Multifractal Analysis and Experimental Evaluation of MCM-48 Mesoporous Silica as a Drug Delivery System for Metformin Hydrochloride
<p>Elemental composition (EDX spectra) of MCM-48 sample unloaded (<b>a</b>); MCM-48 sample P-1 (<b>b</b>); and MCM-48 sample P-2 (<b>c</b>).</p> "> Figure 2
<p>SEM images: MCM-48 sample unloaded (<b>a</b>); MCM-48 sample P-1 (<b>b</b>); and MCM-48 sample P-2 (<b>c</b>).</p> "> Figure 3
<p>TEM images of MCM-48 sample unloaded; MCM-48 sample P-1 and MCM-48 sample P-2: (<b>a</b>) 1 µm, (<b>b</b>) 200 nm, and (<b>c</b>) 50 nm.</p> "> Figure 3 Cont.
<p>TEM images of MCM-48 sample unloaded; MCM-48 sample P-1 and MCM-48 sample P-2: (<b>a</b>) 1 µm, (<b>b</b>) 200 nm, and (<b>c</b>) 50 nm.</p> "> Figure 4
<p>Nitrogen adsorption isotherm of MCM-48 sample unloaded (<b>a</b>); MCM-48 sample P-1 (<b>b</b>); and MCM-48 sample P-2 (<b>c</b>).</p> "> Figure 5
<p>In vitro dissolution release of metformin from mesoporous silica.</p> "> Figure 6
<p>Release rate dependences: (<b>a</b>) 3D plot in non-dimensional coordinates; (<b>b</b>) 2D plot in non-dimensional coordinates; (<b>c</b>) <math display="inline"><semantics> <mrow> <mi>ϕ</mi> <mo>≡</mo> <mi>ρ</mi> <mfenced separators="|"> <mrow> <mi>x</mi> <mo>,</mo> <mn>2</mn> </mrow> </mfenced> </mrow> </semantics></math>; (<b>d</b>) <math display="inline"><semantics> <mrow> <mi>ϕ</mi> <mo>≡</mo> <mi>ρ</mi> <mfenced separators="|"> <mrow> <mn>2</mn> <mo>,</mo> <mi>y</mi> </mrow> </mfenced> </mrow> </semantics></math>.</p> "> Figure 6 Cont.
<p>Release rate dependences: (<b>a</b>) 3D plot in non-dimensional coordinates; (<b>b</b>) 2D plot in non-dimensional coordinates; (<b>c</b>) <math display="inline"><semantics> <mrow> <mi>ϕ</mi> <mo>≡</mo> <mi>ρ</mi> <mfenced separators="|"> <mrow> <mi>x</mi> <mo>,</mo> <mn>2</mn> </mrow> </mfenced> </mrow> </semantics></math>; (<b>d</b>) <math display="inline"><semantics> <mrow> <mi>ϕ</mi> <mo>≡</mo> <mi>ρ</mi> <mfenced separators="|"> <mrow> <mn>2</mn> <mo>,</mo> <mi>y</mi> </mrow> </mfenced> </mrow> </semantics></math>.</p> "> Figure 7
<p>Drug release kinetics for various fractality degrees expressed as different resolution scales: 1, 1.5, and 2 (in coordinates <math display="inline"><semantics> <mrow> <mi>ϕ</mi> <mo>≡</mo> <mi>θ</mi> <mo>,</mo> <mo> </mo> <mi>y</mi> <mo>≡</mo> <mi>τ</mi> </mrow> </semantics></math>). The dot circle indicates where the resolution scale changes.</p> ">
Abstract
:1. Introduction
2. Material and Methods
2.1. Materials
2.2. Methods
2.2.1. MCM-48 Mesoporous Silica Synthesis
2.2.2. Metformin Immobilization
2.2.3. Quantitative Determination of Metformin
2.2.4. Scanning Electron Microscopy (SEM) Coupled with Energy Dispersive X-Ray Spectroscopy (EDX-SEM)
2.2.5. Transmission Electron Microscopy (TEM) Analysis
2.2.6. Nitrogen Sorption Isotherms
2.2.7. In Vitro Dissolution Tests
2.2.8. Analysis of In Vitro Drug Release Kinetics
3. Results
Theoretical Design
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Appendix A
- The dynamics pertaining to the structural units of the polymer–drug system may reveal a dominant fractal dimension, which may help in pinpointing a global release pattern which is consistent with a particular global polymer–drug system structure and functionality.
- The dynamics pertaining to the structural units of the polymer–drug system could include a “collection” of fractal dimensions, which may help in pinpointing local release patterns that are compatible with particular, zone-specific polymer–drug structures and functions.
- By means of the -order singularity spectrum, one can pinpoint universality classes in the domain of drug release dynamics, even when the attractors related to said dynamics have distinct aspects.
- Multifractal drug release dynamics by means of Markov stochasticity, dictated through the subsequent boundaries [11,12]:
- Multifractal drug release dynamics through non-Markov stochasticity dictated by the subsequent boundaries [3,4,5,6]:
Appendix B
References
- Vasile, A.; Ignat, M.; Zaltariov, M.F.; Sacarescu, L.; Stoleriu, I.; Draganescu, D.; Dumitras, M.; Ochiuz, L. Development of New Bexarotene-Loaded Mesoporous Silica Systems for Topical Pharmaceutical Formulations. Acta Chim. Slov. 2018, 65, 97–107. [Google Scholar] [CrossRef]
- Badawi, N.M.; Amer, R.I.; Atiia, D.A.; Fayez, A.M.; Dawoud, M.H.S. Chewing gum containing repaglinide solid dispersion using mesoporous silica nanoparticles for management of diabetes mellitus: In-vitro evaluation and clinical appraisal. J. Drug Deliv. Sci. Technol. 2024, 94, 105479. [Google Scholar] [CrossRef]
- Marinheiro, D.; Martel, F.; Ferreira, B.J.M.L.; Daniel-da-Silva, A.L. Silica-Based Nanomaterials for Diabetes Mellitus Treatment. Bioengineering 2023, 10, 40. [Google Scholar] [CrossRef] [PubMed]
- Fang, L.; Zhou, H.; Cheng, L.; Wang, Y.; Liu, F.; Wang, S. The application of mesoporous silica nanoparticles as a drug delivery vehicle in oral disease treatment. Front. Cell Infect. Microbiol. 2023, 13, 1124411. [Google Scholar] [CrossRef]
- Maleki, A.; Bochani, S.; Kermanian, M.; Makvandi, P.; Hosseini, M.-J.; Hamidi, M.; Kalantari-Hesari, A.; Kheiri, H.R.; Eskandari, M.R.; Rosta, M. Chitosan conjugated-ordered mesoporous silica: A biocompatible dissolution enhancer for promoting the antidiabetic effect of a poorly water-soluble drug of repaglinide. J. Nanostruct. Chem. 2024, 14, 261–280. [Google Scholar] [CrossRef]
- Abeer, M.M.; Rewatkar, P.; Qu, Z.; Talekar, M.; Kleitz, F.; Schmid, R.; Lindén, M.; Kumeria, T.; Popat, A. Silica nanoparticles: A promising platform for enhanced oral delivery of macromolecules. J. Control. Release 2020, 326, 544–555. [Google Scholar] [CrossRef]
- Pamshong, S.R.; Bhatane, D.; Sarnaik, S.; Alexander, A. Mesoporous silica nanoparticles: An emerging approach in overcoming the challenges with oral delivery of proteins and peptides. Colloids Surf. B Biointerfaces 2023, 232, 113613. [Google Scholar] [CrossRef] [PubMed]
- Sha’at, M.; Ghiciuc, C.M.; Bujor, A.; Timofte, D.V.; Ștefanache, A.; Ochiuz, L. Literature review of oral treatment of type 2 diabetes mellitus. Med. Surg. J. Rev. Med. Chir. Soc. Med. Nat. 2020, 124, 482–495. [Google Scholar]
- Sha’at, M.; Spac, A.F.; Stoleriu, I.; Bujor, A.; Cretan, M.S.; Hartan, M.; Ochiuz, L. Implementation of QbD Approach to the Analytical Method Development and Validation for the Estimation of Metformin Hydrochloride in Tablet Dosage Forms by HPLC. Pharmaceutics 2022, 14, 1187. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, S.; Kabir, M.E.; Kalita, J.; Manna, P. Mesoporous Silica Nanoparticles: Drug Delivery Vehicles for Antidiabetic Molecules. Chem. Biol. Chem. 2023, 24, e202200672. [Google Scholar] [CrossRef] [PubMed]
- Schumacher, K.; Ravikovitch, P.I.; Du Chesne, A.; Neimark, A.V.; Unger, K.K. Characterization of MCM-48 materials. Langmuir 2000, 16, 4648–4654. [Google Scholar] [CrossRef]
- Beck, J.S.; Vartuli, J.C.; Roth, W.J.; Leonowicz, M.E.; Kresge, C.T.; Schmitt, K.D.; Chu, C.T.W.; Olson, D.H.; Sheppard, E.W.; McCullen, S.B.; et al. A New Family of Mesoporous Molecular Sieves Prepared with Liquid Crystal Templates. J. Am. Chem. Soc. 1992, 114, 10834–10843. [Google Scholar] [CrossRef]
- Martins, E.G.; Bessa, B.G.; da Silva, S.C.; Gomes, E.L.; Condotta, R. A concise and systematic study of the hydrothermal synthesis of Si-MCM-48: Structural aspects and mechanical stability. Microporous Mesoporous Mater. 2021, 314, 110864. [Google Scholar] [CrossRef]
- Pagar, O.B.; Nagare, H.S.; Chine, Y.M.; Autade, R.R.; Narode, P.R.; Sanklecha, V.M. Mesoporous silica: A review. Int. J. Pharm. Drug Anal. 2018, 6, 1–12. [Google Scholar]
- Sivamaruthi, B.S.; Thangaleela, S.; Kesika, P.; Suganthy, N.; Chaiyasut, C. Mesoporous Silica-Based Nanoplatforms Are Theranostic Agents for the Treatment of Inflammatory Disorders. Pharmaceutics 2023, 15, 439. [Google Scholar] [CrossRef]
- Borcănescu, S.; Popa, A.; Verdeș, O.; Suba, M. Functionalized Ordered Mesoporous MCM-48 Silica: Synthesis, Characterization and Adsorbent for CO2 Capture. Int. J. Mol. Sci. 2023, 24, 10345. [Google Scholar] [CrossRef] [PubMed]
- Merches, I.; Agop, M. Differentiability and Fractality in Dynamics of Physical Systems; World Scientific: Hackensack, NJ, USA, 2016. [Google Scholar]
- Agop, M.; Paun, V.-P. On the New Perspectives of Fractal Theory. Fundaments and Applications; Romanian Academy Publishing House: Bucharest, Romania, 2017. [Google Scholar]
- Mandelbrot, B.B. The Fractal Geometry of Nature; W. H. Freeman and Co.: San Fracisco, CA, USA, 1982. [Google Scholar]
- Zhou, Z.; Zhu, S.; Zhang, D. Grafting of thermo-responsive polymer inside mesoporous silica with large pore size using ATRP and investigation of its use in drug release. J. Mater. Chem. 2007, 17, 2428–2433. [Google Scholar] [CrossRef]
- Yi, Z.; Dumée, L.F.; Garvey, C.J.; Feng, C.; She, F.; Rookes, J.E.; Mudie, S.; Cahill, D.M.; Kong, L. A new insight into growth mechanism and kinetics of mesoporous silica nanoparticles by in situ small angle X-ray scattering. Langmuir 2015, 31, 8478–8487. [Google Scholar] [CrossRef]
- Doadrio, A.; Salinas, A.; Sánchez-Montero, J.; Vallet-Regí, M. Drug release from ordered mesoporous silicas. Curr. Pharm. Des. 2015, 21, 6213–6819. [Google Scholar] [CrossRef] [PubMed]
- Hernández, B.; Pflüger, F.; Kruglik, S.G.; Cohen, R.; Ghomi, M. Protonation–deprotonation and structural dynamics of antidiabetic drug metformin. J. Pharm. Biomed. Anal. 2015, 114, 42–48. [Google Scholar] [CrossRef]
- Abd-El Hafeez, S.I.; Eleraky, N.E.; Hafez, E.; Abouelmagd, S.A. Design and optimization of metformin hydrophobic ion pairs for efficient encapsulation in polymeric drug carriers. Sci. Rep. 2022, 12, 5737. [Google Scholar] [CrossRef] [PubMed]
- Kruk, M.; Jaroniec, M.; Sakamoto, Y.; Terasaki, O.; Ryoo, R.; Ko, C.H. Determination of Pore Size and Pore Wall Structure of MCM-41 by Using Nitrogen Adsorption, Transmission Electron Microscopy, and X-ray Diffraction. J. Phys. Chem. B 2000, 104, 292–301. [Google Scholar] [CrossRef]
- Anovitz, L.M.; Cole, D.R. Characterization and Analysis of Porosity and Pore Structures. Rev. Miner. Geochem. 2015, 80, 61–164. [Google Scholar] [CrossRef]
- Terasaki, O.; Ohsuna, T.; Liu, Z.; Sakamoto, Y.; Garcia-Bennett, A.E. Structural study of mesoporous materials by electron microscopy. In Studies in Surface Science and Catalysis; Terasaki, O., Ed.; Elsevier: Amsterdam, The Netherlands, 2004; Volume 148, pp. 261–288. [Google Scholar]
- Jackson, E.A. Perspectives of Nonlinear Dynamics; Cambridge University Press: New York, NY, USA, 1993; Volumes 1—2. [Google Scholar]
- Nottale, L. Scale Relativity and Fractal Space-Time: A New Approach to Unifying Relativity and Quantum Mechanics; Imperial College Press: London, UK, 2011. [Google Scholar]
- Cristescu, C.P. Nonlinear Dynamics and Chaos. Theoretical Fundaments and Applications; Romanian Academy Publishing House: Bucharest, Romania, 2008. [Google Scholar]
- Mitchell, M. Complexity: A Guided Tour; Oxford University Press: Oxford, UK, 2009. [Google Scholar]
- Badii, R. Complexity: Hierarchical Structures and Scaling in Physics; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- Bar-Yam, Y. Dynamics of Complex Systems; The Advanced Book Program; Addison-Wesley: Reading, MA, USA, 1997. [Google Scholar]
Sample Code | Concentration Sol. (mg/mL) | pH | Metformin Load Grade (mg/g) | Metformin Loading Yields (wt%) |
---|---|---|---|---|
P-1 | 1 | 12 | 59.788 | 99.65 |
P-2 | 3 | 12 | 160.978 | 89.43 |
Sample Code | Specific Surface Area SBET (m2/g) | Correlation Coefficient with BET Model (r2) | External Surface Area (m2/g) | Total Pore Volume (cc/g) |
---|---|---|---|---|
P-1 | 54.005 | 0.9998 | 51.084 | 0.224 |
P-2 | 137.19 | 0.9997 | 115.661 | 0.166 |
MCM-48 | 1325.96 | 0.9981 | 1325.96 | 0.881 |
Kinetic Model | Model Coefficients | Mesoporous Silica | |
---|---|---|---|
P-1 | P-2 | ||
Zero-order | K0 | 2.7983 | 3.0966 |
R2 | 0.3102 | 0.4409 | |
First-order | K1 | 0.1156 | 0.0852 |
R2 | 0.5231 | 0.5958 | |
Higuchi | KH | 15.271 | 15.9950 |
R2 | 0.5355 | 0.6810 | |
Korsmeyer–Peppas | n | 0.0760 | 0.1433 |
KP | 78.1808 | 59.7585 | |
R2 | 0.8028 | 0.8547 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sha’at, M.; Ignat, M.; Sacarescu, L.; Spac, A.F.; Barsan, A.; Ghizdovat, V.; Nazaretian, E.; Dumitras, C.; Agop, M.; Rusu, C.M.; et al. Multifractal Analysis and Experimental Evaluation of MCM-48 Mesoporous Silica as a Drug Delivery System for Metformin Hydrochloride. Biomedicines 2024, 12, 2838. https://doi.org/10.3390/biomedicines12122838
Sha’at M, Ignat M, Sacarescu L, Spac AF, Barsan A, Ghizdovat V, Nazaretian E, Dumitras C, Agop M, Rusu CM, et al. Multifractal Analysis and Experimental Evaluation of MCM-48 Mesoporous Silica as a Drug Delivery System for Metformin Hydrochloride. Biomedicines. 2024; 12(12):2838. https://doi.org/10.3390/biomedicines12122838
Chicago/Turabian StyleSha’at, Mousa, Maria Ignat, Liviu Sacarescu, Adrian Florin Spac, Alexandra Barsan (Bujor), Vlad Ghizdovat, Emanuel Nazaretian, Catalin Dumitras, Maricel Agop, Cristina Marcela Rusu, and et al. 2024. "Multifractal Analysis and Experimental Evaluation of MCM-48 Mesoporous Silica as a Drug Delivery System for Metformin Hydrochloride" Biomedicines 12, no. 12: 2838. https://doi.org/10.3390/biomedicines12122838
APA StyleSha’at, M., Ignat, M., Sacarescu, L., Spac, A. F., Barsan, A., Ghizdovat, V., Nazaretian, E., Dumitras, C., Agop, M., Rusu, C. M., & Ochiuz, L. (2024). Multifractal Analysis and Experimental Evaluation of MCM-48 Mesoporous Silica as a Drug Delivery System for Metformin Hydrochloride. Biomedicines, 12(12), 2838. https://doi.org/10.3390/biomedicines12122838