Precision Treatment of Metachronous Multiple Primary Malignancies Based on Constructing Patient Tumor-Derived Organoids
<p>MRI images of the prostate. The figure indicates a mass in the prostate, involving the posterior wall of the bladder, bilateral seminal vesicles, and the anterior wall of the distal rectum. Lymph nodes in the pelvic wall and inguinal area were discovered to be enlarged, accompanied by numerous abnormal signal spots in the pelvis. (<b>A</b>–<b>C</b>) T2WI images of prostate cancer in sagittal, axial, and coronal views. There is a lesion in the prostate, which appears as a low signal. (<b>D</b>) DWI images of prostate cancer, with the tumor exhibiting a high signal. (<b>E</b>) ADC images of prostate cancer, indicating a lower ADC value for the tumor. The red arrow points to the prostate cancer.</p> "> Figure 2
<p>Enhanced CT images of the kidneys. The figure indicates a 4.2 × 3.5 × 4 cm nodule in the middle part of the right kidney, with dilatation and fluid accumulation in the right renal pelvis, calyces, and the upper segment of the ureter. (<b>A</b>) Unenhanced. A solitary lobulated mass is present within the right kidney parenchyma, protruding beyond the renal contour. The mass has uneven density, with irregular low-density areas inside and unclear margins. (<b>B</b>) Enhanced arterial phase. The mass shows obvious non-homogeneous enhancement, with its density close to that of the renal cortex, and a non-enhanced necrotic area visible in the center. (<b>C</b>,<b>D</b>) Enhanced portal venous phase and enhanced venous phase. The mass demonstrates rapid delineation, with a density lower than that of the normal renal parenchyma. The red arrow points to the kidney cancer.</p> "> Figure 3
<p>Progression and corresponding surgeries of four primary tumors in the patient. The patient received a transurethral resection of bladder tumor to treat bladder cancer in September 2011. A right lobectomy and lymph node dissection for lung cancer were conducted in November 2016. Prostate cancer was diagnosed on 5 June 2023 through an ultrasound-guided prostate biopsy. A laparoscopic partial resection of the right kidney for kidney cancer treatment was performed on 6 June 2023.</p> "> Figure 4
<p>Graphical illustration of the organoid construction and prediction of drug targets. 1. The renal tumor specimens are obtained through laparoscopic partial nephrectomy. 2. Washing, slicing, and digestion to isolate tumor cells. 3. 3D cultured in Matrigel. 4. H&E and IHC staining are performed on the constructed organoids to predict drug targets.</p> "> Figure 5
<p>The organoids preserve the histopathological features inherent to the original tumor tissues. (<b>A</b>) Representative H&E stainning images of primary ccRCC tumors and organoids. (<b>B</b>) Representative IHC staining images of original tumors and organoids for CAIX. (<b>C</b>) Representative IHC staining images of original tumors and organoids for CD10. (<b>D</b>) Representative IHC staining images of original tumors and organoids for RCC. (<b>E</b>) Representative IHC staining images of original tumors for VEGF, and organoids stained VEGF by immunofluorescence (Green). (<b>F</b>) Representative IHC staining images of organoids for PD-L1, and organoids stained PD-L1 by immunofluorescence (Green).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Organoids
2.2. H&E Staining and IHC Staining
3. Results
3.1. Case Presentation
3.2. Established ccRCC Organoid
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vogt, A.; Schmid, S.; Heinimann, K.; Frick, H.; Herrmann, C.; Cerny, T.; Omlin, A. Multiple primary tumours: Challenges and approaches, a review. ESMO Open 2017, 2, e000172. [Google Scholar] [CrossRef]
- Billroth, T.; Winiwarter, A. Ein Handbuch für Studirende und Aerzte. In Die Allgemeine Chirurgische Pathologie und Therapie in 51 Vorlesungen; De Gruyter: Berlin, Germany, 1906. [Google Scholar] [CrossRef]
- Warren, S. Multiple primary malignant tumors. A survey of the literature and a statistical study. Am. J. Cancer 1932, 16, 1358–1414. [Google Scholar]
- International Association of Cancer Registries. International rules for multiple primary cancers. Asian Pac. J. Cancer Prev. 2005, 6, 104–106. [Google Scholar]
- Donin, N.; Filson, C.; Drakaki, A.; Tan, H.-J.; Castillo, A.; Kwan, L.; Litwin, M.; Chamie, K. Risk of second primary malignancies among cancer survivors in the United States, 1992 through 2008. Cancer 2016, 122, 3075–3086. [Google Scholar] [CrossRef]
- Zhai, C.; Cai, Y.; Lou, F.; Liu, Z.; Xie, J.; Zhou, X.; Wang, Z.; Fang, Y.; Pan, H.; Han, W. Multiple primary malignant tumors-a clinical analysis of 15,321 patients with malignancies at a single center in China. J. Cancer 2018, 9, 2795. [Google Scholar] [CrossRef]
- Hu, X.; Lu, J. Society of Cancer of Multiple and Unknown Primary of China Anti-Cancer Association China Anti-Cancer Association guideline for diagnosis and treatment of cancer of multiple and unknown primaries (2023 edition). China Oncol. 2023, 33, 403–422. [Google Scholar]
- Veninga, V.; Voest, E.E. Tumor organoids: Opportunities and challenges to guide precision medicine. Cancer Cell 2021, 39, 1190–1201. [Google Scholar] [CrossRef]
- Kim, J.; Koo, B.-K.; Knoblich, J.A. Human organoids: Model systems for human biology and medicine. Nat. Rev. Mol. Cell Biol. 2020, 21, 571–584. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Zhang, W.; Maskey, N.; Yang, F.; Zheng, Z.; Li, C.; Wang, R.; Wu, P.; Mao, S.; Zhang, J.; et al. Urological cancer organoids, patients’ avatars for precision medicine: Past, present and future. Cell Biosci. 2022, 12, 132. [Google Scholar] [CrossRef]
- Drost, J.; Clevers, H. Organoids in cancer research. Nat. Rev. Cancer 2018, 18, 407–418. [Google Scholar] [CrossRef]
- Xu, R.; Zhou, X.; Wang, S.; Trinkle, C. Tumor organoid models in precision medicine and investigating cancer-stromal interactions. Pharmacol. Ther. 2021, 218, 107668. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.-H.; Chu, X.-P.; Zhang, J.-T.; Nie, Q.; Tang, W.-F.; Su, J.; Yan, H.-H.; Zheng, H.-P.; Chen, Z.; Chen, X.; et al. Genomic characteristics and drug screening among organoids derived from non-small cell lung cancer patients. Thorac. Cancer 2020, 11, 2279–2290. [Google Scholar] [CrossRef]
- Phan, N.; Hong, J.J.; Tofig, B.; Mapua, M.; Elashoff, D.; Moatamed, N.A.; Huang, J.; Memarzadeh, S.; Damoiseaux, R.; Soragni, A. A simple high-throughput approach identifies actionable drug sensitivities in patient-derived tumor organoids. Commun. Biol. 2019, 2, 78. [Google Scholar] [CrossRef] [PubMed]
- Wensink, G.E.; Elias, S.G.; Mullenders, J.; Koopman, M.; Boj, S.F.; Kranenburg, O.W.; Roodhart, J.M. Patient-derived organoids as a predictive biomarker for treatment response in cancer patients. NPJ Precis. Oncol. 2021, 5, 30. [Google Scholar] [CrossRef]
- Bi, J.; Newtson, A.M.; Zhang, Y.; Devor, E.J.; Samuelson, M.I.; Thiel, K.W.; Leslie, K.K. Successful patient-derived organoid culture of gynecologic cancers for disease modeling and drug sensitivity testing. Cancers 2021, 13, 2901. [Google Scholar] [CrossRef]
- Zhang, W.; Zheng, Z.; Wang, K.; Mao, W.; Li, X.; Wang, G.; Zhang, Y.; Huang, J.; Zhang, N.; Wu, P.; et al. PiRNA-1742 promotes renal cell carcinoma malignancy by regulating USP8 stability through binding to hnRNPU and thereby inhibiting MUC12 ubiquitination. Exp. Mol. Med. 2023, 55, 1258–1271. [Google Scholar] [CrossRef]
- Avery, A.K.; Beckstead, J.; Renshaw, A.A.; Corless, C.L. Use of antibodies to RCC and CD10 in the differential diagnosis of renal neoplasms. Am. J. Surg. Pathol. 2000, 24, 203–210. [Google Scholar] [CrossRef] [PubMed]
- Moertel, C.G. Multiple primary malignant neoplasms. Historical perspectives. Cancer 1977, 40, 1786–1792. [Google Scholar] [CrossRef]
- Working Group Report. International rules for multiple primary cancers (ICD-0 third edition). Eur. J. Cancer Prev. Off. J. Eur. Cancer Prev. Organ. ECP 2005, 14, 307–308. [Google Scholar] [CrossRef]
- Clegg, N.J.; Wongvipat, J.; Joseph, J.D.; Tran, C.; Ouk, S.; Dilhas, A.; Chen, Y.; Grillot, K.; Bischoff, E.D.; Cai, L.; et al. ARN-509: A novel antiandrogen for prostate cancer treatment. Cancer Res. 2012, 72, 1494–1503. [Google Scholar] [CrossRef]
- Pang, J.; Shen, C.; Zhou, W.; Wang, Y.; Shan, L.; Chai, X.; Shao, Y.; Hu, X.; Zhu, F.; Zhu, D.; et al. Discovery of novel antagonists targeting the DNA binding domain of androgen receptor by integrated docking-based virtual screening and bioassays. Acta Pharmacol. Sin. 2022, 43, 229–239. [Google Scholar] [CrossRef] [PubMed]
- Chung, B.H.; Huang, J.; Ye, Z.-Q.; He, D.-L.; Uemura, H.; Arai, G.; Kim, C.S.; Zhang, Y.-Y.; Koroki, Y.; Jeong, S. Apalutamide for patients with metastatic castration-sensitive prostate cancer in East Asia: A subgroup analysis of the TITAN trial. Asian J. Androl. 2022, 24, 161–166. [Google Scholar] [CrossRef] [PubMed]
- Penet, M.-F.; Krishnamachary, B.; Chen, Z.; Jin, J.; Bhujwalla, Z.M. Molecular imaging of the tumor microenvironment for precision medicine and theranostics. Adv. Cancer Res. 2014, 124, 235–256. [Google Scholar]
- Gambardella, V.; Tarazona, N.; Cejalvo, J.M.; Lombardi, P.; Huerta, M.; Roselló, S.; Fleitas, T.; Roda, D.; Cervantes, A. Personalized medicine: Recent progress in cancer therapy. Cancers 2020, 12, 1009. [Google Scholar] [CrossRef] [PubMed]
- Nakagawa, H.; Wardell, C.P.; Furuta, M.; Taniguchi, H.; Fujimoto, A. Cancer whole-genome sequencing: Present and future. Oncogene 2015, 34, 5943–5950. [Google Scholar] [CrossRef]
- Attalla, K.; DiNatale, R.G.; Rappold, P.M.; Fong, C.J.; Sanchez-Vega, F.; Silagy, A.W.; Weng, S.; Coleman, J.; Lee, C.-H.; Carlo, M.I.; et al. Prevalence and landscape of actionable genomic alterations in renal cell carcinoma. Clin. Cancer Res. 2021, 27, 5595–5606. [Google Scholar] [CrossRef]
- Havel, J.J.; Chowell, D.; Chan, T.A. The evolving landscape of biomarkers for checkpoint inhibitor immunotherapy. Nat. Rev. Cancer 2019, 19, 133–150. [Google Scholar] [CrossRef]
- Xia, T.; Du, W.-L.; Chen, X.-Y.; Zhang, Y.-N. Organoid models of the tumor microenvironment and their applications. J. Cell. Mol. Med. 2021, 25, 5829–5841. [Google Scholar] [CrossRef]
- Xu, H.; Jiao, D.; Liu, A.; Wu, K. Tumor organoids: Applications in cancer modeling and potentials in precision medicine. J. Hematol. Oncol. 2022, 15, 58. [Google Scholar] [CrossRef]
- Takahashi, T. Organoids for drug discovery and personalized medicine. Annu. Rev. Pharmacol. Toxicol. 2019, 59, 447–462. [Google Scholar] [CrossRef]
- Stillebroer, A.B.; Mulders, P.F.A.; Boerman, O.C.; Oyen, W.J.G.; Oosterwijk, E. Carbonic anhydrase IX in renal cell carcinoma: Implications for prognosis, diagnosis, and therapy. Eur. Urol. 2010, 58, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Kazama, A.; Anraku, T.; Kuroki, H.; Shirono, Y.; Murata, M.; Bilim, V.; Ugolkov, A.; Saito, K.; Tomita, Y. Development of patient-derived tumor organoids and a drug testing model for renal cell carcinoma. Oncol. Rep. 2021, 46, 226. [Google Scholar] [CrossRef] [PubMed]
- Grönholm, M.; Feodoroff, M.; Antignani, G.; Martins, B.; Hamdan, F.; Cerullo, V. Patient-Derived Organoids for Precision Cancer Immunotherapy. Cancer Res. 2021, 81, 3149–3155. [Google Scholar] [CrossRef]
- Xue, Y.; Wang, B.; Tao, Y.; Xia, J.; Yuan, K.; Zheng, J.; Zhai, W.; Xue, W. Patient-derived organoids potentiate precision medicine in advanced clear cell renal cell carcinoma. Precis. Clin. Med. 2022, 5, pbac028. [Google Scholar] [CrossRef]
- LeSavage, B.L.; Suhar, R.A.; Broguiere, N.; Lutolf, M.P.; Heilshorn, S.C. Next-generation cancer organoids. Nat. Mater. 2022, 21, 143–159. [Google Scholar] [CrossRef]
- Wang, J.; Wu, X.; Zhao, J.; Ren, H.; Zhao, Y. Developing Liver Microphysiological Systems for Biomedical Applications. Adv. Healthc. Mater. 2023, 13, e2302217. [Google Scholar] [CrossRef]
- Edington, C.D.; Chen, W.L.K.; Geishecker, E.; Kassis, T.; Soenksen, L.R.; Bhushan, B.M.; Freake, D.; Kirschner, J.; Maass, C.; Tsamandouras, N.; et al. Interconnected Microphysiological Systems for Quantitative Biology and Pharmacology Studies. Sci. Rep. 2018, 8, 4530. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, R.W.; Aref, A.R.; Lizotte, P.H.; Ivanova, E.; Stinson, S.; Zhou, C.W.; Bowden, M.; Deng, J.; Liu, H.; Miao, D.; et al. Ex Vivo Profiling of PD-1 Blockade Using Organotypic Tumor Spheroids. Cancer Discov. 2018, 8, 196–215. [Google Scholar] [CrossRef]
- Nguyen, M.; De Ninno, A.; Mencattini, A.; Mermet-Meillon, F.; Fornabaio, G.; Evans, S.S.; Cossutta, M.; Khira, Y.; Han, W.; Sirven, P.; et al. Dissecting Effects of Anti-cancer Drugs and Cancer-Associated Fibroblasts by On-Chip Reconstitution of Immunocompetent Tumor Microenvironments. Cell Rep. 2018, 25, 3884–3893.e3. [Google Scholar] [CrossRef]
- Baptista, L.S.; Porrini, C.; Kronemberger, G.S.; Kelly, D.J.; Perrault, C.M. 3D organ-on-a-chip: The convergence of microphysiological systems and organoids. Front. Cell Dev. Biol. 2022, 10, 1043117. [Google Scholar] [CrossRef]
- Ko, J.; Song, J.; Choi, N.; Kim, H.N. Patient-Derived Microphysiological Systems for Precision Medicine. Adv. Healthc. Mater. 2024, 13, e2303161. [Google Scholar] [CrossRef] [PubMed]
Radiological Findings | Pathological Findings | Surgical Procedure | Therapeutic Drugs | |
---|---|---|---|---|
Bladder cancer | A 24 × 15 mm bladder mass | Papillary uroepithelial carcinoma of the bladder | Transurethral resection of the bladder tumor | / |
Lung cancer | / | Papillary invasive adenocarcinoma of the right middle lobe lateral segment | Right middle lung lobectomy and lymph node dissection | / |
Prostate cancer | An abnormality was found in the prostate involving the posterior wall of the bladder, bilateral seminal vesicles and the distal anterior wall of the rectum Enlarged lymph nodes in the pelvic wall and inguinal region Multiple foci of abnormal signal in the pelvis | Prostate adenocarcinoma | / | Leuprorelin Acetate and Apalutamide |
Renal cancer | A 4.2 × 3.5 × 4 cm mass in the middle of the right kidney, with possible multiple retroperitoneal lymph node metastases | Clear cell renal cell carcinoma | Laparoscopic partial nephrectomy | / |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Chen, H.; Zhang, Z.; He, Y.; Liu, J.; Zhao, B.; Wang, Q.; Xu, J.; Mao, S.; Zhang, W.; et al. Precision Treatment of Metachronous Multiple Primary Malignancies Based on Constructing Patient Tumor-Derived Organoids. Biomedicines 2024, 12, 2708. https://doi.org/10.3390/biomedicines12122708
Wang Y, Chen H, Zhang Z, He Y, Liu J, Zhao B, Wang Q, Xu J, Mao S, Zhang W, et al. Precision Treatment of Metachronous Multiple Primary Malignancies Based on Constructing Patient Tumor-Derived Organoids. Biomedicines. 2024; 12(12):2708. https://doi.org/10.3390/biomedicines12122708
Chicago/Turabian StyleWang, Yicheng, Haotian Chen, Zhijin Zhang, Yanyan He, Ji Liu, Baoshuang Zhao, Qinwan Wang, Jiangmei Xu, Shiyu Mao, Wentao Zhang, and et al. 2024. "Precision Treatment of Metachronous Multiple Primary Malignancies Based on Constructing Patient Tumor-Derived Organoids" Biomedicines 12, no. 12: 2708. https://doi.org/10.3390/biomedicines12122708
APA StyleWang, Y., Chen, H., Zhang, Z., He, Y., Liu, J., Zhao, B., Wang, Q., Xu, J., Mao, S., Zhang, W., Yao, X., & Li, W. (2024). Precision Treatment of Metachronous Multiple Primary Malignancies Based on Constructing Patient Tumor-Derived Organoids. Biomedicines, 12(12), 2708. https://doi.org/10.3390/biomedicines12122708