Endothelin-1 and Its Role in Cancer and Potential Therapeutic Opportunities
<p>Peptide fragments of prepro-ET-1. Taken from Boutin et al. (2023) [<a href="#B11-biomedicines-12-00511" class="html-bibr">11</a>].</p> "> Figure 2
<p>The role of ET-1 in cancer progression. ET-1 can be released from structures such as endothelial cells and smooth muscle cells. ET-1 receptors (ET1Rs) are often upregulated in various cancers. They are expressed on tumour cells, as well as endothelial cells, and can secrete ET-1 to form a self-amplifying loop. ET-1 production can be induced by an array of stimuli such as hypoxia, growth factors, stress, angiotensin II and various cytokines. ET-1 production can drive transcriptional changes to potentiate cancer growth. ET-1 promotes the epithelial–mesenchymal transition (EMT) to induce the metastatic phenotype, as well as promoting angiogenesis through ET-1-induced vascular endothelial growth factor (VEGF) production from the tumour. ET-1 has been shown to promote apoptotic evasion, as well as resistance to cancer drugs such as chemotherapeutics.</p> "> Figure 3
<p>An overview of ET-1 signalling axis. ET-1 will signal through ETAR and ETBR (GPCRs) to activate a multitude of signalling pathways. The scaffold protein β-arrestin1 (β-arr1) facilitates the crosstalk between many signalling pathways downstream of ET-1 receptor activation. RhoA/C is upregulated upon ET-1 signalling, which inhibits the LATS1/2 kinases. Inactive LATS1/2 results in the dephosphorylation of Yes-associated protein (YAP) and TAZ, which permits their nuclear localisation. Association of YAP with TAZ induced by ET-1 is said to be cell-type-specific; found in colorectal carcinoma and high-grade serous ovarian carcinoma (HG-SOC) cells. Macitentan (ET-1 receptor antagonist) has been shown to block this nuclear localisation. Zinc-finger E-box-binding homeobox 1 (ZEB1) also forms an axis with YAP, which localises to the nucleus, where it interacts with the TEA domain (TEAD) transcription factor family and JUN (forms part of the AP-1 transcription factor). ZEB1 nuclear localisation is also assisted by integrin-linked kinase (ILK). ILK associates with βPIX, which is activated by Src, which subsequently activates Rac3. Rac3 phosphorylates and activates PAK1, which feeds into cofilin phosphorylation and actin polymerisation. Membrane-type 1 matrix metalloproteinase (MT1-MMP) is a direct substrate of ILK, and this regulation was blocked upon ambrisentan addition (ET-1 receptor antagonist). RhoC also associates with β-arr1, with PDZ-RhoGEFs induced by the ET-1 axis to activate LIM kinase (LIMK) and Rho-associated coiled-coil-forming kinase (ROCK), resulting in cofilin phosphorylation. Actin regulators are subsequently recruited to polymerised F-actin. Macitentan treatment has been shown to reduce the metastatic phenotype induced by this pathway. ET-1 inhibits enzymatic action of prolyl hydroxylase domain 2 (PHD2), promoting hypoxia-inducible factor-1α (HIF-1α) expression and vascular endothelial growth factor (VEGF) production. Metformin and simvastatin have been shown to upregulate the PHD2 enzyme to promote HIF-1α degradation. ET-1 can further promote the phosphorylation of VEGF receptor 2 (VEGFR2), but macitentan prevents this. YAP contributes to the stabilisation of HIF-1α downstream of ET-1. β-arr1 and β-catenin nuclear localisation was upregulated to target TCF/LEF transcription factors. Mesenchymal markers such as Slug, vimentin, Snail, ZEB1 and N-cadherin were upregulated coinciding with the downregulation of E-cadherin. ET-1 signalling upregulates its own production, which can form a positive autocrine feedback loop, but ET-1 can also signal in a paracrine manner.</p> ">
Abstract
:1. Introduction
2. Biology of Endothelin-1 (ET-1)
3. Role of ET-1 in Cancer Progression
3.1. Tumourigenesis and Metastasis
3.2. Angiogenesis
3.3. ET-1 in Drug Resistance
4. Therapeutic Approaches
4.1. Small Molecule Inhibitors and Drug Repurposing
4.2. Polyphenols as Antitumour Agents
4.3. Gene Therapy
5. Future Directions
5.1. ET-1 in Diagnosis
5.2. Extracellular Vesicles (EVs) to Target ET-1
6. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jemal, A.; Bray, F.; Center, M.M.; Ferlay, J.; Ward, E.; Forman, D. Global cancer statistics. CA Cancer J. Clin. 2011, 61, 69–90. [Google Scholar] [CrossRef]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Zhao, J.; Xu, L.; Sun, J.; Song, M.; Wang, L.; Yuan, S.; Zhu, Y.; Wan, Z.; Larsson, S.; Tsilidis, K.; et al. Global trends in incidence, death, burden and risk factors of early-onset cancer from 1990 to 2019. BMJ Oncol. 2023, 2, e000049. [Google Scholar] [CrossRef]
- Mansoori, B.; Mohammadi, A.; Davudian, S.; Shirjang, S.; Baradaran, B. The Different Mechanisms of Cancer Drug Resistance: A Brief Review. Adv. Pharm. Bull. 2017, 7, 339–348. [Google Scholar] [CrossRef]
- Vasan, N.; Baselga, J.; Hyman, D.M. A view on drug resistance in cancer. Nature 2019, 575, 299–309. [Google Scholar] [CrossRef]
- Yanagisawa, M.; Kurihara, H.; Kimura, S.; Tomobe, Y.; Kobayashi, M.; Mitsui, Y.; Yazaki, Y.; Goto, K.; Masaki, T. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 1988, 332, 411–415. [Google Scholar] [CrossRef] [PubMed]
- Rosano, L.; Spinella, F.; Bagnato, A. Endothelin 1 in cancer: Biological implications and therapeutic opportunities. Nat. Rev. Cancer 2013, 13, 637–651. [Google Scholar] [CrossRef]
- Banecki, K.; Dora, K.A. Endothelin-1 in Health and Disease. Int. J. Mol. Sci. 2023, 24, 11295. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.Y.; Chen, L.L.; Xu, W.; Sigdel, K.; Jiang, X.T. Effects of silencing endothelin-1 on invasion and vascular formation in lung cancer. Oncol. Lett. 2017, 13, 4390–4396. [Google Scholar] [CrossRef] [PubMed]
- Kido, T.; Sawamura, T.; Masaki, T. The Processing Pathway of Endothelin-1 Production. J. Cardiovasc. Pharmacol. 1998, 31, S13–S15. [Google Scholar] [CrossRef] [PubMed]
- Boutin, G.; Yuzugulen, J.; Pranjol, M.Z.I. Endothelin-based markers for endothelial dysfunction in chemotherapy-induced cardiotoxicity. J. Mol. Cell. Cardiol. Plus 2023, 6, 100053. [Google Scholar] [CrossRef]
- Liakou, P.; Tepetes, K.; Germenis, A.; Leventaki, V.; Atsaves, V.; Patsouris, E.; Roidis, N.; Hatzitheophilou, K.; Rassidakis, G.Z. Expression patterns of endothelin-1 and its receptors in colorectal cancer. J. Surg. Oncol. 2012, 105, 643–649. [Google Scholar] [CrossRef]
- Motte, S.; McEntee, K.; Naeije, R. Endothelin receptor antagonists. Pharmacol. Ther. 2006, 110, 386–414. [Google Scholar] [CrossRef] [PubMed]
- Bagnato, A.; Salani, D.; Di Castro, V.; Wu-Wong, J.R.; Tecce, R.; Nicotra, M.R.; Venuti, A.; Natali, P.G. Expression of Endothelin 1 and Endothelin A Receptor in Ovarian Carcinoma: Evidence for an Autocrine Role in Tumor Growth1. Cancer Res. 1999, 59, 720–727. [Google Scholar] [PubMed]
- Ma, L.; Pei, G. Beta-arrestin signaling and regulation of transcription. J. Cell Sci. 2007, 120, 213–218. [Google Scholar] [CrossRef]
- Sobolesky, P.M.; Moussa, O. The role of beta-arrestins in cancer. Prog. Mol. Biol. Transl. Sci. 2013, 118, 395–411. [Google Scholar] [CrossRef]
- Tocci, P.; Blandino, G.; Bagnato, A. YAP and endothelin-1 signaling: An emerging alliance in cancer. J. Exp. Clin. Cancer Res. 2021, 40, 27. [Google Scholar] [CrossRef]
- Tocci, P.; Rosano, L.; Bagnato, A. Targeting Endothelin-1 Receptor/beta-Arrestin-1 Axis in Ovarian Cancer: From Basic Research to a Therapeutic Approach. Front. Endocrinol. 2019, 10, 609. [Google Scholar] [CrossRef] [PubMed]
- Rosano, L.; Cianfrocca, R.; Tocci, P.; Spinella, F.; Di Castro, V.; Caprara, V.; Semprucci, E.; Ferrandina, G.; Natali, P.G.; Bagnato, A. Endothelin A receptor/beta-arrestin signaling to the Wnt pathway renders ovarian cancer cells resistant to chemotherapy. Cancer Res. 2014, 74, 7453–7464. [Google Scholar] [CrossRef]
- Tocci, P.; Roman, C.; Sestito, R.; Di Castro, V.; Sacconi, A.; Molineris, I.; Paolini, F.; Carosi, M.; Tonon, G.; Blandino, G.; et al. Targeting tumor-stroma communication by blocking endothelin-1 receptors sensitizes high-grade serous ovarian cancer to PARP inhibition. Cell Death Dis. 2023, 14, 5. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, P.; Zhou, X.; Wang, T.; Feng, X.; Sun, Y.-P.; Xiong, Y.; Yuan, H.-X.; Guan, K.-L. Endothelin Promotes Colorectal Tumorigenesis by Activating YAP/TAZ. Cancer Res. 2017, 77, 2413–2423. [Google Scholar] [CrossRef] [PubMed]
- Abylkassov, R.; Xie, Y. Role of Yes-associated protein in cancer: An update. Oncol. Lett. 2016, 12, 2277–2282. [Google Scholar] [CrossRef] [PubMed]
- Krupska, I.; Bruford, E.A.; Chaqour, B. Eyeing the Cyr61/CTGF/NOV (CCN) group of genes in development and diseases: Highlights of their structural likenesses and functional dissimilarities. Hum. Genom. 2015, 9, 24. [Google Scholar] [CrossRef] [PubMed]
- Masi, I.; Caprara, V.; Spadaro, F.; Chellini, L.; Sestito, R.; Zancla, A.; Rainer, A.; Bagnato, A.; Rosano, L. Endothelin-1 drives invadopodia and interaction with mesothelial cells through ILK. Cell Rep. 2021, 34, 108800. [Google Scholar] [CrossRef] [PubMed]
- Semprucci, E.; Tocci, P.; Cianfrocca, R.; Sestito, R.; Caprara, V.; Veglione, M.; Castro, V.D.; Spadaro, F.; Ferrandina, G.; Bagnato, A.; et al. Endothelin A receptor drives invadopodia function and cell motility through the beta-arrestin/PDZ-RhoGEF pathway in ovarian carcinoma. Oncogene 2016, 35, 3432–3442. [Google Scholar] [CrossRef] [PubMed]
- Sestito, R.; Tocci, P.; Roman, C.; Di Castro, V.; Bagnato, A. Functional interaction between endothelin-1 and ZEB1/YAP signaling regulates cellular plasticity and metastasis in high-grade serous ovarian cancer. J. Exp. Clin. Cancer Res. 2022, 41, 157. [Google Scholar] [CrossRef] [PubMed]
- Guise, T.A.; Yin, J.J.; Mohammad, K.S. Role of endothelin-1 in osteoblastic bone metastases. Cancer 2003, 97, 779–784. [Google Scholar] [CrossRef] [PubMed]
- Said, N.; Smith, S.; Sanchez-Carbayo, M.; Theodorescu, D. Tumor endothelin-1 enhances metastatic colonization of the lung in mouse xenograft models of bladder cancer. J. Clin. Investig. 2011, 121, 132–147. [Google Scholar] [CrossRef]
- Wu, M.H.; Lo, J.F.; Kuo, C.H.; Lin, J.A.; Lin, Y.M.; Chen, L.M.; Tsai, F.J.; Tsai, C.H.; Huang, C.Y.; Tang, C.H. Endothelin-1 promotes MMP-13 production and migration in human chondrosarcoma cells through FAK/PI3K/Akt/mTOR pathways. J. Cell. Physiol. 2012, 227, 3016–3026. [Google Scholar] [CrossRef]
- Nie, S.; Zhou, J.; Bai, F.; Jiang, B.; Chen, J.; Zhou, J. Role of endothelin A receptor in colon cancer metastasis: In vitro and in vivo evidence. Mol. Carcinog. 2014, 53 (Suppl. S1), E85–E91. [Google Scholar] [CrossRef]
- Shi, L.; Zhou, S.S.; Chen, W.B.; Xu, L. Functions of endothelin-1 in apoptosis and migration in hepatocellular carcinoma. Exp. Ther. Med. 2017, 13, 3116–3122. [Google Scholar] [CrossRef]
- Sestito, R.; Cianfrocca, R.; Tocci, P.; Rosano, L.; Sacconi, A.; Blandino, G.; Bagnato, A. Targeting endothelin 1 receptor-miR-200b/c-ZEB1 circuitry blunts metastatic progression in ovarian cancer. Commun. Biol. 2020, 3, 677. [Google Scholar] [CrossRef] [PubMed]
- Berabez, R.; Routier, S.; Benedetti, H.; Ple, K.; Vallee, B. LIM Kinases, Promising but Reluctant Therapeutic Targets: Chemistry and Preclinical Validation In Vivo. Cells 2022, 11, 2090. [Google Scholar] [CrossRef] [PubMed]
- Nishida, N.; Yano, H.; Nishida, T.; Kamura, T.; Kojiro, M. Angiogenesis in Cancer. Vasc. Health Risk Manag. 2006, 2, 213–219. [Google Scholar] [CrossRef]
- Grant, K.; Loizidou, M.; Taylor, I. Endothelin-1: A multifunctional molecule in cancer. Br. J. Cancer 2003, 88, 163–166. [Google Scholar] [CrossRef] [PubMed]
- Jin, X.; Dai, L.; Ma, Y.; Wang, J.; Liu, Z. Implications of HIF-1alpha in the tumorigenesis and progression of pancreatic cancer. Cancer Cell Int. 2020, 20, 273. [Google Scholar] [CrossRef] [PubMed]
- Salani, D.; Di Castro, V.; Nicotra, M.R.; Rosano, L.; Tecce, R.; Venuti, A.; Natali, P.G.; Bagnato, A. Role of endothelin-1 in neovascularization of ovarian carcinoma. Am. J. Pathol. 2000, 157, 1537–1547. [Google Scholar] [CrossRef]
- Liu, J.; Wang, H.; Zhang, M.; Li, Y.; Wang, R.; Chen, H.; Wang, B.; Gao, X.; Song, S.; Wang, Y.; et al. Metformin and simvastatin synergistically suppress endothelin 1-induced hypoxia and angiogenesis in multiple cancer types. Cancer Sci. 2023, 114, 640–653. [Google Scholar] [CrossRef]
- Bagnato, A.; Tecce, R.; Moretti, C.; Di Castro, V.; Spergel, D.; Catt, K.J. Autocrine actions of endothelin-1 as a growth factor in human ovarian carcinoma cells. Clin. Cancer Res. 1995, 1, 1059–1066. [Google Scholar]
- Rodas, F.; Vidal-Vidal, J.A.; Herrera, D.; Brown-Brown, D.A.; Vera, D.; Veliz, J.; Puschel, P.; Erices, J.I.; Sanchez Hinojosa, V.; Tapia, J.C.; et al. Targeting the Endothelin-1 pathway to reduce invasion and chemoresistance in gallbladder cancer cells. Cancer Cell Int. 2023, 23, 318. [Google Scholar] [CrossRef]
- Ahn, H.M.; Kim, D.G.; Kim, Y.J. Blockade of endothelin receptor A enhances the therapeutic efficacy of gemcitabine in pancreatic cancer cells. Biochem. Biophys. Res. Commun. 2020, 527, 568–573. [Google Scholar] [CrossRef] [PubMed]
- Englinger, B.; Lötsch, D.; Pirker, C.; Mohr, T.; van Schoonhoven, S.; Boidol, B.; Lardeau, C.-H.; Spitzwieser, M.; Szabó, P.; Heffeter, P.; et al. Acquired nintedanib resistance in FGFR1-driven small cell lung cancer: Role of endothelin-A receptor-activated ABCB1 expression. Oncotarget 2016, 7, 50161–50179. [Google Scholar] [CrossRef] [PubMed]
- Pushpakom, S.; Iorio, F.; Eyers, P.A.; Escott, K.J.; Hopper, S.; Wells, A.; Doig, A.; Guilliams, T.; Latimer, J.; McNamee, C.; et al. Drug repurposing: Progress, challenges and recommendations. Nat. Rev. Drug Discov. 2019, 18, 41–58. [Google Scholar] [CrossRef] [PubMed]
- Jamal, S.; Nagrial, A.; Joshua, A.; Eek, R.; Jamal, S. 803 Phase 1/2 study using ENB-003, a first-in-class selective ETBRi, in combination with pembrolizumab in subjects with advanced refractory solid tumors. J. Immunother. Cancer 2020, 8, 0803. [Google Scholar] [CrossRef]
- Rajeshkumar, N.V.; Matwyshyn, G.; Gulati, A. IRL-1620, a tumor selective vasodilator, augments the uptake and efficacy of chemotherapeutic agents in prostate tumor rats. Prostate 2007, 67, 701–713. [Google Scholar] [CrossRef] [PubMed]
- Rajeshkumar, N.V.; Rai, A.; Gulati, A. Endothelin B receptor agonist, IRL 1620, enhances the anti-tumor efficacy of paclitaxel in breast tumor rats. Breast Cancer Res. Treat. 2005, 94, 237–247. [Google Scholar] [CrossRef] [PubMed]
- Kim, R.; Chiorean, E.G.; Amin, M.; Rocha-Lima, C.M.S.; Gandhi, J.; Harris, W.P.; Song, T.; Portnoy, D. Phase 2 study of combination SPI-1620 with docetaxel as second-line advanced biliary tract cancer treatment. Br. J. Cancer 2017, 117, 189–194. [Google Scholar] [CrossRef]
- Feng, C.; Chen, B.; Fan, R.; Zou, B.; Han, B.; Guo, G. Polyphenol-Based Nanosystems for Next-Generation Cancer Therapy: Multifunctionality, Design, and Challenges. Macromol. Biosci. 2023, 23, e2300167. [Google Scholar] [CrossRef]
- Barinda, A.J.; Arozal, W.; Sandhiutami, N.M.D.; Louisa, M.; Arfian, N.; Sandora, N.; Yusuf, M. Curcumin Prevents Epithelial-to Mesenchymal Transition-Mediated Ovarian Cancer Progression through NRF2/ETBR/ET-1 Axis and Preserves Mitochondria Biogenesis in Kidney after Cisplatin Administration. Adv. Pharm. Bull. 2022, 12, 128–141. [Google Scholar] [CrossRef]
- Spinella, F.; Rosanò, L.; Decandia, S.; Di Castro, V.; Albini, A.; Elia, G.; Natali, P.G.; Bagnato, A. Antitumor Effect of Green Tea Polyphenol Epigallocatechin-3-Gallate in Ovarian Carcinoma Cells: Evidence for the Endothelin-1 as a Potential Target. Exp. Biol. Med. 2006, 231, 1123–1127. [Google Scholar]
- Aliabadi, P.; Sadri, M.; Siri, G.; Ebrahimzadeh, F.; Yazdani, Y.; Gusarov, A.M.; Kharkouei, S.A.; Asadi, F.; Adili, A.; Mardi, A.; et al. Restoration of miR-648 overcomes 5-FU-resistance through targeting ET-1 in gastric cancer cells in-vitro. Pathol. Res. Pract. 2022, 239, 154139. [Google Scholar] [CrossRef]
- Xu, P.; Wu, Q.; Yu, J.; Rao, Y.; Kou, Z.; Fang, G.; Shi, X.; Liu, W.; Han, H. A Systematic Way to Infer the Regulation Relations of miRNAs on Target Genes and Critical miRNAs in Cancers. Front. Genet. 2020, 11, 278. [Google Scholar] [CrossRef]
- Li, D.; Yang, P.; Li, H.; Cheng, P.; Zhang, L.; Wei, D.; Su, X.; Peng, J.; Gao, H.; Tan, Y.; et al. MicroRNA-1 inhibits proliferation of hepatocarcinoma cells by targeting endothelin-1. Life Sci. 2012, 91, 440–447. [Google Scholar] [CrossRef]
- Zmarzly, N.; Januszyk, S.; Mieszczanski, P.; Morawiec, E.; Buda, P.; Dziobek, K.; Oplawski, M.; Boron, D. Endothelin-3 is epigenetically silenced in endometrioid endometrial cancer. J. Cancer Res. Clin. Oncol. 2023, 149, 5687–5696. [Google Scholar] [CrossRef]
- Lu, J.; Zhao, F.P.; Peng, Z.; Zhang, M.W.; Lin, S.X.; Liang, B.J.; Zhang, B.; Liu, X.; Wang, L.; Li, G.; et al. EZH2 promotes angiogenesis through inhibition of miR-1/Endothelin-1 axis in nasopharyngeal carcinoma. Oncotarget 2014, 5, 11319–11332. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Liu, H.; Li, C. MiRNA-19b-3p downregulates the endothelin B receptor in gastric cancer cells to prevent angiogenesis and proliferation. Acta Biochim. Pol. 2023, 70, 363–370. [Google Scholar] [CrossRef] [PubMed]
- Sestito, R.; Cianfrocca, R.; Rosano, L.; Tocci, P.; Semprucci, E.; Di Castro, V.; Caprara, V.; Ferrandina, G.; Sacconi, A.; Blandino, G.; et al. miR-30a inhibits endothelin A receptor and chemoresistance in ovarian carcinoma. Oncotarget 2016, 7, 4009–4023. [Google Scholar] [CrossRef] [PubMed]
- Kalles, V.; Zografos, G.C.; Provatopoulou, X.; Kalogera, E.; Liakou, P.; Georgiou, G.; Sagkriotis, A.; Nonni, A.; Gounaris, A. Circulating levels of endothelin-1 (ET-1) and its precursor (Big ET-1) in breast cancer early diagnosis. Tumor Biol. 2012, 33, 1231–1236. [Google Scholar] [CrossRef] [PubMed]
- Yuzugulen, J.; Douthwaite, J.A.; Wood, E.G.; Villar, I.C.; Patel, N.S.A.; Jegard, J.; Gaertner, H.; Rossitto-Borlat, I.; Rose, K.; Hartley, O.; et al. Characterisation of preproendothelin-1 derived peptides identifies Endothelin-Like Domain Peptide as a modulator of Endothelin-1. Sci. Rep. 2017, 7, 4956. [Google Scholar] [CrossRef] [PubMed]
- Irfan, S.; Zaidi, N.; Tiwari, K.; Lal, N.; Srivastava, A.N.; Singh, S. Evaluation of salivary endothelin-1 as a biomarker for oral cancer and precancer. J. Cancer Res. Ther. 2023. [Google Scholar] [CrossRef]
- Golinelli, G.; Mastrolia, I.; Aramini, B.; Masciale, V.; Pinelli, M.; Pacchioni, L.; Casari, G.; Dall’Ora, M.; Soares, M.B.P.; Damasceno, P.K.F.; et al. Arming Mesenchymal Stromal/Stem Cells Against Cancer: Has the Time Come? Front. Pharmacol. 2020, 11, 529921. [Google Scholar] [CrossRef] [PubMed]
- Chulpanova, D.S.; Kitaeva, K.V.; Tazetdinova, L.G.; James, V.; Rizvanov, A.A.; Solovyeva, V.V. Application of Mesenchymal Stem Cells for Therapeutic Agent Delivery in Anti-tumor Treatment. Front. Pharmacol. 2018, 9, 259. [Google Scholar] [CrossRef] [PubMed]
- Vieira, J.M.F.; Zamproni, L.N.; Wendt, C.H.C.; Rocha de Miranda, K.; Lindoso, R.S.; Won Han, S. Overexpression of mir-135b and mir-210 in mesenchymal stromal cells for the enrichment of extracellular vesicles with angiogenic factors. PLoS ONE 2022, 17, e0272962. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, C.; Li, Y.; Li, M.; Zhu, T.; Shen, Z.; Wang, H.; Lv, W.; Wang, X.; Cheng, X.; et al. Potential of peptide-engineered exosomes with overexpressed miR-92b-3p in anti-angiogenic therapy of ovarian cancer. Clin. Transl. Med. 2021, 11, e425. [Google Scholar] [CrossRef]
- Pan, Z.; Chen, Q.; Ding, H.; Li, H. MicroRNA-342-3p loaded by human umbilical cord mesenchymal stem cells-derived exosomes attenuates deep vein thrombosis by downregulating EDNRA. J. Thromb. Thrombolysis 2022, 54, 411–419. [Google Scholar] [CrossRef]
- Ayob, A.Z.; Ramasamy, T.S. Cancer stem cells as key drivers of tumour progression. J. Biomed. Sci. 2018, 25, 20. [Google Scholar] [CrossRef]
Cancer Type | Drug | Target | Phase | Status | Completion Date | Reported Findings | Clinical Trial Number |
---|---|---|---|---|---|---|---|
Prostate | Zibotentan | ETAR | 3 | Completed | August 2011 | No OS improvement No safety concerns | NCT00554229 |
Zibotentan with Docetaxel | ETAR | 3 | Completed | July 2011 | No OS improvement | NCT00617669 | |
Atrasentan | ETAR/ETBR | 3 | Completed | August 2006 | No delay in disease progression Well tolerated | NCT00036543 | |
3 | Completed | June 2007 | NR | NCT00046943 | |||
3 | Completed | August 2007 | NR | NCT00036556 | |||
S0421, Docetaxel and Prednisone with or without Atrasentan | ETAR/ETBR | 3 | Completed | February 2016 | No OS improvement Toxicity issues | NCT00134056 | |
Kidney | Astrasentan | ETAR/ETBR | 2 | Completed | April 2006 | Well tolerated PF projections not met | NCT00039429 |
Biliary | SPI-1620 with Docetaxel | ETBR * | 2 | Terminated | September 2015 | Toxicity issues | NCT01773785 |
Glioblastoma | Atrasentan | ETAR/ETBR | 1 | Completed | August 2008 | Determined MTD as 70 mg/day | NCT00017264 |
Macitentan with Temozolomide (TMZ) | ETAR/ETBR | 1 | Completed | April 2016 | Well tolerated | NCT01499251 | |
Pancreatic | Bosentan with Gemcitabine and Nab-paclitaxel | ETAR/ETBR | 1 | Ongoing | N/A | N/A | NCT04158635 |
Melanoma | BQ-788 | ETBR | Early phase 1 | Terminated | May 2012 | Well tolerated Indicated to directly affect melanoma cell viability | NCT02442466 |
Bosentan with Dacarbazine | ETAR/ETBR | 2 | Completed | February 2008 | No effect on time to tumour progression No safety issues | NCT01009177 | |
Solid tumours: ovarian, pancreatic, melanoma | ENB003 with Pembrolizumab | ETBR | 1b/2a | Ongoing | N/A | N/A | NCT04205227 |
Ovarian, fallopian and peritoneal serous adenocarcinoma | Atrasentan with DOXIL | ETAR/ETBR | 2 | Terminated | March 2009 | NR | NCT00653328 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Harrison, M.; Zinovkin, D.; Pranjol, M.Z.I. Endothelin-1 and Its Role in Cancer and Potential Therapeutic Opportunities. Biomedicines 2024, 12, 511. https://doi.org/10.3390/biomedicines12030511
Harrison M, Zinovkin D, Pranjol MZI. Endothelin-1 and Its Role in Cancer and Potential Therapeutic Opportunities. Biomedicines. 2024; 12(3):511. https://doi.org/10.3390/biomedicines12030511
Chicago/Turabian StyleHarrison, Madeline, Dmitry Zinovkin, and Md Zahidul Islam Pranjol. 2024. "Endothelin-1 and Its Role in Cancer and Potential Therapeutic Opportunities" Biomedicines 12, no. 3: 511. https://doi.org/10.3390/biomedicines12030511
APA StyleHarrison, M., Zinovkin, D., & Pranjol, M. Z. I. (2024). Endothelin-1 and Its Role in Cancer and Potential Therapeutic Opportunities. Biomedicines, 12(3), 511. https://doi.org/10.3390/biomedicines12030511