed]
- Roulet, L.; Rollason, V.; Desmeules, J.; Piguet, V. Tapentadol Versus Tramadol: A Narrative and Comparative Review of Their Pharmacological, Efficacy and Safety Profiles in Adult Patients. Drugs 2021, 81, 1257–1272. [Google Scholar] [CrossRef]
- Yang, J.; Shin, K.M.; Do, A.; Bierle, D.M.; Abu Dabrh, A.M.; Yin, Z.; Bauer, B.A.; Mohabbat, A.B. The Safety and Efficacy of Low-Dose Naltrexone in Patients with Fibromyalgia: A Systematic Review. J. Pain Res. 2023, 16, 1017–1023. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; McIntyre, R.L.; Schomakers, B.V.; Kamble, R.; Luesink, A.H.G.; van Weeghel, M.; Houtkooper, R.H.; Gao, A.W.; Janssens, G.E. Low-dose naltrexone extends healthspan and lifespan in C. elegans via SKN-1 activation. iScience 2024, 27, 109949. [Google Scholar] [CrossRef]
- Tempel, A.; Kessler, J.A.; Zukin, R.S. Chronic naltrexone treatment increases expression of preproenkephalin and preprotachykinin mRNA in discrete brain regions. J. Neurosci. 1990, 10, 741–747. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; You, Y.; Griffin, N.; Feng, J.; Shan, F. Low-dose naltrexone (LDN): A promising treatment in immune-related diseases and cancer therapy. Int. Immunopharmacol. 2018, 61, 178–184. [Google Scholar] [CrossRef] [PubMed]
- Bennett, R.M.; Jones, J.; Turk, D.C.; Russell, I.J.; Matallana, L. An internet survey of 2596 people with fibromyalgia. BMC Musculoskelet. Disord. 2007, 8, 27. [Google Scholar] [CrossRef]
- Gaskell, H.; Moore, R.A.; Derry, S.; Stannard, C. Oxycodone for pain in fibromyalgia in adults. Cochrane Database Syst. Rev. 2016, 9, CD012329. [Google Scholar] [CrossRef]
- Mullican, W.S.; Lacy, J.R.; TRAMAP-ANAG-006 Study Group. Tramadol/acetaminophen combination tablets and codeine/acetaminophen combination capsules for the management of chronic pain: A comparative trial. Clin. Ther. 2001, 23, 1429–1445. [Google Scholar] [CrossRef] [PubMed]
- Price, D.D.; Staud, R.; Robinson, M.E.; Mauderli, A.P.; Cannon, R.; Vierck, C.J. Enhanced temporal summation of second pain and its central modulation in fibromyalgia patients. Pain 2002, 99, 49–59. [Google Scholar] [CrossRef] [PubMed]
- Comer, S.D.; Cahill, C.M. Fentanyl: Receptor pharmacology, abuse potential, and implications for treatment. Neurosci. Biobehav. Rev. 2019, 106, 49–57. [Google Scholar] [CrossRef]
- Giorgi, V.; Sarzi-Puttini, P.; Pellegrino, G.; Sirotti, S.; Atzeni, F.; Alciati, A.; Torta, R.; Varrassi, G.; Fornasari, D.; Coaccioli, S.; et al. Pharmacological Treatment of Fibromyalgia Syndrome: A Practice-Based Review. Curr. Pain Headache Rep. 2024, 28, 1349–1363. [Google Scholar] [CrossRef]
- Lawson, K. Tricyclic antidepressants and fibromyalgia: What is the mechanism of action? Expert. Opin. Investig. Drugs 2002, 11, 1437–1445. [Google Scholar] [CrossRef]
- Heymann, R.E.; Helfenstein, M.; Feldman, D. A double-blind, randomized, controlled study of amitriptyline, nortriptyline and placebo in patients with fibromyalgia. An analysis of outcome measures. Clin. Exp. Rheumatol. 2001, 19, 697–702. [Google Scholar]
- Lawson, K. A Brief Review of the Pharmacology of Amitriptyline and Clinical Outcomes in Treating Fibromyalgia. Biomedicines 2017, 5, 24. [Google Scholar] [CrossRef]
- Godfrey, R.G. A guide to the understanding and use of tricyclic antidepressants in the overall management of fibromyalgia and other chronic pain syndromes. Arch. Intern. Med. 1996, 156, 1047–1052. [Google Scholar] [CrossRef] [PubMed]
- Thiwan, S.; Drossman, D.A.; Morris, C.B.; Dalton, C.; Toner, B.B.; Diamant, N.E.; Hu, J.B.; Whitehead, W.E.; Leserman, J.; Bangdiwala, S.I. Not all side effects associated with tricyclic antidepressant therapy are true side effects. Clin. Gastroenterol. Hepatol. 2009, 7, 446–451. [Google Scholar] [CrossRef] [PubMed]
- Migliorini, F.; Maffulli, N.; Eschweiler, J.; Baroncini, A.; Bell, A.; Colarossi, G. Duloxetine for fibromyalgia syndrome: A systematic review and meta-analysis. J. Orthop. Surg. Res. 2023, 18, 504. [Google Scholar] [CrossRef] [PubMed]
- Gupta, H.; Girma, B.; Jenkins, J.S.; Kaufman, S.E.; Lee, C.A.; Kaye, A.D. Milnacipran for the Treatment of Fibromyalgia. Health Psychol. Res. 2021, 9, 25532. [Google Scholar] [CrossRef] [PubMed]
- Welsch, P.; Üçeyler, N.; Klose, P.; Walitt, B.; Häuser, W. Serotonin and noradrenaline reuptake inhibitors (SNRIs) for fibromyalgia. Cochrane Database Syst. Rev. 2018, 2, CD010292. [Google Scholar] [PubMed]
- Shelton, R.C. Serotonin and Norepinephrine Reuptake Inhibitors. Handb. Exp. Pharmacol. 2019, 250, 145–180. [Google Scholar] [PubMed]
- Hayashida, K.I.; Obata, H. Strategies to Treat Chronic Pain and Strengthen Impaired Descending Noradrenergic Inhibitory System. Int. J. Mol. Sci. 2019, 20, 822. [Google Scholar] [CrossRef]
- Krell, H.V.; Leuchter, A.F.; Cook, I.A.; Abrams, M. Evaluation of reboxetine, a noradrenergic antidepressant, for the treatment of fibromyalgia and chronic low back pain. Psychosomatics 2005, 46, 379–384. [Google Scholar] [CrossRef] [PubMed]
- Arnold, L.M.; Hirsch, I.; Sanders, P.; Ellis, A.; Hughes, B. Safety and efficacy of esreboxetine in patients with fibromyalgia: A fourteen-week, randomized, double-blind, placebo-controlled, multicenter clinical trial. Arthritis Rheum. 2012, 64, 2387–2397. [Google Scholar] [CrossRef] [PubMed]
- Nikirk, J.; Chiu, J.; Brown, A.; Woolford, M. Symptomatic Improvement of Fibromyalgia Symptoms with Atomoxetine (P5-13.008). Neurology 2024, 102, 17. [Google Scholar] [CrossRef]
- Walitt, B.; Urrútia, G.; Nishishinya, M.B.; Cantrell, S.E.; Häuser, W. Selective serotonin reuptake inhibitors for fibromyalgia syndrome. Cochrane Database Syst. Rev. 2015, 2015, CD011735. [Google Scholar]
- Anderberg, U.M.; Marteinsdottir, I.; von Knorring, L. Citalopram in patients with fibromyalgia--a randomized, double-blind, placebo-controlled study. Eur. J. Pain 2000, 4, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Arnold, L.M.; Hess, E.V.; Hudson, J.I.; Welge, J.A.; Berno, S.E.; Keck, P.E., Jr. A randomized, placebo-controlled, double-blind, flexible-dose study of fluoxetine in the treatment of women with fibromyalgia. Am. J. Med. 2002, 112, 191–197. [Google Scholar] [CrossRef] [PubMed]
- Patkar, A.A.; Masand, P.S.; Krulewicz, S.; Mannelli, P.; Peindl, K.; Beebe, K.L.; Jiang, W. A randomized, controlled, trial of controlled release paroxetine in fibromyalgia. Am. J. Med. 2007, 120, 448–454. [Google Scholar] [CrossRef] [PubMed]
- González-Viejo, M.A.; Avellanet, M.; Hernández-Morcuende, M.I. A comparative study of fibromyalgia treatment: Ultrasonography and physiotherapy versus sertraline treatment. Ann. Readapt. Med. Phys. 2005, 48, 610–615. [Google Scholar] [CrossRef] [PubMed]
- Albunayyan, R.F. A meta-analysis of the effect of selective serotonin reuptake inhibitors on pain in fibromyalgia. J. Pharm. Res. Int. 2022, 34, 54–65. [Google Scholar] [CrossRef]
- Häuser, W.; Wolfe, F.; Tölle, T.; Uçeyler, N.; Sommer, C. The role of antidepressants in the management of fibromyalgia syndrome: A systematic review and meta-analysis. CNS Drugs 2012, 26, 297–307. [Google Scholar] [CrossRef] [PubMed]
- Edinoff, A.N.; Akuly, H.A.; Hanna, T.A.; Ochoa, C.O.; Patti, S.J.; Ghaffar, Y.A.; Kaye, A.D.; Viswanath, O.; Urits, I.; Boyer, A.G.; et al. Selective Serotonin Reuptake Inhibitors and Adverse Effects: A Narrative Review. Neurol. Int. 2021, 13, 387–401. [Google Scholar] [CrossRef]
- Tzadok, R.; Ablin, J.N. Current and Emerging Pharmacotherapy for Fibromyalgia. Pain. Res. Manag. 2020, 2020, 6541798. [Google Scholar] [CrossRef]
- Lederman, S.; Arnold, L.M.; Vaughn, B.; Kelley, M.; Sullivan, G.M. Efficacy and Safety of Sublingual Cyclobenzaprine for the Treatment of Fibromyalgia: Results From a Randomized, Double-Blind, Placebo-Controlled Trial. Arthritis Care. Res. (Hoboken) 2023, 75, 2359–2368. [Google Scholar] [CrossRef] [PubMed]
- Späth, M.; Stratz, T.; Färber, L.; Haus, U.; Pongratz, D. Treatment of fibromyalgia with tropisetron--dose and efficacy correlations. Scand. J. Rheumatol. 2004, 33 (Suppl. S119), 63–66. [Google Scholar] [CrossRef]
- Morillas-Arques, P.; Rodriguez-Lopez, C.M.; Molina-Barea, R.; Rico-Villademoros, F.; Calandre, E.P. Trazodone for the treatment of fibromyalgia: An open-label, 12-week study. BMC Musculoskelet. Disord. 2010, 11, 204. [Google Scholar] [CrossRef] [PubMed]
- Hoyer, D. Targeting the 5-HT system: Potential side effects. Neuropharmacology 2020, 179, 108233. [Google Scholar] [CrossRef]
- Derry, S.; Cording, M.; Wiffen, P.J.; Law, S.; Phillips, T.; Moore, R.A. Pregabalin for pain in fibromyalgia in adults. Cochrane Database Syst. Rev. 2016, 9, CD011790. [Google Scholar] [CrossRef]
- Migliorini, F.; Maffulli, N.; Knobe, M.; Tenze, G.; Aljalloud, A.; Colarossi, G. Pregabalin administration in patients with fibromyalgia: A Bayesian network meta-analysis. Sci. Rep. 2022, 12, 12148. [Google Scholar] [CrossRef] [PubMed]
- Häuser, W.; Bernardy, K.; Uçeyler, N.; Sommer, C. Treatment of fibromyalgia syndrome with gabapentin and pregabalin--a meta-analysis of randomized controlled trials. Pain 2009, 145, 69–81. [Google Scholar] [CrossRef] [PubMed]
- Athavale, A.; Murnion, B. Gabapentinoids: A therapeutic review. Aust. Prescr. 2023, 46, 80–85. [Google Scholar] [CrossRef] [PubMed]
- Arnold, L.M.; Whitaker, S.; Hsu, C.; Jacobs, D.; Merante, D. Efficacy and safety of mirogabalin for the treatment of fibromyalgia: Results from three 13-week randomized, double-blind, placebo- and active-controlled, parallel-group studies and a 52-week open-label extension study. Curr. Med. Res. Opin. 2019, 35, 1825–1835. [Google Scholar] [CrossRef]
- Nwankwo, A.; Koyyalagunta, D.; Huh, B.; D’Souza, R.S.; Javed, S. A comprehensive review of the typical and atypical side effects of gabapentin. Pain Pract. 2024, 24, 1051–1058. [Google Scholar] [CrossRef] [PubMed]
- Calandre, E.P.; Rico-Villademoros, F. The role of antipsychotics in the management of fibromyalgia. CNS Drugs 2012, 26, 135–153. [Google Scholar] [CrossRef]
- Potvin, S.; Morin, M.; Cloutier, C.; Gendron, A.; Bissonnette, A.; Marchand, S. Add-on treatment of quetiapine for fibromyalgia: A pilot, randomized, double-blind, placebo-controlled 12-week trial. J. Clin. Psychopharmacol. 2012, 32, 684–687. [Google Scholar] [CrossRef] [PubMed]
- Freedenfeld, R.N.; Murray, M.; Fuchs, P.N.; Kiser, R.S. Decreased pain and improved quality of life in fibromyalgia patients treated with olanzapine, an atypical neuroleptic. Pain Pract. 2006, 6, 112–118. [Google Scholar] [CrossRef] [PubMed]
- Chow, R.T.S.; Whiting, D.; Favril, L.; Ostinelli, E.; Cipriani, A.; Fazel, S. An umbrella review of adverse effects associated with antipsychotic medications: The need for complementary study designs. Neurosci. Biobehav. Rev. 2023, 155, 105454. [Google Scholar] [CrossRef] [PubMed]
- Albrecht, D.S.; MacKie, P.J.; Kareken, D.A.; Hutchins, G.D.; Chumin, E.J.; Christian, B.T.; Yoder, K.K. Differential dopamine function in fibromyalgia. Brain Imaging Behav. 2016, 10, 829–839. [Google Scholar] [CrossRef]
- Wood, P.B.; Schweinhardt, P.; Jaeger, E.; Dagher, A.; Hakyemez, H.; Rabiner, E.A.; Bushnell, M.C.; Chizh, B.A. Fibromyalgia patients show an abnormal dopamine response to pain. Eur. J. Neurosci. 2007, 25, 3576–3582. [Google Scholar] [CrossRef] [PubMed]
- Holman, A.J.; Myers, R.R. A randomized, double-blind, placebo-controlled trial of pramipexole, a dopamine agonist, in patients with fibromyalgia receiving concomitant medications. Arthritis Rheum. 2005, 52, 2495–2505. [Google Scholar] [CrossRef] [PubMed]
- Holman, A.J. Ropinirole, open preliminary observations of a dopamine agonist for refractory fibromyalgia. J. Clin. Rheumatol. 2003, 9, 277–279. [Google Scholar] [CrossRef] [PubMed]
- Li, B.D.; Bi, Z.Y.; Liu, J.F.; Si, W.J.; Shi, Q.Q.; Xue, L.P.; Bai, J. Adverse effects produced by different drugs used in the treatment of Parkinson’s disease: A mixed treatment comparison. CNS Neurosci. Ther. 2017, 23, 827–842. [Google Scholar] [CrossRef] [PubMed]
- Littlejohn, G.; Guymer, E. Modulation of NMDA Receptor Activity in Fibromyalgia. Biomedicines 2017, 5, 15. [Google Scholar] [CrossRef]
- Pastrak, M.; Abd-Elsayed, A.; Ma, F.; Vrooman, B.; Visnjevac, O. Systematic Review of the Use of Intravenous Ketamine for Fibromyalgia. Ochsner. J. 2021, 21, 387–394. [Google Scholar] [CrossRef] [PubMed]
- Olivan-Blázquez, B.; Herrera-Mercadal, P.; Puebla-Guedea, M.; Pérez-Yus, M.C.; Andrés, E.; Fayed, N.; López-Del-Hoyo, Y.; Magallon, R.; Roca, M.; Garcia-Campayo, J. Efficacy of memantine in the treatment of fibromyalgia: A double-blind, randomised, controlled trial with 6-month follow-up. Pain 2014, 155, 2517–2525. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, A.J.; Badraoui, R.; Jahan, S.; Alshahrani, M.M.; Siddiqui, M.A.; Khan, A.; Adnan, M. Targeting NMDA receptor in Alzheimer’s disease: Identifying novel inhibitors using computational approaches. Front. Pharmacol. 2023, 14, 1208968. [Google Scholar] [CrossRef] [PubMed]
- Kurlyandchik, I.; Lauche, R.; Tiralongo, E.; Warne, L.N.; Schloss, J. Plasma and interstitial levels of endocannabinoids and N-acylethanolamines in patients with chronic widespread pain and fibromyalgia: A systematic review and meta-analysis. Pain Rep. 2022, 7, e1045. [Google Scholar] [CrossRef] [PubMed]
- Bourke, S.L.; Schlag, A.K.; O’Sullivan, S.E.; Nutt, D.J.; Finn, D.P. Cannabinoids and the endocannabinoid system in fibromyalgia: A review of preclinical and clinical research. Pharmacol. Ther. 2022, 240, 108216. [Google Scholar] [CrossRef] [PubMed]
- Khalsa, J.H.; Bunt, G.; Blum, K.; Maggirwar, S.B.; Galanter, M.; Potenza, M.N. Review: Cannabinoids as Medicinals. Curr. Addict. Rep. 2022, 9, 630–646. [Google Scholar] [CrossRef] [PubMed]
- Boehnke, K.F.; Gagnier, J.J.; Matallana, L.; Williams, D.A. Cannabidiol Use for Fibromyalgia: Prevalence of Use and Perceptions of Effectiveness in a Large Online Survey. J. Pain 2021, 22, 556–566. [Google Scholar] [CrossRef] [PubMed]
- Wipfler, K.; Simon, T.A.; Katz, P.; Wolfe, F.; Michaud, K. Increase in Cannabis Use Among Adults With Rheumatic Diseases: Results From a 2014-2019 United States Observational Study. Arthritis Care Res. 2022, 74, 2091–2099. [Google Scholar] [CrossRef] [PubMed]
- Skrabek, R.Q.; Galimova, L.; Ethans, K.; Perry, D. Nabilone for the treatment of pain in fibromyalgia. J. Pain 2008, 9, 164–173. [Google Scholar] [CrossRef] [PubMed]
- Ware, M.A.; Fitzcharles, M.A.; Joseph, L.; Shir, Y. The effects of nabilone on sleep in fibromyalgia: Results of a randomized controlled trial. Anesth. Analg. 2010, 110, 604–610. [Google Scholar] [CrossRef] [PubMed]
- Burstein, S.H.; Karst, M.; Schneider, U.; Zurier, R.B. Ajulemic acid: A novel cannabinoid produces analgesia without a “high”. Life Sci. 2004, 75, 1513–1522. [Google Scholar] [CrossRef] [PubMed]
- Walitt, B.; Klose, P.; Fitzcharles, M.A.; Phillips, T.; Häuser, W. Cannabinoids for fibromyalgia. Cochrane Database Syst. Rev. 2016, 7, CD011694. [Google Scholar] [PubMed]
- Jackson, M.A.; Brown, A.L.; Johnston, J.; Clancy, R.; McGregor, I.; Bruno, R.; Lintzeris, N.; Montebello, M.; Luksza, J.; Bowman, J.; et al. The use and effects of synthetic cannabinoid receptor agonists by New South Wales cannabis treatment clients. J. Cannabis Res. 2021, 3, 33. [Google Scholar] [CrossRef] [PubMed]
- Häuser, W.; Fisher, E.; Perrot, S.; Moore, R.A.; Makri, S.; Bidonde, J. Non-pharmacological interventions for fibromyalgia (fibromyalgia syndrome) in adults: An overview of Cochrane Reviews. Cochrane Database Syst. Rev. 2022, 2022, CD015074. [Google Scholar]
- Sosa-Reina, M.D.; Nunez-Nagy, S.; Gallego-Izquierdo, T.; Pecos-Martín, D.; Monserrat, J.; Álvarez-Mon, M. Effectiveness of Therapeutic Exercise in Fibromyalgia Syndrome: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. Biomed. Res. Int. 2017, 2017, 2356346. [Google Scholar] [CrossRef] [PubMed]
- Berardi, G.; Senefeld, J.W.; Hunter, S.K.; Bement, M.K.H. Impact of isometric and concentric resistance exercise on pain and fatigue in fibromyalgia. Eur. J. Appl. Physiol. 2021, 121, 1389–1404. [Google Scholar] [CrossRef]
- Manojlović, D.; Kopše, E.I. The effectiveness of aerobic exercise for pain management in patients with fibromyalgia. Eur. J. Transl. Myol. 2023, 33, 11423. [Google Scholar] [CrossRef] [PubMed]
- Karlsson, B.; Burell, G.; Anderberg, U.M.; Svärdsudd, K. Cognitive behaviour therapy in women with fibromyalgia: A randomized clinical trial. Scand. J. Pain 2015, 9, 11–21. [Google Scholar] [CrossRef] [PubMed]
- Leça, S.; Tavares, I. Research in Mindfulness Interventions for Patients With Fibromyalgia: A Critical Review. Front. Integr. Neurosci. 2022, 16, 920271. [Google Scholar] [CrossRef]
- Berger, A.A.; Liu, Y.; Nguyen, J.; Spraggins, R.; Reed, D.S.; Lee, C.; Hasoon, J.; Kaye, A.D. Efficacy of acupuncture in the treatment of fibromyalgia. Orthop. Rev. 2021, 13, 25085. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.H.; Wang, F.Y.; Feng, C.Q.; Yang, X.F.; Sun, Y.H. Massage therapy for fibromyalgia: A systematic review and meta-analysis of randomized controlled trials. PLoS One 2014, 9, e89304. [Google Scholar] [CrossRef] [PubMed]
- Cao, C.F.; Ma, K.L.; Li, Q.L.; Luan, F.J.; Wang, Q.B.; Zhang, M.H.; Viswanath, O.; Myrcik, D.; Varrassi, G.; Wang, H.Q. Balneotherapy for Fibromyalgia Syndrome: A Systematic Review and Meta-Analysis. J. Clin. Med. 2021, 10, 1493. [Google Scholar] [CrossRef]
- García-Ríos, M.C.; Navarro-Ledesma, S.; Tapia-Haro, R.M.; Toledano-Moreno, S.; Casas-Barragán, A.; Correa-Rodríguez, M.; Aguilar-Ferrándiz, M.E. Effectiveness of health education in patients with fibromyalgia: A systematic review. Eur. J. Phys. Rehabil. Med. 2019, 55, 301–313. [Google Scholar] [CrossRef] [PubMed]
- Mascarenhas, R.O.; Souza, M.B.; Oliveira, M.X.; Lacerda, A.C.; Mendonça, V.A.; Henschke, N.; Oliveira, V.C. Association of Therapies With Reduced Pain and Improved Quality of Life in Patients With Fibromyalgia: A Systematic Review and Meta-analysis. JAMA Intern. Med. 2021, 181, 104–112. [Google Scholar] [CrossRef] [PubMed]
- Adams, N.; McVeigh, J.G.; Cuesta-Vargas, A.; Abokdeer, S. Evidence-based approaches for the management of fibromyalgia syndrome: A scoping review. Phys. Ther. Rev. 2023, 28, 1–17. [Google Scholar] [CrossRef]
Symptom Category | Specific Symptoms | References |
---|---|---|
Pain | Widespread musculoskeletal pain, hyperalgesia (heightened pain sensitivity), allodynia (pain from normally non-painful stimuli), and muscle and joint stiffness | [1,2] |
Fatigue | Persistent fatigue, feeling unrefreshed after sleep, and decreased energy levels | [1,3] |
Sleep disturbances | Difficulty falling asleep, frequent awakenings, and non-restorative sleep | [1,4] |
Cognitive issues | Cognitive deficits (“fibro fog”), memory loss, impaired concentration, and poor vocabulary recall | [1,5] |
Mood disorders | Anxiety, depression, and mood swings | [1,6] |
Sensory impairments | Headaches (including migraines), paresthesias (tingling or numbness), and sensitivity to temperature, light, sound, and odors | [1,7] |
Gastrointestinal disorders | Irritable bowel syndrome (IBS), abdominal pain, and bloating | [1,8] |
Other symptoms | Morning stiffness, dizziness, restless legs syndrome (RLS), and painful menstrual periods | [1,9,10,11,12] |
Opioid Receptor | Endogenous Ligands | Physiological Roles | Pathological Roles | References |
---|---|---|---|---|
MOR | β-END ENKs | Analgesia, respiratory regulation, sedation, gastrointestinal motility, and euphoria | Addiction, respiratory depression, and constipation | [34,35,36,37,38,39,40,41,42,43,44,45,46] |
DOR | ENKs | Analgesia, gastrointestinal motility, neuroprotection, cardioprotection, and modulation of inflammatory responses | Addiction, and role in psychiatric disorders | [35,47,48,49,50,51,52,53,54,55,56] |
KOR | DYNs | Analgesia, and stress response | Dysphoria, hallucinations, and role in mood disorders | [35,57,58,59,60,61,62,63,64,65,66] |
Drug | Action Mechanisms | Principal Side Effects | References |
---|---|---|---|
Tramadol Tapentadol | MOR agonist with SNRI activity MOR agonist with NRI activity | Nausea, dizziness, constipation, somnolence, respiratory depression, seizures, cardiovascular effects, risk of dependence, and withdrawal symptoms | [190,191,192,193,194] |
Naltrexone | Non-selective opioid antagonist | Insomnia, headaches, and nausea | [195,196,197,198] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Domínguez, M. A Comprehensive Analysis of Fibromyalgia and the Role of the Endogenous Opioid System. Biomedicines 2025, 13, 165. https://doi.org/10.3390/biomedicines13010165
García-Domínguez M. A Comprehensive Analysis of Fibromyalgia and the Role of the Endogenous Opioid System. Biomedicines. 2025; 13(1):165. https://doi.org/10.3390/biomedicines13010165
Chicago/Turabian StyleGarcía-Domínguez, Mario. 2025. "A Comprehensive Analysis of Fibromyalgia and the Role of the Endogenous Opioid System" Biomedicines 13, no. 1: 165. https://doi.org/10.3390/biomedicines13010165
APA StyleGarcía-Domínguez, M. (2025). A Comprehensive Analysis of Fibromyalgia and the Role of the Endogenous Opioid System. Biomedicines, 13(1), 165. https://doi.org/10.3390/biomedicines13010165