Early Thrombocytopenia at Hospital Admission Predicts Mortality in Patients with Non-Isolated Severe Traumatic Brain Injury
"> Figure 1
<p>Flowchart of patients included in the study.</p> "> Figure 2
<p>Kaplan–Meier survival curve for patients with a platelet count of > or <150 × 10<sup>3</sup>/μL. Kaplan–Meier survival curves are displayed to discriminate patients arriving at ED with >150 × 10<sup>3</sup> platelets/μL (blue) and <150 × 10<sup>3</sup> platelets/μL (red). The matched groups were compared using the log-rank test. Patients admitted with <150 × 10<sup>3</sup> platelets/μL had significantly higher and earlier mortality than those admitted with >150 × 10<sup>3</sup> platelets/μL (<span class="html-italic">p</span> < 0.001).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Data Availability
2.3. Statistical Analysis
3. Results
3.1. Demographic and Clinical Characteristics of STBI
3.2. Radiological Findings of the Initial CT
3.3. Associated Extracranial Injuries
3.4. Laboratory Abnormalities in Hemostasis
3.5. Logistic Regression Analysis for Mortality
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Savioli, G.; Ceresa, I.F.; Caneva, L.; Gerosa, S.; Ricevuti, G. Trauma-Induced Coagulopathy: Overview of an Emerging Medical Problem from Pathophysiology to Outcomes. Medicines 2021, 8, 16. [Google Scholar] [CrossRef] [PubMed]
- Maas, A.I.R.; Stocchetti, N.; Bullock, R. Moderate and severe traumatic brain injury in adults. Lancet Neurol. 2008, 7, 728–741. [Google Scholar] [CrossRef] [PubMed]
- Harhangi, B.S.; Kompanje, E.J.O.; Leebeek, F.W.G.; Maas, A.I.R. Coagulation disorders after traumatic brain injury. Acta Neurochir. 2008, 150, 165–175; discussion 175. [Google Scholar] [CrossRef] [PubMed]
- Hess, J.R.; Brohi, K.; Dutton, R.P.; Hauser, C.J.; Holcomb, J.B.; Kluger, Y.; Mackway-Jones, K.; Parr, M.J.; Rizoli, S.B.; Yukioka, T.; et al. The coagulopathy of trauma: A review of mechanisms. J. Trauma 2008, 65, 748–754. [Google Scholar] [CrossRef]
- Allard, C.B.; Scarpelini, S.; Rhind, S.G.; Baker, A.J.; Shek, P.N.; Tien, H.; Fernando, M.; Tremblay, L.; Morrison, L.J.; Pinto, R.; et al. Abnormal coagulation tests are associated with progression of traumatic intracranial hemorrhage. J. Trauma 2009, 67, 959–967. [Google Scholar] [CrossRef]
- Van Gent, J.A.N.; van Essen, T.A.; Bos, M.H.A.; Cannegieter, S.C.; van Dijck, J.T.J.M.; Peul, W.C. Coagulopathy after hemorrhagic traumatic brain injury, an observational study of the incidence and prognosis. Acta Neurochir. 2020, 162, 329–336. [Google Scholar] [CrossRef]
- Lustenberger, T.; Talving, P.; Kobayashi, L.; Inaba, K.; Lam, L.; Plurad, D.; Demetriades, D. Time course of coagulopathy in isolated severe traumatic brain injury. Injury 2010, 41, 924–928. [Google Scholar] [CrossRef]
- Maegele, M.; Schöchl, H.; Menovsky, T.; Maréchal, H.; Marklund, N.; Buki, A.; Stanworth, S. Coagulopathy and haemorrhagic progression in traumatic brain injury: Advances in mechanisms, diagnosis, and management. Lancet Neurol. 2017, 16, 630–647. [Google Scholar] [CrossRef] [PubMed]
- Chang, R.; Fox, E.E.; Greene, T.J.; Swartz, M.D.; DeSantis, S.M.; Stein, D.M.; Bulger, E.M.; Melton, S.M.; Goodman, M.D.; Schreiber, M.A.; et al. Abnormalities of laboratory coagulation tests versus clinically evident coagulopathic bleeding: Results from the prehospital resuscitation on helicopters study (PROHS). Surgery 2018, 163, 819–826. [Google Scholar] [CrossRef]
- Watanabe, T.; Kawai, Y.; Iwamura, A.; Maegawa, N.; Fukushima, H.; Okuchi, K. Outcomes after Traumatic Brain Injury with Concomitant Severe Extracranial Injuries. Neurol. Med. Chir. 2018, 58, 393–399. [Google Scholar] [CrossRef]
- Von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P. Strengthening the reporting of observational studies in epidemiology (STROBE) statement: Guidelines for reporting observational studies. BMJ 2007, 335, 806–808. [Google Scholar] [CrossRef] [PubMed]
- Carney, N.; Totten, A.M.; O’Reilly, C.; Ullman, J.S.; Hawryluk, G.W.J.; Bell, M.J.; Bratton, S.L.; Chesnut, R.; Harris, O.A.; Kissoon, N.; et al. Guidelines for the Management of Severe Traumatic Brain Injury, Fourth Edition. Neurosurgery 2017, 80, 6–15. [Google Scholar] [CrossRef] [PubMed]
- Wijdicks, E.F.M.; Varelas, P.N.; Gronseth, G.S.; Greer, D.M. Evidence-based guideline update: Determining brain death in adults: Report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology 2010, 74, 1911–1918. [Google Scholar] [CrossRef]
- Harvey, D.; Butler, J.; Groves, J.; Manara, A.; Menon, D.; Thomas, E.; Wilson, M. Management of perceived devastating brain injury after hospital admission: A consensus statement from stakeholder professional organizations. Br. J. Anaesth. 2018, 120, 138–145. [Google Scholar] [CrossRef]
- Spahn, D.R.; Bouillon, B.; Cerny, V.; Duranteau, J.; Filipescu, D.; Hunt, B.J.; Komadina, R.; Maegele, M.; Nardi, G.; Riddez, L.; et al. The European guideline on management of major bleeding and coagulopathy following trauma: Fifth edition. Crit. Care Lond. Engl. 2019, 23, 98. [Google Scholar] [CrossRef]
- Giner, J.; Mesa Galán, L.; Yus Teruel, S.; Guallar Espallargas, M.C.; Pérez López, C.; Isla Guerrero, A.; Roda Frade, J. El traumatismo craneoencefálico severo en el nuevo milenio. Nueva población y nuevo manejo. Neurología 2022, 37, 383–389. [Google Scholar] [CrossRef]
- Niemeyer, M.; Jochems, D.; Houwert, R.M.; van Es, M.A.; Leenen, L.; van Wessem, K. Mortality in polytrauma patients with moderate to severe TBI on par with isolated TBI patients: TBI as last frontier in polytrauma patients. Injury 2022, 53, 1443–1448. [Google Scholar] [CrossRef] [PubMed]
- Patel, H.C.; Bouamra, O.; Woodford, M.; Yates, D.W.; Lecky, F.E. Clinical article: Mortality associated with severe head injury in the elderly. Acta Neurochir. 2010, 152, 1353–1357; discussion 1357. [Google Scholar] [CrossRef]
- Mosquera Betancourt, G.; Vega Basulto, S.D.; Valdeblánquez Atencio, J. Mortalidad por trauma craneoencefálico en el adulto mayor. Rev. Arch. Méd. Camagüey 2009, 13. [Google Scholar]
- Foreman, B.P.; Caesar, R.R.; Parks, J.; Madden, C.; Gentilello, L.M.; Shafi, S.; Carlile, M.C.; Harper, C.R.; Diaz-Arrastia, R.R. A multicenter trial on the efficacy of using tirilazad mesylate in cases of head injury. J. Neurosurg. 1998, 89, 519–525. [Google Scholar] [CrossRef]
- Moppett, I.K. Traumatic brain injury: Assessment, resuscitation and early management. Br. J. Anaesth. 2007, 99, 18–31. [Google Scholar] [CrossRef]
- Reviejo, K.; Arcega, I.; Txoperena, G.; Azaldegui, F.; Alberdi, F.; Lara, G. Análisis de factores pronósticos de la mortalidad en el traumatismo craneoencefálico grave. Proyecto Poliguitania. Med. Intensiv. 2002, 26, 241–247. [Google Scholar] [CrossRef]
- Foreman, B.P.; Caesar, R.R.; Parks, J.; Madden, C.; Gentilello, L.M.; Shafi, S.; Carlile, M.C.; Harper, C.R.; Diaz-Arrastia, R.R. Usefulness of the abbreviated injury score and the injury severity score in comparison to the Glasgow Coma Scale in predicting outcome after traumatic brain injury. J. Trauma 2007, 62, 946–950. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Xie, J.; Xiao, X.; Li, T.; Li, H.; Bai, X.; Li, Z.; Wang, W. Clinical predictors of prognosis in patients with traumatic brain injury combined with extracranial trauma. Int. J. Med. Sci. 2021, 18, 1639. [Google Scholar] [CrossRef] [PubMed]
- Tong, W.-S.; Zheng, P.; Xu, J.-F.; Guo, Y.-J.; Zeng, J.-S.; Yang, W.-J.; Li, G.-Y.; He, B.; Yu, H. Early CT signs of progressive hemorrhagic injury following acute traumatic brain injury. Neuroradiology 2011, 53, 305–309. [Google Scholar] [CrossRef] [PubMed]
- Maas, A.I.R.; Steyerberg, E.W.; Butcher, I.; Dammers, R.; Lu, J.; Marmarou, A.; Mushkudiani, N.A.; McHugh, G.S.; Murray, G.D. Prognostic value of computerized tomography scan characteristics in traumatic brain injury: Results from the IMPACT study. J. Neurotrauma 2007, 24, 303–314. [Google Scholar] [CrossRef]
- Wardlaw, J.M.; Easton, V.J.; Statham, P. Which CT features help predict outcome after head injury? J. Neurol. Neurosurg. Psychiatry 2002, 72, 188–192; discussion 151. [Google Scholar] [CrossRef]
- Keimowitz, R.M.; Annis, B.L. Disseminated intravascular coagulation associated with massive brain injury. J. Neurosurg. 1973, 39, 178–180. [Google Scholar] [CrossRef]
- Fletcher-Sandersjöö, A.; Thelin, E.P.; Maegele, M.; Svensson, M.; Bellander, B.-M. Time Course of Hemostatic Disruptions After Traumatic Brain Injury: A Systematic Review of the Literature. Neurocrit. Care 2021, 34, 635–656. [Google Scholar] [CrossRef]
- Liu, J.; Tian, H.-L. Relationship between trauma-induced coagulopathy and progressive hemorrhagic injury in patients with traumatic brain injury. Chin. J. Traumatol. 2016, 19, 172–175. [Google Scholar] [CrossRef]
- Moore, E.E.; Moore, H.B.; Kornblith, L.Z.; Neal, M.D.; Hoffman, M.; Mutch, N.J.; Schöchl, H.; Hunt, B.J.; Sauaia, A. Trauma-induced coagulopathy. Nat. Rev. Dis. Prim. 2021, 7, 30. [Google Scholar] [CrossRef] [PubMed]
- Tian, H.-L.; Chen, H.; Wu, B.-S.; Cao, H.-L.; Xu, T.; Hu, J.; Wang, G.; Gao, W.-W.; Lin, Z.-K.; Chen, S.-W. D-dimer as a predictor of progressive hemorrhagic injury in patients with traumatic brain injury: Analysis of 194 cases. Neurosurg. Rev. 2010, 33, 359–365; discussion 365–366. [Google Scholar] [CrossRef] [PubMed]
- Juratli, T.A.; Zang, B.; Litz, R.J.; Sitoci, K.-H.; Aschenbrenner, U.; Gottschlich, B.; Daubner, D.; Schackert, G.; Sobottka, S.B. Early hemorrhagic progression of traumatic brain contusions: Frequency, correlation with coagulation disorders, and patient outcome: A prospective study. J. Neurotrauma 2014, 31, 1521–1527. [Google Scholar] [CrossRef]
- Lillemäe, K.; Luostarinen, T.; Reinikainen, M.; Bendel, S.; Laitio, R.; Hoppu, S.; Ala-Kokko, T.; Niemi, T.; Skrifvars, M.B.; Raj, R. Early thrombocytopenia is associated with an increased risk of mortality in patients with traumatic brain injury treated in the intensive care unit: A Finnish Intensive Care Consortium study. Acta Neurochir. 2022, 164, 2731–2740. [Google Scholar] [CrossRef]
- Böhm, J.K.; Güting, H.; Thorn, S.; Schäfer, N.; Rambach, V.; Schöchl, H.; Grottke, O.; Rossaint, R.; Stanworth, S.; Curry, N.; et al. Global Characterisation of Coagulopathy in Isolated Traumatic Brain Injury (iTBI): A CENTER-TBI Analysis. Neurocrit. Care 2021, 35, 184–196. [Google Scholar] [CrossRef]
- Carrick, M.M.; Tyroch, A.H.; Youens, C.A.; Handley, T. Subsequent development of thrombocytopenia and coagulopathy in moderate and severe head injury: Support for serial laboratory examination. J. Trauma 2005, 58, 725–729; discussion 729–730. [Google Scholar] [CrossRef]
- Engström, M.; Romner, B.; Schalén, W.; Reinstrup, P. Thrombocytopenia predicts progressive hemorrhage after head trauma. J. Neurotrauma 2005, 22, 291–296. [Google Scholar] [CrossRef]
- Nekludov, M.; Bellander, B.-M.; Blombäck, M.; Wallen, H.N. Platelet dysfunction in patients with severe traumatic brain injury. J. Neurotrauma 2007, 24, 1699–1706. [Google Scholar] [CrossRef] [PubMed]
- Jacoby, R.C.; Owings, J.T.; Holmes, J.; Battistella, F.D.; Gosselin, R.C.; Paglieroni, T.G. Platelet Activation and Function after Trauma. J. Trauma Inj. Infect. Crit. Care 2001, 51, 639–647. [Google Scholar] [CrossRef]
- Vulliamy, P.; Kornblith, L.Z.; Kutcher, M.E.; Cohen, M.J.; Brohi, K.; Neal, M.D. Alterations in platelet behavior after major trauma: Adaptive or maladaptive? Platelets 2021, 32, 295–304. [Google Scholar] [CrossRef]
- Brown, L.M.; Call, M.S.; Margaret Knudson, M.; Cohen, M.J.; Trauma Outcomes Group; Holcomb, J.B.; Wade, C.E.; Brasel, K.J.; Vercruysse, G.; MacLeod, J.; et al. A normal platelet count may not be enough: The impact of admission platelet count on mortality and transfusion in severely injured trauma patients. J. Trauma 2011, 71, S337–S342. [Google Scholar] [CrossRef] [PubMed]
- Nakae, R.; Yokobori, S.; Takayama, Y.; Kuwamoto, K.; Naoe, Y.; Yokota, H. Age-related differences in fibrinolytic parameters in patients with acute traumatic brain injury. Surg. Neurol. Int. 2017, 8, 214. [Google Scholar] [CrossRef]
- Yuan, Q.; Sun, Y.-R.; Wu, X.; Yu, J.; Li, Z.-Q.; Du, Z.-Y.; Wu, X.-H.; Zhou, L.-F.; Hu, J. Coagulopathy in Traumatic Brain Injury and Its Correlation with Progressive Hemorrhagic Injury: A Systematic Review and Meta-Analysis. J. Neurotrauma 2016, 33, 1279–1291. [Google Scholar] [CrossRef]
- Epstein, D.S.; Mitra, B.; O’Reilly, G.; Rosenfeld, J.V.; Cameron, P.A. Acute traumatic coagulopathy in the setting of isolated traumatic brain injury: A systematic review and meta-analysis. Injury 2014, 45, 819–824. [Google Scholar] [CrossRef] [PubMed]
- Schnüriger, B.; Inaba, K.; Abdelsayed, G.A.; Lustenberger, T.; Eberle, B.M.; Barmparas, G.; Talving, P.; Demetriades, D. The impact of platelets on the progression of traumatic intracranial hemorrhage. J. Trauma 2010, 68, 881–885. [Google Scholar] [CrossRef]
- Stansbury, L.G.; Dutton, R.P.; Stein, D.M.; Bochicchio, G.V.; Scalea, T.M.; Hess, J.R. Controversy in trauma resuscitation: Do ratios of plasma to red blood cells matter? Transfus. Med. Rev. 2009, 23, 255–265. [Google Scholar] [CrossRef]
- Cardenas, J.C.; Zhang, X.; Fox, E.E.; Cotton, B.A.; Hess, J.R.; Schreiber, M.A.; Wade, C.E.; Holcomb, J.B.; PROPPR Study Group. Platelet transfusions improve hemostasis and survival in a substudy of the prospective, randomized PROPPR trial. Blood Adv. 2018, 2, 1696–1704. [Google Scholar] [CrossRef] [PubMed]
- Kutcher, M.E.; Redick, B.J.; McCreery, R.C.; Crane, I.M.; Greenberg, M.D.; Cachola, L.M.; Nelson, M.F.; Cohen, M.J. Characterization of platelet dysfunction after trauma. J. Trauma Acute Care Surg. 2012, 73, 13–19. [Google Scholar] [CrossRef]
- Alvikas, J.; Zenati, M.; Campwala, I.; Jansen, J.O.; Hassoune, A.; Phelos, H.; Okonkwo, D.O.; Neal, M.D. Rapid detection of platelet inhibition and dysfunction in traumatic brain injury: A prospective observational study. J. Trauma Acute Care Surg. 2022, 92, 167–176. [Google Scholar] [CrossRef]
- Al-Ahmady, Z.S.; Dickie, B.R.; Aldred, I.; Jasim, D.A.; Barrington, J.; Haley, M.; Lemarchand, E.; Coutts, G.; Kaur, S.; Bates, J.; et al. Selective brain entry of lipid nanoparticles in haemorrhagic stroke is linked to biphasic blood-brain barrier disruption. Theranostics 2022, 12, 4477. [Google Scholar] [CrossRef]
- Amani, H.; Habibey, R.; Hajmiresmail, S.J.; Latifi, S.; Pazoki-Toroudi, H.; Akhavan, O. Antioxidant nanomaterials in advanced diagnoses and treatments of ischemia reperfusion injuries. J. Mater. Chem. B 2017, 5, 9452–9476. [Google Scholar] [CrossRef] [PubMed]
- Meizoso, J.P.; Moore, H.B.; Moore, E.E.; Gilna, G.P.; Ghasabyan, A.; Chandler, J.; Pieracci, F.M.; Sauaia, A. Traumatic brain injury provokes low fibrinolytic activity in severely injured patients. J. Trauma Acute Care Surg. 2022, 93, 8–12. [Google Scholar] [CrossRef] [PubMed]
Total (n = 134) Median (IQR) | Survivors (n = 83) Median (IQR) | Dead (n = 51) Median (IQR) | p | |
---|---|---|---|---|
Age (years) | 45 (30–65) | 39 (29–55) | 57 (36–78) | 0.003 |
Male sex, n (%) | 86 (64.1%) | 53 (63.8%) | 33 (64.7%) | 0.981 |
Time taken to reach hospital (min) | 51 (41–61) | 52 (43–59) | 49 (40–65) | 0.508 |
Mechanism of trauma | ||||
Car, n (%) | 13 (9.7%) | 9 (10.8%) | 4 (7.8%) | 0.608 |
Motorcycle, n (%) | 28 (20.9%) | 22 (26.5%) | 6 (11.7%) | 0.039 |
Knocked down, n (%) | 43 (32.1%) | 25 (30.1%) | 18 (35.3%) | 0.454 |
Fall, n (%) | 50 (37.3%) | 27 (32.5%) | 23 (45.1%) | 0.387 |
Pre-hospital fluid replacement (mL) | 600 (300–1200) | 650 (300–1275) | 600 (200–1100) | 0.571 |
Systolic arterial pressure (mm Hg) | 120 (90–140) | 119 (90–136) | 120 (81–150) | 0.916 |
Heart rate (bpm) | 97 (79.75–120.5) | 100 (82–120) | 90 (79–124) | 0.369 |
Glasgow Score | 6.5 (3–13) | 9 (4–13) | 4 (3–7) | <0.001 |
AIS, head and neck | 4 (3–5) | 4 (3–4) | 5 (4–5) | <0.001 |
AIS, overall | 10 (7–12) | 9 (8–11) | 10 (5–13) | 0.897 |
ISS | 34 (29–43) | 34 (27–41) | 41 (34–50) | 0.003 |
Length of stay in SICU (days) | 9 (3–25.25) | 17 (8–32) | 2 (0–5) | <0.001 |
Red blood cell units, n | 0 (0–5) | 0 (0–4) | 0 (0–6.75) | 0.638 |
MTP, n (%) | 28 (20.7%) | 17 (20.2%) | 11 (21.6%) | 0.853 |
GOS | 3 (1–5) | 3 (2–5) | 1 (1–1) | <0.001 |
Need for urgent surgery, n (%) | 77 (57%) | 59 (70%) | 18 (35%) | <0.001 |
Need of urgent neurosurgery, n (%) | 36 (26.8%) | 24 (28.9%) | 12 (23.5%) | 0.52 |
Survivors (n = 83) n, (%) | Dead (n = 51) n, (%) | p | |
---|---|---|---|
SAH | 47 (56%) | 30 (58.8%) | 0.744 |
SDH | 35 (41.7%) | 29 (56.9%) | 0.086 |
EDH | 9 (10.7%) | 1 (2%) | 0.06 |
IPH | 2 (2.4%) | 12 (23.5%) | <0.001 |
IVH | 7 (8.3%) | 5 (9.8%) | 0.771 |
Cerebral contusion | 30 (35.7%) | 14 (27.5%) | 0.034 |
Brain stem hemorrhage | 1 (1.2%) | 2 (3.9%) | 0.319 |
Brain swelling | 3 (3.6%) | 7 (13.7%) | 0.211 |
Brain herniation sings | 6 (7.1%) | 12 (23.5%) | 0.007 |
Skull fracture | 34 (40.5%) | 28 (54.9%) | 0.103 |
Total n, (%) | Survivors n, (%) | Dead n, (%) | p | |
---|---|---|---|---|
Face | 41 (30.6%) | 23 (27.7%) | 18 (35.3%) | 0.335 |
Spine | 63 (47%) | 42 (50.6%) | 21 (41.2%) | 0.288 |
Mediastinum | 9 (6.7%) | 6 (7.2%) | 3 (5.6%) | 0.762 |
Thorax | 89 (66.4%) | 60 (72.2%) | 29 (56.8%) | 0.066 |
Abdomen | 46 (34.3%) | 30 (36.1%) | 16 (31.3%) | 0.572 |
Pelvic fracture | 42 (31.3%) | 25 (30.1%) | 17 (33.3%) | 0.697 |
Skeleton | 88 (65.6%) | 55 (66.2%) | 33 (64.7%) | 0.854 |
Liver | 22 (28.2%) | 17 (20.5%) | 5 (9.8%) | 0.167 |
Spleen | 9 (13.2%) | 7 (8.4%) | 2 (3.9%) | 0.289 |
Massive hemoperitoneum | 1 (1.5%) | 1 (1.2%) | 0 (0%) | 0.426 |
Diaphragm | 1 (1.5%) | 1 (1.2%) | 0 (0%) | 0.426 |
Kidney | 11 (15.7%) | 7 (8.4%) | 4 (7.8%) | 0.87 |
Retroperitoneal hematoma | 22 (29.7%) | 13 (15.6%) | 9 (17.6%) | 0.723 |
ED Arrival | SICU Admission | 24 h at SICU | 48 h at SICU | ||||||
---|---|---|---|---|---|---|---|---|---|
Median (IQR) | p | Median (IQR) | p | Median (IQR) | p | Median (IQR) | p | ||
INR (s) | Survivors | 1.07 (1.00–1.3) | 0.203 | 1.11 (1.02–1.28) | 0.01 | 1.16 (1.06–1.30) | 0.287 | 1.10 (1.02–1.22) | 0.173 |
Dead | 1.18 (1.01–1.48) | 1.19 (1.08–1.54) | 1.19 (1.08–1.42) | 1.11 (1.04–1.43) | |||||
APTT (s) | Survivors | 28.8 (26.5–34.4) | 0.167 | 28.5 (26.2–32.9) | 0.04 | 29.1 (27.4–31.1) | 0.584 | 29.0 (27.3–31.0) | 0.371 |
Dead | 32.9 (25.8–45.6) | 34.0 (26.4–43.9) | 29.7 (26.3–33.7) | 29.7 (26.6–33.3) | |||||
PT (s) | Survived | 12.8 (11.8–15.5) | 0.184 | 13.2 (12.1–15.5) | 0.006 | 13.9 (12.6–15.6) | 0.287 | 13.2 (12.0–14.6) | 0.514 |
Died | 14.1 (12.0–17.8) | 14.3 (12.9–18.7) | 14.2 (12.8–17.1) | 13.2 (12.3–16.8) | |||||
Fib (g/L) | Survivors | 12.8 (11.8–15.5) | 0.184 | 13.2 (12.1–15.5) | 0.006 | 13.9 (12.6–15.6) | 0.287 | 13.2 (12.0–14.6) | 0.277 |
Dead | 14.1 (12.0–17.8) | 14.3 (12.9–18.7) | 14.2 (12.8–17.1) | 13.2 (12.3–16.8) | |||||
Hb (g/dL) | Survivors | 12.4 (10.5–13.8) | 0.01 | 11.8 (10.4–13.2) | 0.001 | 10.2 (9.2–11.6) | 0.238 | 9.1 (8.2–10.4) | 0.927 |
Dead | 10.5 (7.8–13.2) | 10.1 (8.6–12.1) | 9.8 (8.7–11.3) | 9.5 (8.4–10.4) | |||||
PC (×103/L) | Survivors | 200 (159–238) | <0.001 | 192 (134–235) | <0.001 | 143 (108–176) | <0.001 | 124 (100–164) | 0.001 |
Dead | 149 (114–184) | 130 (98–160) | 107 (81–129) | 92 (70–130) |
B | S.E. | Wald | df | Sig. | Exp(B) | |
---|---|---|---|---|---|---|
Age | 0.037 | 0.011 | 11.352 | 1 | 0.001 | 1.037 |
Glasgow Coma Scale score | −0.226 | 0.055 | 16.914 | 1 | <0.001 | 0.797 |
Platelet count on ED admission | −0.01 | 0.003 | 8.976 | 1 | 0.003 | 0.99 |
Constant | 1.15 | 0.847 | 1.843 | 1 | 0.175 | 3.159 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piñeiro, P.; Calvo, A.; Pérez-Díaz, M.D.; Ramos, S.; García-Ramos, S.; Power, M.; Solchaga, I.; Rey, C.; Hortal, J.; Turégano, F.; et al. Early Thrombocytopenia at Hospital Admission Predicts Mortality in Patients with Non-Isolated Severe Traumatic Brain Injury. Biomedicines 2024, 12, 2702. https://doi.org/10.3390/biomedicines12122702
Piñeiro P, Calvo A, Pérez-Díaz MD, Ramos S, García-Ramos S, Power M, Solchaga I, Rey C, Hortal J, Turégano F, et al. Early Thrombocytopenia at Hospital Admission Predicts Mortality in Patients with Non-Isolated Severe Traumatic Brain Injury. Biomedicines. 2024; 12(12):2702. https://doi.org/10.3390/biomedicines12122702
Chicago/Turabian StylePiñeiro, Patricia, Alberto Calvo, María Dolores Pérez-Díaz, Silvia Ramos, Sergio García-Ramos, Mercedes Power, Isabel Solchaga, Cristina Rey, Javier Hortal, Fernando Turégano, and et al. 2024. "Early Thrombocytopenia at Hospital Admission Predicts Mortality in Patients with Non-Isolated Severe Traumatic Brain Injury" Biomedicines 12, no. 12: 2702. https://doi.org/10.3390/biomedicines12122702
APA StylePiñeiro, P., Calvo, A., Pérez-Díaz, M. D., Ramos, S., García-Ramos, S., Power, M., Solchaga, I., Rey, C., Hortal, J., Turégano, F., & Garutti, I. (2024). Early Thrombocytopenia at Hospital Admission Predicts Mortality in Patients with Non-Isolated Severe Traumatic Brain Injury. Biomedicines, 12(12), 2702. https://doi.org/10.3390/biomedicines12122702