Drug Delivery Systems of Betulin and Its Derivatives: An Overview
<p>A schematic presentation of the biological effects of betulin and its chemical structure. The C-3, C-28, and C-30 groups considered for chemical modification are marked.</p> "> Figure 2
<p>Chemical structure of betulinic acid (<b>A</b>), 28-O-propynoylbetulin (<b>B</b>), 28-O-propynoylbetulone (<b>C</b>), 3β,28-diacetoxy-30-diethoxyphosphoryl-lup-20(29)-ene (<b>D</b>), and 29-diethoxyphosphoryl-28-propynoyloxy-lup-20E(29)-en-3-ol (<b>E</b>).</p> "> Figure 3
<p>Chemical structure of 3-diethoxyphosphoryl-28-propynoylbetulin (<b>A</b>), 3-dihydroxyphosphoryl-28-propynoylbetulin (<b>B</b>), 30-diethoxyphosphoryloxy-28-O-propynoylbetulin (<b>C</b>), and 28-(2-Butynoyl)-30-diethoxyphosphoryloxybetulin (<b>D</b>).</p> "> Figure 4
<p>Chemical structure of 3,28-O,O′-di(propynoyl)betulin (<b>A</b>), 3,28-O,O′-di[1-(4-fluorobenzyl-1H-1,2,3-triazol-4-yl) carbonyl]betulin (<b>B</b>), 28-O-[1-(3-hydroxypropyl)-1H-1,2,3-triazol-4-yl]carbonylbetulin (<b>C</b>), 3,28-O,O′-di[1-(3-hydroxypropyl-1H-1,2,3-triazol-4-yl)carbonyl]betulin (<b>D</b>), and 28-O-[1-(3′-deoxythymidine-5′-yl)-1H-1,2,3-triazol-4-yl]carbonylbetulin (<b>E</b>).</p> "> Figure 5
<p>Chemical structure of 3β-O-Acetyl-30-(1H-1,2,4-triazole-3-ylsulfanyl)-betulinic acid.</p> "> Figure 6
<p>Chemical structure of 3β-O-acetyl-30-[5-(4-methoxyphenyl)-1H-1,2,4-triazol-3-yl)-sulfanyl]-betulinic acid (<b>A</b>) and 3β-O-acetyl-30-{5-[4-(dimethylamino)phenyl]-1H-1,2,4-triazol-3-yl)sulfanyl}-betulinic acid (<b>B</b>).</p> "> Figure 7
<p>Chemical structure of 6-chloro-7-(28-propynoyl-3-betulinyloxy)-5,8-quinolinedione (<b>A</b>), 7-(28-acetyl-3-betulinyloxy)-6-chloro-2-methyl-5,8-quinolinedione (<b>B</b>), and 3-(28-acetyl-3-betulinyloxy)-2-chloro-1,4-naphthoquinolinedione (<b>C</b>).</p> "> Figure 8
<p>Chemical structure of 3β-Hydroxylup-20(29)-en-28-yl 3-bromopropanoate (<b>A</b>), 3β-Hydroxylup-20(29)-en-28-yl 4-bromobutanoate (<b>B</b>), and 3β-Hydroxylup-20(29)-en-28-yl 5-bromopentanoate (<b>C</b>).</p> "> Figure 9
<p>Chemical structure of 3β,28-di-O-propionyl-lup-20(29)-lupene (<b>A</b>), 3-(2-butynoyl)botulin (<b>B</b>), betulin-dab-NH<sub>2</sub> (<b>C</b>).</p> "> Figure 10
<p>Chemical structure of (1R)-3a-(acetoxymethyl)-5a,5b,8,8,11a-pentamethyl-1-(prop-1-en-2-yl)icosahydro-1H-cyclopenta[a]chrysen-9-yl 3-methyl-4-oxo-4-(2-sulfamoylethylamino)butanoate (<b>A</b>) and (((1R)-9-acetoxy-5a,5b,8,8,11a-pentamethyl-1-(prop-1-en-2-yl)icosahydro-1H-cyclopenta[a]chrysen-3a-yl)methyl 3-methyl-4-oxo-4-(2-sulfamoylethylamino)butanoate) (<b>B</b>).</p> "> Figure 11
<p>Different types of delivery systems designed for BE and its derivatives.</p> "> Figure 12
<p>Chemical structure of 1-isopropenyl-5a,5b,8,8,11a-pentamethyl-1,2,3,4,5,5a,6,7,7a,8,11,11a,11b, 12,13,13b-octadecahydro cyclopenta[a]chrysene-3a-carboxylic acid (<b>A</b>), BA analogue (<b>B</b>).</p> "> Figure 13
<p>Schematic diagram of NA1-A-BAM NP synthesis [<a href="#B71-biomedicines-12-01168" class="html-bibr">71</a>].</p> "> Figure 14
<p>Schematic illustration of self-assembled Soluplus–BA micelles [<a href="#B75-biomedicines-12-01168" class="html-bibr">75</a>].</p> "> Figure 15
<p>Schematic illustration of the synthetic route to the PEGylated BA liposome and cancer therapy [<a href="#B79-biomedicines-12-01168" class="html-bibr">79</a>].</p> "> Figure 16
<p>Scheme of preparation BA-C<sub>60</sub>(OH)<sub>n</sub>-GBP-TPGS NPs [<a href="#B94-biomedicines-12-01168" class="html-bibr">94</a>].</p> "> Figure 17
<p>Schematic illustration of the synthesis route for the multifunctional Au NPs and the NIR laser irradiation-induced chemo-photothermal therapy in tumor-bearing mice [<a href="#B95-biomedicines-12-01168" class="html-bibr">95</a>].</p> ">
Abstract
:1. Introduction
2. Methodology
3. Characteristics of Betulin and Betulinic Acid and Their Pharmaceutical Potential
3.1. Betulin
3.2. Betulinic Acid
4. Characteristics of BE Derivatives and Their Biological Properties
4.1. Acetylenic Derivatives of Betulin and Betulone
4.2. Betulin Phosphonates
4.3. Betulin Phosphates
4.4. Triazole Hybrids of Betulin and Betulinic Acid
4.5. Betulin-1,4-quinone Hybrids
4.6. Triphenylphosphonium Analogues of Betulin and Betulinic Acid C3- and C28-Functionalized Derivatives
4.7. Betulin Dipropionate
4.8. 3-Substituted Derivatives of Betulin and Betulinic Aldehyde
4.9. Betulin Sulfonamides
4.10. Betulin Ester with L-2,4-Diaminobutyl Acid
5. Delivery Systems
5.1. Nanocarriers
5.1.1. Organic Nanocarriers
Polymeric NPs
Active Compound | Effect | Mechanism of Action | Delivery System | Cell Line | Animal Model | Ref. |
---|---|---|---|---|---|---|
dBA | anticancer | apoptosis; target the mitochondrial oxidative phosphorylation system | polymeric NP | A549 | - | [67] |
BA analogue | anticancer (colon) | apoptosis | polymeric NP | HT-29 | rats, mice | [69] |
BA | anticancer (liver) | n/a | polymeric NP | HepG2 | - | [70] |
Betulinic amine | antioxidant for ischemic stroke | decreased BBB leakage, improved tight junction repair, and reduced brain edema | polymeric NP | - | rats, mice | [71] |
BA | anticancer (anti-glioma) | therapeutic effects are mainly mediated by CB1/CB2 through suppression of the Akt/NFκB-p65 signaling | polymeric NP | U87, A172 | mice | [72] |
BA and gemcitabine | anticancer (pancreas) | apoptosis | polymeric NP | Panc1 | mice | [73] |
BA | hepatoprotective | reduce the degree of liver fibrosis | polymeric NP | - | rats | [74] |
BA | anticancer (TNBC, larynx) | apoptosis | polymeric NP | HEp-2, MDA-MB-231 | [38] | |
BA | anticancer (TNBC) | induction of DNA double-strand damage, induction of ROS accumulation, angiogenesis inhibition | micelle | MDA-MB-231 | - | [75] |
BE derivative | anticancer (TNBC, ovary) | apoptosis | micelle | HeLa, SK-BR-3 | - | [76,77] |
BA | anticancer (pancreatis) | apoptosis | conjugate | MIA, PaCa-2 | - | [78] |
BA | anticancer | n/a | liposome | A549, SW480 | mice | [37] |
BA | anticancer (liver, ovary) | n/a | liposome | HepG2, HeLa, U14 | mice | [79] |
BA | anticancer (liver) | n/a | liposome | HepG2 | - | [80] |
BA | anticancer (liver) | mitochondrial-related apoptosis | liposome | HepG2 | - | [81] |
BE | anticancer (melanoma) | apoptosis | cyclodextrin | B164A5 | mice | [82] |
BA and doxorubicin | anticancer (lungs) | apoptosis, induction of ROS accumulation | protein nanocarrier | A549 | - | [83] |
BE | antimicrobial (leishmaniasis) | n/a | carbon nanotubes | J774A.1 infected with L. donovani | - | [84] |
BE | anticancer (melanoma) | apoptosis | gold nanocarrier | HaCaT, 1BR3, A375, B164A5 | - | [85] |
BE | anticancer antiangiogenic | n/a | nanoemulsion | - | mice, chick embryo CAM | [86] |
BA | antiangiogenic | limiting the development of capillaries by modulating the activity of fibroblasts | nanoemulsion | - | chick embryo CAM | [87] |
BE | anticancer antiangiogenic (breast) | apoptosis, inhibition of blood vessel development | nanosuspension | MDA-MB-231 | - | [88] |
BA | anticancer antioxidative (melanoma) | n/a | cocrystals | HaCaT, B164A5, B16F0 | - | [89] |
BA and Ceranib-2 | anticancer (prostate) | induction of ROS | nanocarrier | PC-3 | - | [90] |
BE | anticancer antibacterial | effects on mitochondria | conjugate | HCT 116, MCF-7 | - | [91] |
BA | anticancer | mitochondrial-related apoptosis | conjugate | Caco-2, HeLa, MCF-7 | - | [92] |
BA | anticancer | apoptosis, release of NO | conjugate | B16F10 | - | [93] |
BA | anticancer (liver) | apoptosis, caspases inhibition | nanocarrier | MHCC97H, L02 | - | [94] |
BA | anticancer (cervix) | synergistic effect of photothermal therapy and the cytotoxic effect of the active compound. | liposome | 143B, HeLa | mice | [95] |
BA | anticancer (cervix) | synergistic effect of photothermal therapy and the cytotoxic effect of the active compound. | liposome | HeLa | mice | [96] |
BA | anticancer (cervix) | synergistic effect of photothermal therapy and the cytotoxic effect of the active compound. | liposome | HeLa | mice | [97] |
BA | anticancer antiangiogenic | synergistic effect of hyperthermal therapy and the cytotoxic effect of the active compound | liposome | MDA-MB-231, MCF-7 | chick embryo CAM | [98] |
BA | anticancer (breast) | n/a | cyclodextrin | 4T1, MCF-7 | mice | [36] |
BE | anticancer | n/a | nanocarrier, microparticle | KB, HeLa, MCF-7, Hep-G2, A549, U87, HDF | - | [99,100] |
BE | anticancer (melanoma) | apoptosis | silver nanocarrier | B165A5, B16Ova | mice | [101] |
BA | antimicrobial | n/a | metal complexes | - | - | [102] |
Micelles
Conjugates
Liposomes
Other Organic NPs
5.1.2. Inorganic Nanocarriers
Carbon Nanotubes
Gold Nanocarriers
Silver Nanocarriers
Metal Complexes
5.1.3. Complex/Hybrid and Miscellaneous Nanoparticulate Systems
5.2. Microparticles
5.3. Topical Formulations
5.3.1. Gel-Based
5.3.2. Suspensions
5.4. Emulsions
5.5. Scaffolds
6. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
1BR3 | human fibroblast cell line |
A375 | human malignant melanoma cell line |
A431 | human epidermoid carcinoma cell line |
A549 | human lung carcinoma cell line |
ABCA1 | ATP-binding cassette subfamily A member 1 |
ABCG | ATP-binding cassette subfamily G |
ADAMTS5 | a disintegrin and metalloprotease with thrombospondin type I motifs |
ADMET | acyclic diene metathesis |
AhR | aryl hydrocarbon receptor |
Akt protein | protein kinase B |
ALT | alanine transaminase |
AMD3100 | plerixafor; small-molecule inhibitor of CXCR4 |
ARNT | aryl hydrocarbon receptor nuclear translocator |
AST | aspartate aminotransferase |
Au | gold |
B164A5 | murine melanoma cell line |
B16F10 | murine melanoma cell line |
B16Ova | murine melanoma cell line |
BA | betulinic acid |
Bak | Bcl-2 homologous antagonist/killer |
Balb3T3 | fibroblast cell line derived from a BALB/c mouse strain |
BAM | betulinic amine |
BAX | pro-apoptotic gene/protein |
BBB | blood–brain barrier |
BCL-2 | anti-apoptotic gene/protein |
Bcl2 | B-cell lymphoma 2 protein |
BDP | betulin dipropionate |
BE | betulin |
BetNE | nanoemulsion with incorporated BE |
BoA | betulonic acid |
BSA | bovine serum albumin |
BT-20 | human breast cancer cell line |
C32 | melanoma cell line |
C57BL/6J | a strain of laboratory mouse |
C6 | rat glioma cell line |
CaCo-2 | human epithelial colorectal adenocarcinoma cell line |
CB1 | cannabinoid receptor type 1 |
CB2 | cannabinoid receptor type 2 |
CCRF/CEM | Caucasian cell line derived from a patient with and continuous Epstein–Barr virus (EBV)-transformed lymphoblastoid cell line derived from a patient with acute lymphoblastic leukemia |
CD | cyclodextrin |
CDDS | controlled drug delivery system |
CGTase | cyclodextrin glycosyltransferase |
CK | creatine kinase |
CNT | carbon nanotube |
CO2 | carbon dioxide |
COX2 | cyclooxygenase-2 |
CRDDS | controlled release drug delivery system |
Cu | cooper |
CXCR4 | C-X-C chemokine receptor type 4 |
Dab | L-2,4-diaminobutyl acid |
dBA | a derivative of BA |
DDS | drug delivery system |
DNA | deoxyribonucleic acid |
Dox | doxorubicin |
Du-145 | human prostate cancer cell line |
E-TPGS | D-α-tocopheryl polyethylene glycol 1000 succinate |
ECBO | bovine enterovirus strain |
EGCG | epigallocatechin gallate |
EGFR | epidermal growth factor receptor |
EPR | enhanced permeability and retention |
ER | endoplasmic reticulum |
ERK1/2 | extracellular signal-regulated kinase 1 and 2 |
f-CNTs | functionalized carbon nanotubes |
FAD | flavin adenine dinucleotide |
FAK | focal adhesion kinase |
FARs | folic acid receptors |
FAS | fatty acid synthase |
FDA | Food and Drug Administration |
Fe | iron |
GATA3 | GATA transcription factor 3 |
GBP | polyprenol found in ginkgo biloba |
GC | galactosylated chitosan |
GCDG | octakis-[6-deoxy-6-(2-sulfanyl ethanesulfonate)]-γ-CD |
GEM | gemcitabine |
GPx | glutathione peroxidase |
GR | glutathione reductase |
GSH | glutathione |
GZ | glycosylated zein |
HaCaT | spontaneously transformed immortalized human keratinocyte cell line |
HBA | 23-hydroxybetulinic acid |
HEK293 | spontaneously transformed immortalized human keratinocyte cell line |
HeLa | cervical cancer cell line |
HepG2 | human liver cancer cell line |
HIV | human immunodeficiency virus |
HL-60 | human promyelocytic leukemia cell line |
Hs294T | human melanoma cell line |
HS578T | human breast cancer cell line |
IC50 | half maximal inhibitory concentration |
IL-1 β | interleukin 1 β |
IL-18 | interleukin 18 |
IL-6 | interleukin-6 |
iNOS | inducible nitric oxide synthase |
Jeff | jeffamine |
Keap1 | Kelch-like ECH-associated protein 1 |
LCR-4 | bovine enterovirus strain LCR-4 |
LDH | lactate dehydrogenase |
Lf | lactoferrin |
LLC | large cell carcinoma |
LPL | lipoprotein lipase |
LS | liposome |
MBs | microbubbles |
MβCD | methyl-β-cyclodextrin |
MCF 10A | human mammary epithelial cell line |
MCF-7 | human mammary epithelial cell line |
MDA | malondialdehyde |
MDA-MB-231 | human breast cancer cell line |
MDR | multidrug resistance |
MHCC97H | human hepatocellular carcinoma cell line |
MIONPs | magnetic iron oxide nanoparticles |
MLPs | magnetoliposomes |
MMP13 | matrix metalloproteinase-13 |
MV-4-11 | human leukemia cell line |
NA1 | fusion peptide |
NAD[P]H | nicotinamide adenine dinucleotide phosphate |
NF | nanofiber |
NIR | near-infrared |
NLCs | nanostructured lipid carriers |
NMDA | N-methyl-D-aspartate |
NO | nitric oxide |
NPs | nanoparticles |
NQO1 | NAD[P]H-quinone oxidoreductase |
NSCLC | non-small cell lung cancer. |
p-p38 | phosphorylated p38 mitogen-activated protein kinase |
p21 | cyclin-dependent kinase inhibitor 1A |
p38 α | p38 Mitogen-Activated Protein Kinase α |
P388 | murine leukemia cell line |
p53 | a tumor suppressor protein encoded by the TP53 gene |
Panc1 | human pancreatic cancer cell line |
PC | prostate cancer |
PC-3 | human prostate cancer cell line |
Pd | palladium |
PEG | polyethylene glycol |
pERK | phosphorylated extracellular signal-regulated kinase |
pJNK | phosphorylated c-jun N-terminal kinase |
PLA | polylactic acid |
PLGA | poly(lactic-co-glycolic acid) |
PLL | poly-L-lysine |
polyDBB | polyanhydride of betulin disuccinate |
PPARγ | peroxisome proliferator-activated receptor gamma |
PVCL | polyvinyl chloride |
PVA | polyvinyl alcohol |
RES | reticuloendothelial system |
RGD | arginine-glycine-aspartic acid |
ROS | reactive oxygen species |
RPMI-7951 | human melanoma cell line |
Sb | antimony |
SGC7901 | human gastric cancer cell line |
SK-BR-3 | human breast cancer cell line |
SLC2A1 | solute carrier family 2 member 1 |
Sn | tin |
SNB-19 | human glioblastoma cell line |
SOD | superoxide dismutase |
Sol | soluplus |
SREBP 1c | sterol regulatory element-binding protein 1 c |
SW480 | human colon cancer cell line |
SW707 | human colon cancer cell line |
T47D | human breast cancer cell line |
T98G | human glioblastoma cell line |
TEM | transmission electron microscopy |
TiO2 | titanium dioxide |
TLR-4 | toll-like receptor 4 |
TNBC | triple-negative breast cancer |
TNF-α | the inflammatory cytokine tumor necrosis factor α |
TP53 | tumor protein p53 |
TPP+ | tetraphenylphosphonium cation |
TXNRD1 | thioredoxin reductase 1 |
U14 | murine cervical cancer cell line |
VEGF | vascular endothelial growth factor |
WNT3A | wingless-type MMTV integration site family member 3A |
Zn | zinc |
ZnO | zinc oxide |
References
- Lv, Y.; Li, W.; Liao, W.; Jiang, H.; Liu, Y.; Cao, J.; Lu, W.; Feng, Y. Nano-Drug Delivery Systems Based on Natural Products. Int. J. Nanomed. 2024, 19, 541–569. [Google Scholar] [CrossRef] [PubMed]
- Grymel, M.; Zawojak, M.; Adamek, J. Triphenylphosphonium Analogues of Betulin and Betulinic Acid with Biological Activity: A Comprehensive Review. J. Nat. Prod. 2019, 82, 1719–1730. [Google Scholar] [CrossRef] [PubMed]
- Demets, O.V.; Takibayeva, A.T.; Kassenov, R.Z.; Aliyeva, M.R. Methods of Betulin Extraction from Birch Bark. Molecules 2022, 27, 3621. [Google Scholar] [CrossRef] [PubMed]
- Adepoju, F.O.; Duru, K.C.; Li, E.; Kovaleva, E.G.; Tsurkan, M.V. Pharmacological Potential of Betulin as a Multitarget Compound. Biomolecules 2023, 13, 1105. [Google Scholar] [CrossRef] [PubMed]
- Król, S.K.; Kiełbus, M.; Rivero-Müller, A.; Stepulak, A. Comprehensive Review on Betulin as a Potent Anticancer Agent. Biomed. Res. Int. 2015, 2015, 584189. [Google Scholar] [CrossRef] [PubMed]
- Hordyjewska, A.; Ostapiuk, A.; Horecka, A.; Kurzepa, J. Betulin and Betulinic Acid: Triterpenoids Derivatives with a Powerful Biological Potential. Phytochem. Rev. 2019, 18, 929–951. [Google Scholar] [CrossRef]
- Xiao, S.; Tian, Z.; Wang, Y.; Si, L.; Zhang, L.; Zhou, D. Recent Progress in the Antiviral Activity and Mechanism Study of Pentacyclic Triterpenoids and Their Derivatives. Med. Res. Rev. 2018, 38, 951–976. [Google Scholar] [CrossRef] [PubMed]
- Oliveira-Costa, J.F.; Meira, C.S.; das Neves, M.V.G.; Dos Reis, B.P.Z.C.; Soares, M.B.P. Anti-Inflammatory Activities of Betulinic Acid: A Review. Front. Pharmacol. 2022, 13, 883857. [Google Scholar] [CrossRef]
- An, T.; Zha, W.; Zi, J. Biotechnological Production of Betulinic Acid and Derivatives and Their Applications. Appl. Microbiol. Biotechnol. 2020, 104, 3339–3348. [Google Scholar] [CrossRef]
- Cháirez-Ramírez, M.H.; Moreno-Jiménez, M.R.; González-Laredo, R.F.; Gallegos-Infante, J.A.; Rocha-Guzmán, N.E. Lupane-Type Triterpenes and Their Anti-Cancer Activities against Most Common Malignant Tumors: A Review. EXCLI J. 2016, 15, 758–771. [Google Scholar] [CrossRef]
- Tuli, H.S.; Sak, K.; Gupta, D.S.; Kaur, G.; Aggarwal, D.; Chaturvedi Parashar, N.; Choudhary, R.; Yerer, M.B.; Kaur, J.; Kumar, M.; et al. Anti-Inflammatory and Anticancer Properties of Birch Bark-Derived Betulin: Recent Developments. Plants 2021, 10, 2663. [Google Scholar] [CrossRef]
- Yogeeswari, P.; Sriram, D. Betulinic Acid and Its Derivatives: A Review on Their Biological Properties. Curr. Med. Chem. 2005, 12, 657–666. [Google Scholar] [CrossRef]
- Fulda, S. Betulinic Acid for Cancer Treatment and Prevention. Int. J. Mol. Sci. 2008, 9, 1096–1107. [Google Scholar] [CrossRef]
- Petronellia, A.; Pannitterib, G.; Testaa, U. Triterpenoids as New Promising Anticancer Drugs. Anticancer Drugs 2009, 20, 880–892. [Google Scholar] [CrossRef]
- Mullauer, F.B.; Kessler, J.H.; Medema, J.P. Betulinic Acid, a Natural Compound with Potent Anticancer Effects. Anticancer Drugs 2010, 21, 215–227. [Google Scholar] [CrossRef]
- Drąg-Zalesińska, M.; Borska, S. Betulin and Its Derivatives-Precursors of New Drugs. World Sci. News 2019, 127, 123–138. [Google Scholar]
- Grymel, M.; Pastuch-Gawołek, G.; Lalik, A.; Zawojak, M.; Boczek, S.; Krawczyk, M.; Erfurt, K. Glycoconjugation of Betulin Derivatives Using Copper-Catalyzed 1,3-Dipolar Azido-Alkyne Cycloaddition Reaction and a Preliminary Assay of Cytotoxicity of the Obtained Compounds. Molecules 2020, 25, 6019. [Google Scholar] [CrossRef]
- Ferreira, R.; Garcia, H.; Sousa, A.F.; Freire, C.S.R.; Silvestre, A.J.D.; Rebelo, L.P.N.; Silva Pereira, C. Isolation of Suberin from Birch Outer Bark and Cork Using Ionic Liquids: A New Source of Macromonomers. Ind. Crops Prod. 2013, 44, 520–527. [Google Scholar] [CrossRef]
- Kuznetsova, S.A.; Skvortsova, G.P.; Maliar, I.N.; Skurydina, E.S.; Veselova, O.F. Extraction of Betulin from Birch Bark and Study of Its Physico-Chemical and Pharmacological Properties. Russ. J. Bioorg. Chem. 2014, 40, 742–747. [Google Scholar] [CrossRef]
- Takibayeva, A.T.; Kassenov, R.Z.; Demets, O.V.; Zhumadilov, S.S.; Bakibayev, A.A. Derive betulin from kyrgyz birch bark(betula kirghisorum) through alkaline hydrolysis and microwave radiation methods. Reports 2021, 4, 87–92. [Google Scholar] [CrossRef]
- Kaverin, M.V.; Morozova, P.A.; Snegur, L.V. Betulin, Betulonic Acid, 3-Aminobetulinic Acid. Improved Extraction and Preparative Syntheses of Derivatives. Russ. Chem. Bull. 2022, 71, 2236–2240. [Google Scholar] [CrossRef]
- Šiman, P.; Filipová, A.; Tichá, A.; Niang, M.; Bezrouk, A.; Havelek, R. Effective Method of Purification of Betulin from Birch Bark: The Importance of Its Purity for Scientific and Medicinal Use. PLoS ONE 2016, 11, e0154933. [Google Scholar] [CrossRef]
- Şoica, C.M.; Dehelean, C.A.; Peev, C.; Aluas, M.; Zupkó, I.; Kása, P.; Alexa, E. Physico-Chemical Comparison of Betulinic Acid, Betulin and Birch Bark Extract and in Vitro Investigation of Their Cytotoxic Effects towards Skin Epidermoid Carcinoma (A431), Breast Carcinoma (MCF7) and Cervix Adenocarcinoma (HeLa) Cell Lines. Nat. Prod. Res. 2012, 26, 968–974. [Google Scholar] [CrossRef]
- Li, Y.; Liu, X.; Jiang, D.; Lin, Y.; Wang, Y.; Li, Q.; Liu, L.; Jin, Y.-H. Betulin Induces Reactive Oxygen Species-Dependent Apoptosis in Human Gastric Cancer SGC7901 Cells. Arch. Pharm. Res. 2016, 39, 1257–1265. [Google Scholar] [CrossRef]
- Amiri, S.; Dastghaib, S.; Ahmadi, M.; Mehrbod, P.; Khadem, F.; Behrouj, H.; Aghanoori, M.R.; Machaj, F.; Ghamsari, M.; Rosik, J.; et al. Betulin and Its Derivatives as Novel Compounds with Different Pharmacological Effects. Biotechnol. Adv. 2020, 38, 107409. [Google Scholar] [CrossRef]
- Ren, C.; Jin, J.; Hu, W.; Chen, Q.; Yang, J.; Wu, Y.; Zhou, Y.; Sun, L.; Gao, W.; Zhang, X.; et al. Betulin Alleviates the Inflammatory Response in Mouse Chondrocytes and Ameliorates Osteoarthritis via AKT/Nrf2/HO-1/NF-ΚB Axis. Front. Pharmacol. 2021, 12, 754038. [Google Scholar] [CrossRef]
- Sousa, J.L.C.; Freire, C.S.R.; Silvestre, A.J.D.; Silva, A.M.S. Recent Developments in the Functionalization of Betulinic Acid and Its Natural Analogues: A Route to New Bioactive Compounds. Molecules 2019, 24, 355. [Google Scholar] [CrossRef]
- Ali-Seyed, M.; Jantan, I.; Vijayaraghavan, K.; Bukhari, S.N.A. Betulinic Acid: Recent Advances in Chemical Modifications, Effective Delivery, and Molecular Mechanisms of a Promising Anticancer Therapy. Chem. Biol. Drug Des. 2016, 87, 517–536. [Google Scholar] [CrossRef]
- Lou, H.; Li, H.; Zhang, S.; Lu, H.; Chen, Q. A Review on Preparation of Betulinic Acid and Its Biological Activities. Molecules 2021, 26, 5583. [Google Scholar] [CrossRef]
- Liu, J.; Fu, M.L.; Chen, Q.H. Biotransformation Optimization of Betulin into Betulinic Acid Production Catalysed by Cultured Armillaria Luteo-Virens Sacc ZJUQH100-6 Cells. J. Appl. Microbiol. 2011, 110, 90–97. [Google Scholar] [CrossRef]
- Chen, Q.; Liu, J.; Zhang, H.; He, G.; Fu, M. The Betulinic Acid Production from Betulin through Biotransformation by Fungi. Enzyme Microb. Technol. 2009, 45, 175–180. [Google Scholar] [CrossRef]
- Feng, Y.; Li, M.; Liu, J.; Xu, T.-Y.; Fang, R.-S.; Chen, Q.-H.; He, G.-Q. A Novel One-Step Microbial Transformation of Betulin to Betulinic Acid Catalysed by Cunninghamella Blakesleeana. Food Chem. 2013, 136, 73–79. [Google Scholar] [CrossRef]
- Lou, H.; Li, H.; Wei, T.; Chen, Q. Stimulatory Effects of Oleci Acid and Fungal Elicitor on Betulinic Acid Production by Submerged Cultivation of Medicinal Mushroom Inonotus Obliquus. J. Fungi 2021, 7, 266. [Google Scholar] [CrossRef]
- Wu, J.; Niu, Y.; Bakur, A.; Li, H.; Chen, Q. Cell-Free Production of Pentacyclic Triterpenoid Compound Betulinic Acid from Betulin by the Engineered Saccharomyces Cerevisiae. Molecules 2017, 22, 1075. [Google Scholar] [CrossRef]
- Ye, Y.; Zhang, T.; Yuan, H.; Li, D.; Lou, H.; Fan, P. Mitochondria-Targeted Lupane Triterpenoid Derivatives and Their Selective Apoptosis-Inducing Anticancer Mechanisms. J. Med. Chem. 2017, 60, 6353–6363. [Google Scholar] [CrossRef]
- Lu, S.; Fan, X.; Wang, H.; Zhao, Y.; Zhao, W.; Li, M.; Lv, R.; Wang, T.; Sun, T. Synthesis of Gelatin-Based Dual-Targeted Nanoparticles of Betulinic Acid for Antitumor Therapy. ACS Appl. Bio Mater. 2020, 3, 3518–3525. [Google Scholar] [CrossRef]
- Mullauer, F.B.; Van Bloois, L.; Daalhuisen, J.B.; Ten Brink, M.S.; Storm, G.; Medema, J.P.; Schiffelers, R.M.; Kessler, J.H. Betulinic Acid Delivered in Liposomes Reduces Growth of Human Lung and Colon Cancers in Mice without Causing Systemic Toxicity. Anticancer Drugs 2011, 22, 223–233. [Google Scholar] [CrossRef]
- Halder, A.; Jethwa, M.; Mukherjee, P.; Ghosh, S.; Das, S.; Helal Uddin, A.B.M.; Mukherjee, A.; Chatterji, U.; Roy, P. Lactoferrin-Tethered Betulinic Acid Nanoparticles Promote Rapid Delivery and Cell Death in Triple Negative Breast and Laryngeal Cancer Cells. Artif. Cells Nanomed. Biotechnol. 2020, 48, 1362–1371. [Google Scholar] [CrossRef]
- Huang, Q.-X.; Chen, H.-F.; Luo, X.-R.; Zhang, Y.-X.; Yao, X.; Zheng, X. Structure and Anti-HIV Activity of Betulinic Acid Analogues. Curr. Med. Sci. 2018, 38, 387–397. [Google Scholar] [CrossRef]
- Song, T.-J.; Park, C.-H.; In, K.-R.; Kim, J.-B.; Kim, J.H.; Kim, M.; Chang, H.J. Antidiabetic Effects of Betulinic Acid Mediated by the Activation of the AMP-Activated Protein Kinase Pathway. PLoS ONE 2021, 16, e0249109. [Google Scholar] [CrossRef]
- Ríos, J.L.; Máñez, S. New Pharmacological Opportunities for Betulinic Acid. Planta Med. 2018, 84, 8–19. [Google Scholar] [CrossRef]
- Chrobak, E.; Bębenek, E.; Kadela-Tomanek, M.; Latocha, M.; Jelsch, C.; Wenger, E.; Boryczka, S. Betulin Phosphonates; Synthesis, Structure, and Cytotoxic Activity. Molecules 2016, 21, 1123. [Google Scholar] [CrossRef]
- Boryczka, S.; Bebenek, E.; Wietrzyk, J.; Kempińska, K.; Jastrzebska, M.; Kusz, J.; Nowak, M. Synthesis, Structure and Cytotoxic Activity of New Acetylenic Derivatives of Betulin. Molecules 2013, 18, 4526–4543. [Google Scholar] [CrossRef]
- Bębenek, E.; Kadela-Tomanek, M.; Chrobak, E.; Wietrzyk, J.; Sadowska, J.; Boryczka, S. New Acetylenic Derivatives of Betulin and Betulone, Synthesis and Cytotoxic Activity. Med. Chem. Res. 2017, 26, 1–8. [Google Scholar] [CrossRef]
- Król, S.K.; Bębenek, E.; Sławińska-Brych, A.; Dmoszyńska-Graniczka, M.; Boryczka, S.; Stepulak, A. Synthetic Betulin Derivatives Inhibit Growth of Glioma Cells In Vitro. Anticancer Res. 2020, 40, 6151–6158. [Google Scholar] [CrossRef]
- Chrobak, E.; Kadela-Tomanek, M.; Bębenek, E.; Marciniec, K.; Wietrzyk, J.; Trynda, J.; Pawełczak, B.; Kusz, J.; Kasperczyk, J.; Chodurek, E.; et al. New Phosphate Derivatives of Betulin as Anticancer Agents: Synthesis, Crystal Structure, and Molecular Docking Study. Bioorg. Chem. 2019, 87, 613–628. [Google Scholar] [CrossRef]
- Chrobak, E.; Jastrzębska, M.; Bębenek, E.; Kadela-Tomanek, M.; Marciniec, K.; Latocha, M.; Wrzalik, R.; Kusz, J.; Boryczka, S. Molecular Structure, In Vitro Anticancer Study and Molecular Docking of New Phosphate Derivatives of Betulin. Molecules 2021, 26, 737. [Google Scholar] [CrossRef]
- Orchel, A.; Chodurek, E.; Jaworska-Kik, M.; Paduszyński, P.; Kaps, A.; Chrobak, E.; Bębenek, E.; Boryczka, S.; Borkowska, P.; Kasperczyk, J. Anticancer Activity of the Acetylenic Derivative of Betulin Phosphate Involves Induction of Necrotic-Like Death in Breast Cancer Cells In Vitro. Molecules 2021, 26, 615. [Google Scholar] [CrossRef]
- Bębenek, E.; Jastrzębska, M.; Kadela-Tomanek, M.; Chrobak, E.; Orzechowska, B.; Zwolińska, K.; Latocha, M.; Mertas, A.; Czuba, Z.; Boryczka, S. Novel Triazole Hybrids of Betulin: Synthesis and Biological Activity Profile. Molecules 2017, 22, 1876. [Google Scholar] [CrossRef]
- Nistor, G.; Mioc, M.; Mioc, A.; Balan-Porcarasu, M.; Racoviceanu, R.; Prodea, A.; Milan, A.; Ghiulai, R.; Semenescu, A.; Dehelean, C.; et al. The C30-Modulation of Betulinic Acid Using 1,2,4-Triazole: A Promising Strategy for Increasing Its Antimelanoma Cytotoxic Potential. Molecules 2022, 27, 7807. [Google Scholar] [CrossRef]
- Sidova, V.; Zoufaly, P.; Pokorny, J.; Dzubak, P.; Hajduch, M.; Popa, I.; Urban, M. Cytotoxic Conjugates of Betulinic Acid and Substituted Triazoles Prepared by Huisgen Cycloaddition from 30-Azidoderivatives. PLoS ONE 2017, 12, e0171621. [Google Scholar] [CrossRef] [PubMed]
- Nistor, G.; Mioc, A.; Mioc, M.; Balan-Porcarasu, M.; Ghiulai, R.; Racoviceanu, R.; Avram, Ș.; Prodea, A.; Semenescu, A.; Milan, A.; et al. Novel Semisynthetic Betulinic Acid−Triazole Hybrids with In Vitro Antiproliferative Potential. Processes 2022, 11, 101. [Google Scholar] [CrossRef]
- Kadela-Tomanek, M.; Bębenek, E.; Chrobak, E.; Marciniec, K.; Latocha, M.; Kuśmierz, D.; Jastrzębska, M.; Boryczka, S. Betulin-1,4-Quinone Hybrids: Synthesis, Anticancer Activity and Molecular Docking Study with NQO1 Enzyme. Eur. J. Med. Chem. 2019, 177, 302–315. [Google Scholar] [CrossRef] [PubMed]
- Tsepaeva, O.V.; Nemtarev, A.V.; Grigor’eva, L.R.; Voloshina, A.D.; Mironov, V.F. Esterification of Betulin with ω-Bromoalkanoic Acids. Russ. J. Org. Chem. 2015, 51, 1318–1323. [Google Scholar] [CrossRef]
- Kuznetsova, S.A.; Shakhtshneider, T.P.; Mikhailenko, M.A.; Malyar, Y.N.; Kichkailo, A.S.; Drebushchak, V.A.; Kuznetsov, B.N. Preparation and Antitumor Activity of Betulin Dipropionate and Its Composites. Biointerface Res. Appl. Chem. 2021, 12, 6873–6894. [Google Scholar] [CrossRef]
- Bębenek, E.; Chrobak, E.; Marciniec, K.; Kadela-Tomanek, M.; Trynda, J.; Wietrzyk, J.; Boryczka, S. Biological Activity and In Silico Study of 3-Modified Derivatives of Betulin and Betulinic Aldehyde. Int. J. Mol. Sci. 2019, 20, 1372. [Google Scholar] [CrossRef] [PubMed]
- Supuran, C.T.; Briganti, F.; Tilli, S.; Chegwidden, W.R.; Scozzafava, A. Carbonic Anhydrase Inhibitors: Sulfonamides as Antitumor Agents? Bioorg. Med. Chem. 2001, 9, 703–714. [Google Scholar] [CrossRef]
- Güttler, A.; Eiselt, Y.; Funtan, A.; Thiel, A.; Petrenko, M.; Keßler, J.; Thondorf, I.; Paschke, R.; Vordermark, D.; Bache, M. Betulin Sulfonamides as Carbonic Anhydrase Inhibitors and Anticancer Agents in Breast Cancer Cells. Int. J. Mol. Sci. 2021, 22, 8808. [Google Scholar] [CrossRef]
- Drąg-Zalesińska, M.; Rembiałkowska, N.; Borska, S.; Saczko, J.; Drąg, M.; Poręba, M.; Kulbacka, J. A New Betulin Derivative Stimulates the Synthesis of Collagen in Human Fibroblasts Stronger than Its Precursor. Vivo 2019, 33, 1087–1093. [Google Scholar] [CrossRef]
- Al Ragib, A.; Chakma, R.; Dewan, K.; Islam, T.; Kormoker, T.; Idris, A.M. Current Advanced Drug Delivery Systems: Challenges and Potentialities. J. Drug Deliv. Sci. Technol. 2022, 76, 103727. [Google Scholar] [CrossRef]
- Adepu, S.; Ramakrishna, S. Controlled Drug Delivery Systems: Current Status and Future Directions. Molecules 2021, 26, 5905. [Google Scholar] [CrossRef] [PubMed]
- Elumalai, K.; Srinivasan, S.; Shanmugam, A. Review of the Efficacy of Nanoparticle-Based Drug Delivery Systems for Cancer Treatment. Biomed. Technol. 2024, 5, 109–122. [Google Scholar] [CrossRef]
- Dahiya, S.; Dahiya, R.; Hernández, E. Nanocarriers for Anticancer Drug Targeting: Recent Trends and Challenges. Crit. Rev. Ther. Drug Carrier Syst. 2021, 38, 49–103. [Google Scholar] [CrossRef] [PubMed]
- Raj, S.; Khurana, S.; Choudhari, R.; Kesari, K.K.; Kamal, M.A.; Garg, N.; Ruokolainen, J.; Das, B.C.; Kumar, D. Specific Targeting Cancer Cells with Nanoparticles and Drug Delivery in Cancer Therapy. Semin. Cancer Biol. 2021, 69, 166–177. [Google Scholar] [CrossRef] [PubMed]
- Yusuf, A.; Almotairy, A.R.Z.; Henidi, H.; Alshehri, O.Y.; Aldughaim, M.S. Nanoparticles as Drug Delivery Systems: A Review of the Implication of Nanoparticles’ Physicochemical Properties on Responses in Biological Systems. Polymers 2023, 15, 1596. [Google Scholar] [CrossRef] [PubMed]
- Bhardwaj, H.; Jangde, R.K. Current Updated Review on Preparation of Polymeric Nanoparticles for Drug Delivery and Biomedical Applications. Next Nanotechnol. 2023, 2, 100013. [Google Scholar] [CrossRef]
- Das, J.; Das, S.; Paul, A.; Samadder, A.; Khuda-Bukhsh, A.R. Strong Anticancer Potential of Nano-Triterpenoid from Phytolacca Decandra against A549 Adenocarcinoma via a Ca2+-Dependent Mitochondrial Apoptotic Pathway. JAMS J. Acupunct. Meridian Stud. 2014, 7, 140–150. [Google Scholar] [CrossRef] [PubMed]
- Das, J.; Samadder, A.; Das, S.; Paul, A.; Khuda-Bukhsh, A.R. Nanopharmaceutical Approach for Enhanced Anti-Cancer Activity of Betulinic Acid in Lung-Cancer Treatment via Activation of PARP: Interaction with DNA as a Target Anti-Cancer Potential of Nano-Betulinic Acid in Lung Cancer. J. Pharmacopunct. 2016, 19, 37–44. [Google Scholar] [CrossRef]
- Dutta, D.; Paul, B.; Mukherjee, B.; Mondal, L.; Sen, S.; Chowdhury, C.; Debnath, M.C. Nanoencapsulated Betulinic Acid Analogue Distinctively Improves Colorectal Carcinoma in Vitro and in Vivo. Sci. Rep. 2019, 9, 11506. [Google Scholar] [CrossRef]
- Peng, F.; Jin, Y.; Wang, K.; Wang, X.; Xiao, Y.; Xu, H. Glycosylated Zein Composite Nanoparticles for Efficient Delivery of Betulinic Acid: Fabrication, Characterization, and In Vitro Release Properties. Foods 2022, 11, 2589. [Google Scholar] [CrossRef]
- Zhang, S.; Peng, B.; Chen, Z.; Yu, J.; Deng, G.; Bao, Y.; Ma, C.; Du, F.; Sheu, W.C.; Kimberly, W.T.; et al. Brain-Targeting, Acid-Responsive Antioxidant Nanoparticles for Stroke Treatment and Drug Delivery. Bioact. Mater. 2022, 16, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, Y.; Gao, L.; Tan, Y.; Cai, J.; Ye, Z.; Chen, A.T.; Xu, Y.; Zhao, L.; Tong, S.; et al. Betulinic Acid Self-Assembled Nanoparticles for Effective Treatment of Glioblastoma. J. Nanobiotechnol. 2022, 20, 39. [Google Scholar] [CrossRef] [PubMed]
- Saneja, A.; Kumar, R.; Mintoo, M.J.; Dubey, R.D.; Sangwan, P.L.; Mondhe, D.M.; Panda, A.K.; Gupta, P.N. Gemcitabine and Betulinic Acid Co-Encapsulated PLGA−PEG Polymer Nanoparticles for Improved Efficacy of Cancer Chemotherapy. Mater. Sci. Eng. C 2019, 98, 764–771. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.C.; Liu, X.Y.; Liu, J.Y.; Piao, J.S.; Piao, M.G. Preparation of Betulinic Acid Galactosylated Chitosan Nanoparticles and Their Effect on Liver Fibrosis. Int. J. Nanomed. 2022, 17, 4195–4210. [Google Scholar] [CrossRef] [PubMed]
- Qi, X.; Gao, C.; Yin, C.; Fan, J.; Wu, X.; Guo, C. Improved Anticancer Activity of Betulinic Acid on Breast Cancer through a Grafted Copolymer-Based Micelles System. Drug Deliv. 2021, 28, 1962–1971. [Google Scholar] [CrossRef]
- Jelonek, K.; Kasperczyk, J.; Li, S.; Nguyen, T.H.N.; Orchel, A.; Chodurek, E.; Paduszyński, P.; Jaworska-Kik, M.; Chrobak, E.; Bębenek, E.; et al. Bioresorbable Filomicelles for Targeted Delivery of Betulin Derivative—In Vitro Study. Int. J. Pharm. 2019, 557, 43–52. [Google Scholar] [CrossRef] [PubMed]
- Jelonek, K.; Kaczmarczyk, B.; Orchel, A.; Chodurek, E.; Jaworska–Kik, M.; Paduszyński, P.; Bębenek, E.; Chrobak, E.; Musiał-Kulik, M.; Foryś, A.; et al. Correlation between the Composition of PLA-Based Folate Targeted Micelles and Release of Phosphonate Derivative of Betulin. J. Drug Deliv. Sci. Technol. 2021, 65, 102717. [Google Scholar] [CrossRef]
- Fru, P.N.; Nweke, E.E.; Mthimkhulu, N.; Mvango, S.; Nel, M.; Pilcher, L.A.; Balogun, M. Anti-Cancer and Immunomodulatory Activity of a Polyethylene Glycol-Betulinic Acid Conjugate on Pancreatic Cancer Cells. Life 2021, 11, 462. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Gao, D.; Zhang, X.; Liu, Z.; Dai, K.; Ji, B.; Wang, Q.; Luo, L. Antitumor Drug Effect of Betulinic Acid Mediated by Polyethylene Glycol Modified Liposomes. Mater. Sci. Eng. C 2016, 64, 124–132. [Google Scholar] [CrossRef]
- Guo, B.; Xu, D.; Liu, X.; Yi, J. Enzymatic Synthesis and in Vitro Evaluation of Folate-Functionalized Liposomes. Drug Des. Devel Ther. 2017, 11, 1839–1847. [Google Scholar] [CrossRef]
- Shu, Q.; Wu, J.; Chen, Q. Synthesis, Characterization of Liposomes Modified with Biosurfactant MEL-A Loading Betulinic Acid and Its Anticancer Effect in HepG2 Cell. Molecules 2019, 24, 3939. [Google Scholar] [CrossRef] [PubMed]
- Şoica, C.; Dehelean, C.; Danciu, C.; Wang, H.M.; Wenz, G.; Ambrus, R.; Bojin, F.; Anghel, M. Betulin Complex in γ-Cyclodextrin Derivatives: Properties and Antineoplasic Activities in in Vitro and in Vivo Tumor Models. Int. J. Mol. Sci. 2012, 13, 14992–15011. [Google Scholar] [CrossRef] [PubMed]
- Torres-Martinez, Z.; Pérez, D.; Torres, G.; Estrada, S.; Correa, C.; Mederos, N.; Velazquez, K.; Castillo, B.; Griebenow, K.; Delgado, Y. A Synergistic PH-Responsive Serum Albumin-Based Drug Delivery System Loaded with Doxorubicin and Pentacyclic Triterpene Betulinic Acid for Potential Treatment of NSCLC. BioTech 2023, 12, 13. [Google Scholar] [CrossRef] [PubMed]
- Saudagar, P.; Dubey, V.K. Carbon Nanotube Based Betulin Formulation Shows Better Efficacy against Leishmania Parasite. Parasitol. Int. 2014, 63, 772–776. [Google Scholar] [CrossRef] [PubMed]
- Mioc, M.; Pavel, I.Z.; Ghiulai, R.; Coricovac, D.E.; Farcas, C.; Mihali, C.V.; Oprean, C.; Serafim, V.; Popovici, R.A.; Dehelean, C.A.; et al. The Cytotoxic Effects of Betulin-Conjugated Gold Nanoparticles as Stable Formulations in Normal and Melanoma Cells. Front. Pharmacol. 2018, 9, 429. [Google Scholar] [CrossRef] [PubMed]
- Dehelean, C.A.; Feflea, S.; Gheorgheosu, D.; Ganta, S.; Cimpean, A.M.; Muntean, D.; Amiji, M.M. Anti-Angiogenic and Anti-Cancer Evaluation of Betulin Nanoemulsion in Chicken Chorioallantoic Membrane and Skin Carcinoma in Balb/c Mice. J. Biomed. Nanotechnol. 2013, 9, 577–589. [Google Scholar] [CrossRef] [PubMed]
- Dehelean, C.A.; Feflea, S.; Ganta, S.; Amiji, M. Anti-Angiogenic Effects of Betulinic Acid Administered in Nanoemulsion Formulation Using Chorioallantoic Membrane Assay. J. Biomed. Nanotechnol. 2011, 7, 317–324. [Google Scholar] [CrossRef] [PubMed]
- John, R.; Dalal, B.; Shankarkumar, A.; Devarajan, P.V. Innovative Betulin Nanosuspension Exhibits Enhanced Anticancer Activity in a Triple Negative Breast Cancer Cell Line and Zebrafish Angiogenesis Model. Int. J. Pharm. 2021, 600, 120511. [Google Scholar] [CrossRef] [PubMed]
- Nicolov, M.; Ghiulai, R.M.; Voicu, M.; Mioc, M.; Duse, A.O.; Roman, R.; Ambrus, R.; Zupko, I.; Moaca, E.A.; Coricovac, D.E.; et al. Cocrystal Formation of Betulinic Acid and Ascorbic Acid: Synthesis, Physico-Chemical Assessment, Antioxidant, and Antiproliferative Activity. Front. Chem. 2019, 7, 92. [Google Scholar] [CrossRef]
- Tan, E.; Danışman-Kalındemirtaş, F.; Karakuş, S. Effective Drug Combinations of Betulinic Acid and Ceranib-2 Loaded Zn:MnO2 Doped-Polymeric Nanocarriers against PC-3 Prostate Cancer Cells. Colloids Surf. B Biointerfaces 2023, 225, 113278. [Google Scholar] [CrossRef]
- Grymel, M.; Lalik, A.; Kazek-Kęsik, A.; Szewczyk, M.; Grabiec, P.; Erfurt, K. Design, Synthesis and Preliminary Evaluation of the Cytotoxicity and Antibacterial Activity of Novel Triphenylphosphonium Derivatives of Betulin. Molecules 2022, 27, 5156. [Google Scholar] [CrossRef]
- Oladimeji, O.; Akinyelu, J.; Daniels, A.; Singh, M. Modified Gold Nanoparticles for Efficient Delivery of Betulinic Acid to Cancer Cell Mitochondria. Int. J. Mol. Sci. 2021, 22, 5072. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Hou, S.; Li, B.; Pan, J.; Jiang, L.; Zhou, G.; Gu, H.; Zhao, C.; Lu, H.; Ma, F. Combination of Betulinic Acid with Diazen-1-Ium-1,2-Diolate Nitric Oxide Moiety Donating a Novel Anticancer Candidate. Onco Targets Ther. 2018, 11, 361–373. [Google Scholar] [CrossRef] [PubMed]
- Tao, R.; Wang, C.; Lu, Y.; Zhang, C.; Zhou, H.; Chen, H.; Li, W. Characterization and Cytotoxicity of Polyprenol Lipid and Vitamin E-TPGS Hybrid Nanoparticles for Betulinic Acid and Low-Substituted Hydroxyl Fullerenol in MHCC97H and L02 Cells. Int. J. Nanomed. 2020, 15, 2733–2749. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, X.; Liu, Z.; Wang, L.; Luo, L.; Wang, M.; Wang, Q.; Gao, D. Gold Nanoshell-Based Betulinic Acid Liposomes for Synergistic Chemo-Photothermal Therapy. Nanomedicine 2017, 13, 1891–1900. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhang, X.; Luo, L.; Li, L.; Zhu, R.Y.; Li, A.; He, Y.; Cao, W.; Niu, K.; Liu, H.; et al. Gold-Nanobranched-Shell Based Drug Vehicles with Ultrahigh Photothermal Efficiency for Chemo-Photothermal Therapy. Nanomedicine 2019, 18, 303–314. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhang, X.; Luo, L.; Li, L.; He, Y.; An, J.; Gao, D. Self-Assembly of Stimuli-Responsive Au-Pd Bimetallic Nanoflowers Based on Betulinic Acid Liposomes for Synergistic Chemo-Photothermal Cancer Therapy. ACS Biomater. Sci. Eng. 2018, 4, 2911–2921. [Google Scholar] [CrossRef] [PubMed]
- Farcas, C.G.; Dehelean, C.; Pinzaru, I.A.; Mioc, M.; Socoliuc, V.; Moaca, E.-A.; Avram, S.; Ghiulai, R.; Coricovac, D.; Pavel, I.; et al. Thermosensitive Betulinic Acid-Loaded Magnetoliposomes: A Promising Antitumor Potential for Highly Aggressive Human Breast Adenocarcinoma Cells Under Hyperthermic Conditions. Int. J. Nanomed. 2020, 15, 8175–8200. [Google Scholar] [CrossRef] [PubMed]
- Niewolik, D.; Krukiewicz, K.; Bednarczyk-Cwynar, B.; Ruszkowski, P.; Jaszcz, K. Novel Polymeric Derivatives of Betulin with Anticancer Activity. RSC Adv. 2019, 9, 20892–20900. [Google Scholar] [CrossRef]
- Niewolik, D.; Bednarczyk-Cwynar, B.; Ruszkowski, P.; Sosnowski, T.R.; Jaszcz, K. Bioactive Betulin and Peg Based Polyanhydrides for Use in Drug Delivery Systems. Int. J. Mol. Sci. 2021, 22, 1090. [Google Scholar] [CrossRef]
- Danciu, C.; Pinzaru, I.; Coricovac, D.; Andrica, F.; Sizemore, I.; Dehelean, C.; Baderca, F.; Lazureanu, V.; Soica, C.; Mioc, M.; et al. Betulin Silver Nanoparticles Qualify as Efficient Antimelanoma Agents in in Vitro and in Vivo Studies. Eur. J. Pharm. Biopharm. 2019, 134, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Batool, A.; Muddassir, M.; Shahid, K. Synthesis of Hydrazide Derivative of Betulinic Acid, Its Organometallic Complexes, Characterization and Bioassay. Chem. Biodivers. 2024, 21, e202301275. [Google Scholar] [CrossRef] [PubMed]
- De Marco, I. Zein Microparticles and Nanoparticles as Drug Delivery Systems. Polymers 2022, 14, 2172. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Bi, Y.; Mo, C.; Zeng, T.; Huang, S.; Gao, L.; Sun, X.; Lv, Z. Betulinic Acid Attenuates Liver Fibrosis by Inducing Autophagy via the Mitogen-Activated Protein Kinase/Extracellular Signal-Regulated Kinase Pathway. J. Nat. Med. 2019, 73, 179–189. [Google Scholar] [CrossRef] [PubMed]
- Högemann-Savellano, D.; Bos, E.; Blondet, C.; Sato, F.; Abe, T.; Josephson, L.; Weissleder, R.; Gaudet, J.; Sgroi, D.; Peters, P.J.; et al. The Transferrin Receptor: A Potential Molecular Imaging Marker for Human Cancer. Neoplasia 2003, 5, 495–506. [Google Scholar] [CrossRef] [PubMed]
- Henry, K.E.; Dilling, T.R.; Abdel-Atti, D.; Edwards, K.J.; Evans, M.J.; Lewis, J.S. Noninvasive Zr-Transferrin PET Shows Improved Tumor Targeting Compared with F-FDG PET in MYC-Overexpressing Human Triple-Negative Breast Cancer. J. Nucl. Med. 2018, 59, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Ghezzi, M.; Pescina, S.; Padula, C.; Santi, P.; Del Favero, E.; Cantù, L.; Nicoli, S. Polymeric Micelles in Drug Delivery: An Insight of the Techniques for Their Characterization and Assessment in Biorelevant Conditions. J. Control. Release 2021, 332, 312–336. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Zhang, X.-Z.; Cheng, S.-X.; Zhuo, R.-X.; Gu, Z.-W. Functionalized Amphiphilic Hyperbranched Polymers for Targeted Drug Delivery. Biomacromolecules 2008, 9, 2578–2585. [Google Scholar] [CrossRef]
- Jurczyk, M.; Jelonek, K.; Musiał-Kulik, M.; Beberok, A.; Wrześniok, D.; Kasperczyk, J. Single- versus Dual-Targeted Nanoparticles with Folic Acid and Biotin for Anticancer Drug Delivery. Pharmaceutics 2021, 13, 326. [Google Scholar] [CrossRef]
- Truong, N.P.; Quinn, J.F.; Whittaker, M.R.; Davis, T.P. Polymeric Filomicelles and Nanoworms: Two Decades of Synthesis and Application. Polym. Chem. 2016, 7, 4295–4312. [Google Scholar] [CrossRef]
- Truong, N.P.; Whittaker, M.R.; Anastasaki, A.; Haddleton, D.M.; Quinn, J.F.; Davis, T.P. Facile Production of Nanoaggregates with Tuneable Morphologies from Thermoresponsive P(DEGMA-Co-HPMA). Polym. Chem. 2016, 7, 430–440. [Google Scholar] [CrossRef]
- Shah, S.; Dhawan, V.; Holm, R.; Nagarsenker, M.S.; Perrie, Y. Liposomes: Advancements and Innovation in the Manufacturing Process. Adv. Drug Deliv. Rev. 2020, 154–155, 102–122. [Google Scholar] [CrossRef] [PubMed]
- Taher, M.; Susanti, D.; Haris, M.S.; Rushdan, A.A.; Widodo, R.T.; Syukri, Y.; Khotib, J. PEGylated Liposomes Enhance the Effect of Cytotoxic Drug: A Review. Heliyon 2023, 9, e13823. [Google Scholar] [CrossRef] [PubMed]
- Wüpper, S.; Lüersen, K.; Rimbach, G. Cyclodextrins, Natural Compounds, and Plant Bioactives—A Nutritional Perspective. Biomolecules 2021, 11, 401. [Google Scholar] [CrossRef] [PubMed]
- Kali, G.; Haddadzadegan, S.; Bernkop-Schnürch, A. Cyclodextrins and Derivatives in Drug Delivery: New Developments, Relevant Clinical Trials, and Advanced Products. Carbohydr. Polym. 2024, 324, 121500. [Google Scholar] [CrossRef] [PubMed]
- Soica, C.; Danciu, C.; Savoiu-Balint, G.; Borcan, F.; Ambrus, R.; Zupko, I.; Bojin, F.; Coricovac, D.; Ciurlea, S.; Avram, S.; et al. Betulinic Acid in Complex with a Gamma-Cyclodextrin Derivative Decreases Proliferation and in Vivo Tumor Development of Non-Metastatic and Metastatic B164A5 Cells. Int. J. Mol. Sci. 2014, 15, 8235–8255. [Google Scholar] [CrossRef] [PubMed]
- Elzoghby, A.O.; Samy, W.M.; Elgindy, N.A. Protein-Based Nanocarriers as Promising Drug and Gene Delivery Systems. J. Control. Release 2012, 161, 38–49. [Google Scholar] [CrossRef] [PubMed]
- Zare, H.; Ahmadi, S.; Ghasemi, A.; Ghanbari, M.; Rabiee, N.; Bagherzadeh, M.; Karimi, M.; Webster, T.J.; Hamblin, M.R.; Mostafavi, E. Carbon Nanotubes: Smart Drug/Gene Delivery Carriers. Int. J. Nanomed. 2021, 16, 1681–1706. [Google Scholar] [CrossRef] [PubMed]
- Tan, J.M.; Karthivashan, G.; Abd Gani, S.; Fakurazi, S.; Hussein, M.Z. Biocompatible Polymers Coated on Carboxylated Nanotubes Functionalized with Betulinic Acid for Effective Drug Delivery. J. Mater. Sci. Mater. Med. 2016, 27, 1–12. [Google Scholar] [CrossRef]
- Jaiswal, M.; Dudhe, R.; Sharma, P.K. Nanoemulsion: An Advanced Mode of Drug Delivery System. 3 Biotech 2015, 5, 123–127. [Google Scholar] [CrossRef]
- Myz, S.A.; Mikhailovskaya, A.V.; Mikhailenko, M.A.; Bulina, N.V.; Kuznetsova, S.A.; Shakhtshneider, T.P. New Crystalline Betulin-Based Materials: Improving Betulin Solubility via Cocrystal Formation. Mater. Today Proc. 2019, 12, 82–85. [Google Scholar] [CrossRef]
- Mikhailovskaya, A.V.; Myz, S.A.; Bulina, N.V.; Gerasimov, K.B.; Kuznetsova, S.A.; Shakhtshneider, T.P. Screening and Characterization of Cocrystal Formation between Betulin and Terephthalic Acid. Mater. Today Proc. 2020, 25, 381–383. [Google Scholar] [CrossRef]
- Kyriazopoulos, A.; Alexiou, A.-L.; Miliotou, A.; Papadopoulou, L.; Hatzidimitriou, A.; Papagiannopoulou, D. Effect of the Triphenylphosphonium Cation on the Biological Properties of New Rhenium and Technetium-99m Fac-[M(CO)3(NSN)]±-Type Complexes: Synthesis, Structural Characterization, in Vitro and in Vivo Studies. Inorganica Chim. Acta 2020, 511, 119807. [Google Scholar] [CrossRef]
- Ross, M.F.; Kelso, G.F.; Blaikie, F.H.; James, A.M.; Cochemé, H.M.; Filipovska, A.; Da Ros, T.; Hurd, T.R.; Smith, R.A.J.; Murphy, M.P. Lipophilic Triphenylphosphonium Cations as Tools in Mitochondrial Bioenergetics and Free Radical Biology. Biochemistry 2005, 70, 222–230. [Google Scholar] [CrossRef] [PubMed]
- da Silva, R.Y.P.; de Menezes, D.L.B.; Oliveira, V.d.S.; Converti, A.; de Lima, Á.A.N. Microparticles in the Development and Improvement of Pharmaceutical Formulations: An Analysis of In Vitro and In Vivo Studies. Int. J. Mol. Sci. 2023, 24, 5441. [Google Scholar] [CrossRef] [PubMed]
- Nistor, M.; Rugina, D.; Diaconeasa, Z.; Socaciu, C.; Socaciu, M.A. Pentacyclic Triterpenoid Phytochemicals with Anticancer Activity: Updated Studies on Mechanisms and Targeted Delivery. Int. J. Mol. Sci. 2023, 24, 12923. [Google Scholar] [CrossRef] [PubMed]
- Stride, E.; Saffari, N. Microbubble Ultrasound Contrast Agents: A Review. Proc. Inst. Mech. Eng. H 2003, 217, 429–447. [Google Scholar] [CrossRef] [PubMed]
- Kooiman, K.; Roovers, S.; Langeveld, S.A.G.; Kleven, R.T.; Dewitte, H.; O’Reilly, M.A.; Escoffre, J.-M.; Bouakaz, A.; Verweij, M.D.; Hynynen, K.; et al. Ultrasound-Responsive Cavitation Nuclei for Therapy and Drug Delivery. Ultrasound Med. Biol. 2020, 46, 1296–1325. [Google Scholar] [CrossRef] [PubMed]
- Kooiman, K.; Vos, H.J.; Versluis, M.; de Jong, N. Acoustic Behavior of Microbubbles and Implications for Drug Delivery. Adv. Drug Deliv. Rev. 2014, 72, 28–48. [Google Scholar] [CrossRef] [PubMed]
- Iftime, M.M.; Marin, L. Chiral Betulin-Imino-Chitosan Hydrogels by Dynamic Covalent Sonochemistry. Ultrason. Sonochem. 2018, 45, 238–247. [Google Scholar] [CrossRef]
- Melnikova, N.; Vorobyova, O.; Balakireva, A.; Malygina, D.; Solovyeva, A.; Belyaeva, K.; Orekhov, D.; Knyazev, A. The New Pharmaceutical Compositions of Zinc Oxide Nanoparticles and Triterpenoids for the Burn Treatment. Pharmaceuticals 2020, 13, 207. [Google Scholar] [CrossRef] [PubMed]
- Melnikova, N.; Knyazev, A.; Nikolskiy, V.; Peretyagin, P.; Belyaeva, K.; Nazarova, N.; Liyaskina, E.; Malygina, D.; Revin, V. Wound Healing Composite Materials of Bacterial Cellulose and Zinc Oxide Nanoparticles with Immobilized Betulin Diphosphate. Nanomaterials 2021, 11, 713. [Google Scholar] [CrossRef] [PubMed]
- Ishfaq, B.; Khan, I.U.; Khalid, S.H.; Asghar, S. Design and Evaluation of Sodium Alginate-Based Hydrogel Dressings Containing Betula Utilis Extract for Cutaneous Wound Healing. Front. Bioeng. Biotechnol. 2023, 11, 1042077. [Google Scholar] [CrossRef] [PubMed]
- Frew, Q.; Rennekampff, H.-O.; Dziewulski, P.; Moiemen, N.; Zahn, T.; Hartmann, B. Betulin Wound Gel Accelerated Healing of Superficial Partial Thickness Burns: Results of a Randomized, Intra-individually Controlled, Phase III Trial with 12-months Follow-up. Burns 2019, 45, 876–890. [Google Scholar] [CrossRef] [PubMed]
- Pârvănescu (Pană), R.D.; Watz, C.-G.; Moacă, E.-A.; Vlaia, L.; Marcovici, I.; Macașoi, I.G.; Borcan, F.; Olariu, I.; Coneac, G.; Drăghici, G.-A.; et al. Oleogel Formulations for the Topical Delivery of Betulin and Lupeol in Skin Injuries—Preparation, Physicochemical Characterization, and Pharmaco-Toxicological Evaluation. Molecules 2021, 26, 4174. [Google Scholar] [CrossRef] [PubMed]
- Dai, L.; Liu, R.; Hu, L.-Q.; Wang, J.-H.; Si, C.-L. Self-Assembled PEG–Carboxymethylcellulose Nanoparticles/α-Cyclodextrin Hydrogels for Injectable and Thermosensitive Drug Delivery. RSC Adv. 2017, 7, 2905–2912. [Google Scholar] [CrossRef]
- Malyar, Y.N.; Mikhailenko, M.A.; Pankrushina, N.A.; Mikheev, A.N.; Eltsov, I.V.; Kuznetsova, S.A.; Kichkailo, A.S.; Shakhtshneider, T.P. Microwave-Assisted Synthesis and Antitumor Activity of the Supramolecular Complexes of Betulin Diacetate with Arabinogalactan. Chem. Pap. 2018, 72, 1257–1263. [Google Scholar] [CrossRef]
- Metelmann, H.-R.; Podmelle, F.; Waite, P.D.; Müller-Debus, C.F.; Hammes, S.; Funk, W. Conditioning in Laser Skin Resurfacing—Betulin Emulsion and Skin Recovery. J. Cranio-Maxillofac. Surg. 2013, 41, 249–253. [Google Scholar] [CrossRef]
- Adepoju, F.O.; Sokolova, K.V.; Gette, I.F.; Danilova, I.G.; Tsurkan, M.V.; Mondragon, A.C.; Kovaleva, E.G.; Miranda, J.M. Protective Effect of Betulin on Streptozotocin–Nicotinamide-Induced Diabetes in Female Rats. Int. J. Mol. Sci. 2024, 25, 2166. [Google Scholar] [CrossRef]
- Zeng, C.; Wang, Y.; Liu, Y.; Su, S.; Lu, Y.; Qin, S.; Shi, M. Self-Constructed Water-in-Oil Pickering Emulsions as a Tool for Increasing Bioaccessibility of Betulin. Food Chem. X 2024, 21, 101056. [Google Scholar] [CrossRef]
- Ma, Z.; Chen, Y.; Zuo, W.; Zhu, M. Synthesis and Fabrication of a Betulin-Containing Polyolefin Electrospun Fibrous Mat for Antibacterial Applications. ACS Biomater. Sci. Eng. 2022, 8, 5110–5118. [Google Scholar] [CrossRef] [PubMed]
- Cui, W.; Zhou, Y.; Chang, J. Electrospun Nanofibrous Materials for Tissue Engineering and Drug Delivery. Sci. Technol. Adv. Mater. 2010, 11, 014108. [Google Scholar] [CrossRef] [PubMed]
- Duan, X.; Chen, H.; Guo, C. Polymeric Nanofibers for Drug Delivery Applications: A Recent Review. J. Mater. Sci. Mater. Med. 2022, 33, 78. [Google Scholar] [CrossRef] [PubMed]
- Abdul Hameed, M.M.; Mohamed Khan, S.A.P.; Thamer, B.M.; Rajkumar, N.; El-Hamshary, H.; El-Newehy, M. Electrospun Nanofibers for Drug Delivery Applications: Methods and Mechanism. Polym. Adv. Technol. 2023, 34, 6–23. [Google Scholar] [CrossRef]
- Mwiiri, F.K.; Brandner, J.M.; Daniels, R. Electrospun Bioactive Wound Dressing Containing Colloidal Dispersions of Birch Bark Dry Extract. Pharmaceutics 2020, 12, 770. [Google Scholar] [CrossRef] [PubMed]
- Mwiiri, F.K.; Daniels, R. Influence of PVA Molecular Weight and Concentration on Electrospinnability of Birch Bark Extract-Loaded Nanofibrous Scaffolds Intended for Enhanced Wound Healing. Molecules 2020, 25, 4799. [Google Scholar] [CrossRef]
- Fan, T.; Daniels, R. Preparation and Characterization of Electrospun Polylactic Acid (PLA) Fiber Loaded with Birch Bark Triterpene Extract for Wound Dressing. AAPS PharmSciTech 2021, 22, 205. [Google Scholar] [CrossRef]
- Liu, X.Y.; Li, D.; Li, T.Y.; Wu, Y.L.; Piao, J.s.; Piao, M.G. Vitamin A—Modified Betulin Polymer Micelles with Hepatic Targeting Capability for Hepatic Fibrosis Protection. Eur. J. Pharm. Sci. 2022, 174, 106189. [Google Scholar] [CrossRef]
- Jin, X.; Zhou, J.; Zhang, Z.; Lv, H. Doxorubicin Combined with Betulinic Acid or Lonidamine in RGD Ligand-Targeted PH-Sensitive Micellar System for Ovarian Cancer Treatment. Int. J. Pharm. 2019, 571, 118751. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jaroszewski, B.; Jelonek, K.; Kasperczyk, J. Drug Delivery Systems of Betulin and Its Derivatives: An Overview. Biomedicines 2024, 12, 1168. https://doi.org/10.3390/biomedicines12061168
Jaroszewski B, Jelonek K, Kasperczyk J. Drug Delivery Systems of Betulin and Its Derivatives: An Overview. Biomedicines. 2024; 12(6):1168. https://doi.org/10.3390/biomedicines12061168
Chicago/Turabian StyleJaroszewski, Bartosz, Katarzyna Jelonek, and Janusz Kasperczyk. 2024. "Drug Delivery Systems of Betulin and Its Derivatives: An Overview" Biomedicines 12, no. 6: 1168. https://doi.org/10.3390/biomedicines12061168
APA StyleJaroszewski, B., Jelonek, K., & Kasperczyk, J. (2024). Drug Delivery Systems of Betulin and Its Derivatives: An Overview. Biomedicines, 12(6), 1168. https://doi.org/10.3390/biomedicines12061168