Progressive Cachexia: Tuberculosis, Cancer, or Thyrotoxicosis? Disease-Directed Therapy and Atypical Courses of Autoimmune and Malignant Thyroid Diseases in a High Specialization Era: Case-Control Study with a Critical Literature Review
<p>Initial patient selection. After initial selection, a small amount of patients was qualified, but contrary to most retrospective analyses of patients with thyroid cancer, in our clinical model, AITD preceded oncogenesis and may be with different types of AITD (i.e., de Quervain thyroiditis, Graves’ disease, Hashimoto/atrophic thyroiditis).</p> "> Figure 2
<p>Flowchart of clinical data collection and time-lapse analysis. Patients with autoimmune thyroid disease (AITD) were the starting point. The case-control study includes patient histories with well-characterized and differentiated autoimmune thyroid disease (AITD) complicated with infectious and neoplastic processes. TC was the sixth cancer in women; it was not observed in men. However, this could be apparent because the initial group consisted of patients with autoimmunity, which is more common in women with no difference between multiparous and childless. Comparing our AITDs where hyperthyroidism, hypothyroidism, or both occurred at different times, no clear effect of hypothyroidism and elevated TSH can be seen. AITD—autoimmune thyroid disease, PFS—progression-free survival, OS—overall survival, TSH—thyroid-stimulating hormone, FT3—free triiodothyronine, FT4—free thyroxine, CT—computer tomography.</p> "> Figure 3
<p>Modification of unique balance between pro- and anticancerous factors (i.e., hormonal and inflammatory signal, respectively) by microbiota (mycobacteria) and steroids. BRAF-BRAFV600E mutation; PTC—papillary thyroid cancer oncogene (RET/PTC), gks—glucocorticoids, MHC—Major Histocompatibility Complex, CTLA4—Cytotoxic T Lymphocyte Antigen-4; TG—thyreoglobulin, TSHR—thyreotropin receptor, TNF—cachectin, PFS—progression-free survival, OS—overall survival. The red symbol indicates the inhibitory effect; the green symbol indicates the stimulating effect.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Methods
2.2.1. Time-Lapse Data Collection
2.2.2. Laboratory Analysis
3. Results
4. Discussion
4.1. Epidemiological, Statistical Versus Clinical Model
4.1.1. Bias in Cohort Studies
4.1.2. Bias in High Specialization Oncology
4.1.3. Thyroid Cancer Diagnosis, Reporting, Estimation in Public Health
4.1.4. Translational Medicine
4.1.5. Misdiagnosis and False Survival
4.2. Clinical Model and Evidence-Based Medicine
4.3. Pathway and Time-Lapse Observation
4.3.1. Cachexia: Hormonal Signal and Metabolic Homeostasis
4.3.2. Various Autoimmunity
4.3.3. Genetic Background and Immunity
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zdziarski, P.; Paściak, M.; Gamian, A. Microbiome Analysis and Pharmacovigilance After Inhaled Glucocorticoid: Oral Dysbiosis With the Isolation of Three Rothia Species and Subsequent Sjögren’s Syndrome. Front. Pharmacol. 2022, 13, 636180. [Google Scholar] [CrossRef] [PubMed]
- Zdziarski, P.; Wzorek, A. Respiratory microbiota as a good predictor of outcome in humoral immunodeficiency. Methodological and conceptual difficulties in comprehensive microbiome analysis. Pol. Merkur. Lekarski. 2022, 50, 287–293. [Google Scholar] [PubMed]
- Zdziarski, P. Veillonella atypica in tumor as a tripartite interaction: Commensal-tumor-patient. Pol. Merkur. Lekarski. 2020, 48, 452–456. [Google Scholar] [PubMed]
- Cappelli, C.; Braga, M.; Martino, E.D.; Castellano, M.; Gandossi, E.; Agosti, B.; Cumetti, D.; Pirola, I.; Mattanza, C.; Cherubini, L.; et al. Outcome of Patients Surgically Treated for Various Forms of Hyperthyroidism with Differentiated Thyroid Cancer: Experience at an Endocrine Center in Italy Surg Today. Surg. Today 2006, 36, 125–130. [Google Scholar] [CrossRef]
- Gopinath, C.; Crow, H.; Panthi, S.; Bantis, L.; Burman, K.D.; Choudhary, C. Characteristics, staging and outcomes of differentiated thyroid cancer in patients with and without Graves’ disease. J. Clin. Transl. Endocrinol. 2023, 33, 100321. [Google Scholar] [CrossRef] [PubMed]
- Elisei, R.; Viola, D.; Torregrossa, L.; Giannini, R.; Romei, C.; Ugolini, C.; Molinaro, E.; Agate, L.; Biagini, A.; Lupi, C.; et al. The BRAFV600E mutation is an independent, poor prognostic factor for the outcome of patients with low-risk intrathyroid papillary thyroid carcinoma: Single-institution results from a large cohort study. J. Clin. Endocrinol. Metab. 2012, 97, 4390–4398. [Google Scholar] [CrossRef]
- Obołończyk, Ł.; Siekierska-Hellmann, M.; Wiśniewski, P.; Lewczuk, A.; Berendt-Obołończyk, M.; Lakomy, A.; Michalska, Z.; Radowska, D.; Moszkowska, G.; Bianek-Bodzak, A.; et al. Epidemiology, risk factors and prognosis of Interferon alpha induced thyroid disorders. A Prospective Clinical Study. Postepy Hig. I Med. Doswiadczalnej 2017, 71, 842–849. [Google Scholar] [CrossRef] [PubMed]
- Nikiforova, M.N.; Kimura, E.T.; Gandhi, M.; Biddinger, P.W.; Knauf, J.A.; Basolo, F.; Zhu, Z.; Giannini, R.; Salvatore, G.; Fusco, A.; et al. BRAF mutations in thyroid tumors are restricted to papillary carcinomas and anaplastic or poorly differentiated carcinomas arising from papillary carcinomas. J. Clin. Endocrinol. Metab. 2003, 88, 5399–5404. [Google Scholar] [CrossRef]
- Zdziarski, P. [Importance of the Tumor Boards’ decisions for the patientcentered care—Case studies in the COVID-19 era]. Pol. Merkur. Lekarski. 2022, 50, 78–85. [Google Scholar]
- Prabhakaran, S.; Woo, W.L.W.; Xing, G.; Moffat, D.; Hussey, M.; Henderson, D.W.; Klebe, S. The Incidence of Labelling of Non–Lung Adenocarcinomas With Antibodies Against TTF-1 and Diagnostic Implications. Appl. Immunohistochem. Mol. Morphol. 2020, 28, 471–476. [Google Scholar] [CrossRef]
- Vidarsdottir, H.; Tran, L.; Nodin, B.; Jirström, K.; Planck, M.; Mattsson, J.S.M.; Botling, J.; Micke, P.; Jönsson, P.; Brunnström, H. Comparison of Three Different TTF-1 Clones in Resected Primary Lung Cancer and Epithelial Pulmonary Metastases. Am. J. Clin. Pathol. 2018, 150, 533–544. [Google Scholar] [CrossRef] [PubMed]
- Zdziarski, P.; Gamian, A.; Dworacki, G. A case report of lymphoid intestitial pneumonia in common variable immunodeficiency: Oligoclonal expansion of effector lymphocytes with preferential cytomegalovirus-specific immune response and lymphoproliferative disease promotion. Medicine 2017, 96, e7031. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Balinisteanu, I.; Panzaru, M.-C.; Caba, L.; Ungureanu, M.-C.; Florea, A.; Grigore, A.M.; Gorduza, E.V. Cancer Predisposition Syndromes and Thyroid Cancer: Keys for a Short Two-Way Street. Biomedicines 2023, 11, 2143. [Google Scholar] [CrossRef] [PubMed]
- Peng, Q.; Kong, K.; Tu, Q.; Wang, Y.; Wang, X. The role of thyroid hormones in the differential diagnosis of tuberculous and parapneumonic pleural effusions. Am. J. Med. Sci. 2022, 363, 495–501. [Google Scholar] [CrossRef] [PubMed]
- Pellegriti, G.; Mannarino, C.; Russo, M.; Terranova, R.; Marturano, I.; Vigneri, R.; Belfiore, A. Increased Mortality in Patients with Differentiated Thyroid Cancer Associated with Graves’ Disease. J. Clin. Endocrinol. Metab. 2013, 98, 1014–1021. [Google Scholar] [CrossRef] [PubMed]
- Pellegriti, G.; Belfiore, A.; Giuffrida, D.; Lupo, L.; Vigneri, R. Outcomeof differentiated thyroid cancer in Graves’ patients. J. Clin. Endocrinol. Metab. 1998, 83, 2805–2809. [Google Scholar]
- Fröhlich, E.; Wahl, R. Thyroid Autoimmunity: Role of Anti-thyroid Antibodies in Thyroid and Extra-Thyroidal Diseases. Front. Immunol. 2017, 8, 521. [Google Scholar] [CrossRef]
- Gabalec, F.; Srbova, L.; Nova, M.; Hovorkova, E.; Hornychova, H.; Jakubikova, I.; Ryska, A.; Cap, J. Impact of Hashimoto’s thyroiditis, TSH levels, and anti-thyroid antibody positivity on differentiated thyroid carcinoma incidence. Endokrynol. Pol. 2016, 67, 48–53. [Google Scholar] [CrossRef]
- Anand, A.; Singh, K.R.; Kushwaha, J.K.; Hussain, N.; Sonkar, A.A. Papillary Thyroid Cancer and Hashimoto’s Thyroiditis: An Association Less Understood. Indian J. Surg. Oncol. 2014, 5, 199–204. [Google Scholar] [CrossRef]
- Gudmundsson, J.; Sulem, P.; Gudbjartsson, D.F.; Jonasson, J.G.; Masson, G.; He, H.; Jonasdottir, A.; Sigurdsson, A.; Stacey, S.N.; Johannsdottir, H.; et al. Discovery of common variants associated with low TSH levels and thyroid cancer risk. Nat. Genet. 2012, 44, 319–322. [Google Scholar] [CrossRef]
- Travis, W.D.; Brambilla, E.; Noguchi, M.; Nicholson, A.G.; Geisinger, K.R.; Yatabe, Y.; Beer, D.G.; Powell, C.A.; Riely, G.J.; Van Schil, P.E.; et al. International association for the study of lung cancer/american thoracic society/european respiratory society international multidisciplinary classification of lung adenocarcinoma. J. Thorac. Oncol. 2011, 6, 244–285. [Google Scholar] [CrossRef]
- Nam, J.K.; Jung, C.K.; Song, B.J.; Lim, D.J.; Chae, B.J.; Lee, N.S.; Park, W.C.; Kim, J.S.; Jung, S.S.; Bae, J.S. Is the BRAF(V600E) mutation useful as a predictor of preoperative risk in papillary thyroid cancer? Am. J. Surg. 2012, 203, 436–441. [Google Scholar] [CrossRef] [PubMed]
- Kargi, A.; Gurel, D.; Tuna, B. The diagnostic value of TTF-1, CK 5/6, and p63 immunostaining in classification of lung carcinomas. Appl. Immunohistochem. Mol. Morphol. 2007, 15, 415–420. [Google Scholar] [CrossRef] [PubMed]
- Borowczyk, M.; Sypniewski, M.; Szyda, J.; Braszka, M.; Ziemnicka, K.; Ruchała, M.; Oszywa, M.; Król, Z.J.; Dobosz, P. Genetic predisposition to differentiated thyroid cancer in the Polish population. Pol. Arch. Intern. Med. 2024, 134, 16654. [Google Scholar] [CrossRef]
- Rossi, G.; Salmanton-García, J.; Cattaneo, C.; Marchesi, F.; Dávila-Valls, J.; Martín-Pérez, S.; Itri, F.; López-García, A.; Glenthøj, A.; da Silva, M.G.; et al. Age, successive waves, immunization, and mortality in elderly COVID-19 hematological patients: EPICOVIDEHA findings. Int. J. Infect. Dis. 2023, 137, 98–110. [Google Scholar] [CrossRef] [PubMed]
- Zdziarski, P.; Simon, K.; Majda, J. Overuse of high stability antibiotics and its consequences in public and environmental health. Acta Microbiol. Pol. 2003, 52, 5–13. [Google Scholar] [PubMed]
- Crnčić, T.B.; Tomaš, M.I.; Girotto, N.; Ivanković, S.G. Risk Factors for Thyroid Cancer: What Do We Know So Far? Acta Clin. Croat. 2020, 59 (Suppl. 1), 66–72. [Google Scholar] [CrossRef]
- Kholová, I.; Kalfert, D.; Lintusaari, J.; Rajakorpi, E.; Ludvíková, M. Follicular Epithelial Dysplasia as Hashimoto Thyroiditis-Related Atypia: A Series of 91 Specimens. Endocr. Pathol. 2021, 32, 368–374. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zdziarski, P.; Ricciardi, L.; Paganelli, R. Editorial: Case reports in respiratory pharmacology 2022. Front. Pharmacol. 2023, 14, 1242273. [Google Scholar] [CrossRef]
- Casella, C.; Morandi, R.; Verrengia, A.; Galani, A.; Molfino, S.; Cuka, D.; Groppo, G.; Cappelli, C.; Portolani, N. Thyroid Cancer and Nodules in Graves’ Disease: A Single Center Experience. Endocr. Metab. Immune Disord. Drug Targets 2021, 21, 2028–2034. [Google Scholar] [CrossRef] [PubMed]
- Kaczka, K.; Mikosiński, S.; Fendler, W.; Celnik, A.; Pomorski, L. Calcitonin and procalcitonin in patients with medullary thyroid cancer or bacterial infection. Adv. Clin. Exp. Med. 2012, 21, 169–178. [Google Scholar] [PubMed]
- Ali, A. A Lump in the Throat: Thyroid Cancer. Medscape Drugs & Diseases. Updated 13 September 2024.. Available online: https://reference.medscape.com/slideshow/thyroid-cancer-6006981?ecd=wnl_critimg_241004_mscpref_etid6878122&uac=103670FR&impID=6878122#1 (accessed on 8 October 2024).
- Srisuwarn, P.; Disthabanchong, S. Role of Parathyroid Hormone and Parathyroid Hormone-Related Protein in Protein-Energy Malnutrition. Front. Biosci. 2023, 28, 167. [Google Scholar] [CrossRef] [PubMed]
- Pellegriti, G.; Frasca, F.; Regalbuto, C.; Squatrito, S.; Vigneri, R. Worldwide Increasing Incidence of Thyroid Cancer: Update on Epidemiology and Risk Factors. J. Cancer Epidemiol. 2013, 2013, 965212. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Vargas-Uricoechea, H.; Bonelo-Perdomo, A.; Sierra-Torres, C.H.; Meza-Cabrera, I. Autoimmune Thyroid Disease (Flajani-Parry-Graves-von Basedow Disease): Etiopathogenesis, Clinical Manifestations and Diagnosis. In Thyroid Disorders; Imam, S., Ahmad, S., Eds.; Springer: Cham, Switzerland, 2016. [Google Scholar] [CrossRef]
- Ploski, R.; Szymanski, K.; Bednarczuk, T. The genetic basis of graves’ disease. Curr. Genom. 2011, 12, 542–563. [Google Scholar] [CrossRef] [PubMed]
- Ben-Skowronek, I. IPEX Syndrome: Genetics and Treatment Options. Genes 2021, 12, 323. [Google Scholar] [CrossRef] [PubMed]
- Rezzónico, J.N.; Rezzónico, M.; Pusiol, E.; Pitoia, F.; Niepomniszcze, H.; Niepomniszcze, H. Increased prevalence of insulin resistance in patients with differentiated thyroid carcinoma. Metab. Syndr. Relat. Disord. 2009, 7, 375–380. [Google Scholar] [CrossRef]
- Wang, J.; Li, X.; Shen, B.; Wang, S.; He, J.; Wang, Y. The therapeutic effect of glucocorticoids on type II respiratory failure, heart failure, and massive pericardial effusion caused by hypothyroidism: A case report. Front. Pharmacol. 2022, 13, 900701. [Google Scholar] [CrossRef]
- Wawrzynska, L.; Sakowicz, A.; Rudzinski, P.; Langfort, R.; Kurzyna, M. The conversion of thyroxine to triiodothyronine in the lung: Comparison of activity of type I iodothyronine 5’ deiodinase in lung cancer with peripheral lung tissues. Monaldi Arch. Chest Dis. 2003, 59, 140–145. [Google Scholar] [PubMed]
- Li, L.; Wazir, J.; Huang, Z.; Wang, Y.; Wang, H. A comprehensive review of animal models for cancer cachexia: Implications for translational research. Genes Dis. 2023, 11, 101080. [Google Scholar] [CrossRef]
- Jara, L.J.; Vera-Lastra, O.; Medina, G. Atrophic Thyroiditis. In Diagnostic Criteria in Autoimmune Diseases; Shoenfeld, Y., Cervera, R., Gershwin, M.E., Eds.; Humana Press: Totowa, NJ, USA, 2008. [Google Scholar] [CrossRef]
- Filetti, S.; Belfiore, A.; Amir, S.M.; Daniels, G.H.; Ippolito, O.; Vigneri, R.; Ingbar, S.H. The role of thyroid-stimulating antibodies of Graves’ disease in differentiated thyroid cancer. N. Engl. J. Med. 1988, 318, 753–759. [Google Scholar] [CrossRef]
- Cheng, S.-P.; Hsu, Y.-C.; Liu, C.-L.; Liu, T.-P.; Chien, M.-N.; Wang, T.-Y.; Lee, J.-J. Significance of allelic percentage of BRAF c.1799T > A (V600E) mutation in papillary thyroid carcinoma. Ann. Surg. Oncol. 2014, 21 (Suppl. 4), 619–626. [Google Scholar] [CrossRef]
- Huang, J.; Wang, J.; Xv, J.; Wang, J.; Wang, G.; Zhao, Y. Genetic alterations and allele frequency of BRAF V600E and TERT mutation in papillary thyroid carcinoma with intermediate-to-high recurrence risk: A retrospective study. Clin. Exp. Med. 2024, 24, 76. [Google Scholar] [CrossRef] [PubMed]
- Gale, R.P. Paraneoplastic Syndromes. Merck Manual Professional Version, Sep 2024. Available online: https://www.merckmanuals.com/professional/hematology-and-oncology/overview-of-cancer/paraneoplastic-syndromes?query=paraneoplastic%20syndromes%20cancer (accessed on 1 September 2024).
- Gale, R.P. Metastatic Carcinoma of Unknown Primary Origin. Merck Manual Professional Version, Sep 2024. Available online: https://www.merckmanuals.com/professional/hematology-and-oncology/overview-of-cancer/metastatic-carcinoma-of-unknown-primary-origin?query=cancer%20unknown%20origin (accessed on 1 September 2024).
P1 | P2 | P3 | NORM | ||
---|---|---|---|---|---|
Gender | F | F | F | ||
Age | 67 | 71 | 69 | ||
Thyroid disease | De Quervain’s thyroiditis | Graves’ disease | Atrophic thyroiditis | ||
Initial manifestation | Tachycardia, (FT3/4 fluctuation) | Thyreotoxicosis (exophthalmos) | Hypertension, oedema, insulin resistance | ||
BMI | 20→15 | 13.4 | 26.64→22.98 | ||
Neck Lymphadenopathy | no | no | no | ||
infection | TBC | TBC | MOT | ||
Overall survival [year] | 2.5 | 3.5 | live | ||
Albumin | 3.1 | 2.8 | 4.3 | 3.2–5.0 | [g/dL] |
Protein | 5.0 | 4.7 | 6 | 6.3–8.0 | [g/dL] |
Uric acid | 3.2 | 5.0 | 10.0 | 3.0–7.0 | [mg/dL] |
Fasting glucose | 65 | 74 | 153 | 74–106 | [mg/dL] |
Procalcitonin | 0.08 | 0.06 | 0.09 | [ng/mL] | |
Total calcemia | 2.32 | 2.12 | 1.18 | 2.2–2.55 | [mmol/L] |
Ionized calcium | 0.82 | 1.24 | 0.98 | 1.15–1.29 | [mmol/L] |
TSH (during TC diagnosis) | 4,33 | <0.005 | 12.13 | 0.27–4.2 | [μIU/mL] |
FT4 | 2.2→1.0 | 0.96 | 0.92 | 0.93–1.7 | [ng/dL] |
FT3 | 5.13→2.0 | 2.43 | 0.74 | 2–4.4 | [pg/mL] |
Anti-TPO | 1:320 | 1:320 | 47.8 * IU/mL | <1:100 | <34 IU/mL |
Anti-TSHR | (-) | >1:1280 | <0.80 * IU/mL | <1:100 | <1.50 IU/mL |
Anti-TG | 1:1280 | >1:1280 | 984.0 * IU/mL | <1:100 | <115 IU/mL |
Abnormalities in water/electrolyte balance | pleural effusion hypotonia | hypocalcemia, hypotonia | Oedema | ||
BONE | Systemic osteopenia | Calcinosis | osteoporosis with pathological fractures | ||
Dominating process | Various (autoimmunity→cancer) | Various (cancer≈mycobacterial) | mycobacterial |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zdziarski, P.; Sroka, Z. Progressive Cachexia: Tuberculosis, Cancer, or Thyrotoxicosis? Disease-Directed Therapy and Atypical Courses of Autoimmune and Malignant Thyroid Diseases in a High Specialization Era: Case-Control Study with a Critical Literature Review. Biomedicines 2024, 12, 2722. https://doi.org/10.3390/biomedicines12122722
Zdziarski P, Sroka Z. Progressive Cachexia: Tuberculosis, Cancer, or Thyrotoxicosis? Disease-Directed Therapy and Atypical Courses of Autoimmune and Malignant Thyroid Diseases in a High Specialization Era: Case-Control Study with a Critical Literature Review. Biomedicines. 2024; 12(12):2722. https://doi.org/10.3390/biomedicines12122722
Chicago/Turabian StyleZdziarski, Przemyslaw, and Zbigniew Sroka. 2024. "Progressive Cachexia: Tuberculosis, Cancer, or Thyrotoxicosis? Disease-Directed Therapy and Atypical Courses of Autoimmune and Malignant Thyroid Diseases in a High Specialization Era: Case-Control Study with a Critical Literature Review" Biomedicines 12, no. 12: 2722. https://doi.org/10.3390/biomedicines12122722
APA StyleZdziarski, P., & Sroka, Z. (2024). Progressive Cachexia: Tuberculosis, Cancer, or Thyrotoxicosis? Disease-Directed Therapy and Atypical Courses of Autoimmune and Malignant Thyroid Diseases in a High Specialization Era: Case-Control Study with a Critical Literature Review. Biomedicines, 12(12), 2722. https://doi.org/10.3390/biomedicines12122722